Skip to main content

AF-TCP: Traffic Congestion Prediction at Arbitrary Road Segment and Flexible Future Time

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13157))

  • 1654 Accesses

Abstract

Traffic congestion prediction is a fundamental yet challenging problem in Intelligent Transportation Systems (ITS). Due to the large scale of the road network, the high nonlinearity and complexity of traffic data, few methods are well-suited for citywide traffic congestion prediction. In this paper, we propose a novel deep model named AF-TCP for Traffic Congestion Prediction at Arbitrary road segment and Flexible future time. For the model to achieve the prediction at flexible future time, we construct all time representations in a unified vector space and further improve the model’s perception ability to different horizons. On the other hand, to realize the congestion prediction of arbitrary road segment within the city, we utilize road attributes and local neighbor structure to build the road segment representation, and design a deep model to fuse it with the corresponding historical traffic data. Extensive experiments on the real-world dataset demonstrate that our model exhibits stable performance at different prediction horizons and outperforms the baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gaia.didichuxing.com.

References

  1. Basak, S., Dubey, A., Bruno, L.: Analyzing the cascading effect of traffic congestion using LSTM networks. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 2144–2153. IEEE (2019)

    Google Scholar 

  2. Li, K., Chen, L., Shang, S.: Towards alleviating traffic congestion: optimal route planning for massive-scale trips. In: IJCAI (2020)

    Google Scholar 

  3. Chen, C., Zhang, D., Ma, X., Guo, B., Wang, L., Wang, Y., Sha, E.: Crowddeliver: planning city-wide package delivery paths leveraging the crowd of taxis. IEEE Trans. Intell. Trans. Syst. 18(6), 1478–1496 (2016)

    Google Scholar 

  4. Wang, D., Zhang, J., Cao, W., Li, J., Zheng, Y.: When will you arrive? AAAI, Estimating travel time based on deep neural networks. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  5. Chen, C., Ding, Y., Xie, X., Zhang, S., Wang, Z., Feng, L.: Trajcompressor: an online map-matching-based trajectory compression framework leveraging vehicle heading direction and change. IEEE Trans. Intell. Transp. Syst. 21(5), 2012–2028 (2019)

    Google Scholar 

  6. Alghamdi, T., Elgazzar, K., Bayoumi, M., Sharaf, T., Shah, S.: Forecasting traffic congestion using ARIMA modeling. In: 2019 15th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1227–1232 (2019)

    Google Scholar 

  7. Nguyen, H.N., Krishnakumari, P., Vu, H.L., van Lint, H.: Traffic congestion pattern classification using multi-class svm. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1059–1064 (2016)

    Google Scholar 

  8. Harrou, F., Zeroual, A., Sun, Y.: Traffic congestion monitoring using an improved KNN strategy. Measurement 156, 107534 (2020)

    Article  Google Scholar 

  9. Zhao, Z., Chen, W., Wu, X., Chen, P.C.Y., Liu, J.: LSTM network: a deep learning approach for short-term traffic forecast. Iet Intell. Trans. Syst. 11, 68–75 (2017)

    Google Scholar 

  10. Liao, C., Chen, C., Xiang, C., Huang, H., Xie, H., Guo, S.: Taxi-passenger’s destination prediction via gps embedding and attention-based bilstm model. IEEE Trans. Intell. Transp. Syst. pp. 1–14 (2021)

    Google Scholar 

  11. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: AAAI (2017)

    Google Scholar 

  12. Chen, M., Yu, X., Liu, Y.: PCNN: Deep convolutional networks for short-term traffic congestion prediction. IEEE Trans. Intell. Transp. Syst. 19, 3550–3559 (2018)

    Google Scholar 

  13. Yu, T., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: IJCAI (2018)

    Google Scholar 

  14. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: AAAI (2019)

    Google Scholar 

  15. Fang, X., Huang, J., Wang, F., Zeng, L., Liang, H., Wang, H.: ConSTGAT: contextual spatial-temporal graph attention network for travel time estimation at baidu maps. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2020)

    Google Scholar 

  16. Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., Li, H.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21, 3848–3858 (2020)

    Google Scholar 

  17. Hu, J., Guo, C., Yang, B., Jensen, C.S.: Stochastic weight completion for road networks using graph convolutional networks. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1274–1285 (2019)

    Google Scholar 

  18. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey. IEEE Trans. Big Data 6, 3–28 (2020)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5998–6008 (2017)

    Google Scholar 

  20. Vapnik, V.: The nature of statistical learning theory. Springer science and business media (2013)

    Google Scholar 

  21. Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)

    Google Scholar 

  22. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 27, 3104–3112 (2014)

    Google Scholar 

  23. Chen, C., Zhang, D., Castro, P.S., Li, N., Sun, L., Li, S., Wang, Z.: iboat: isolation-based online anomalous trajectory detection. IEEE Trans. Intell. Transp. Syst. 14(2), 806–818 (2013)

    Google Scholar 

  24. Chen, C., Liu, Q., Wang, X., Liao, C., Zhang, D.: semi-traj2graph: identifying fine-grained driving style with gps trajectory data via multi-task learning. IEEE Trans. Big Data (2021)

    Google Scholar 

  25. Guo, J., Huang, W., Williams, B.M.: Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transp. Res. Part C-emerging Technol. 43, 50–64 (2014)

    Google Scholar 

  26. Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., Damas, L.: Predicting taxi-passenger demand using streaming data. IEEE Trans. Intell. Transp. Syst. 14, 1393–1402 (2013)

    Google Scholar 

  27. Chen, C., Zhang, D., Wang, Y., Huang, H.: Enabling Smart Urban Services with GPS Trajectory Data. Springer (2021) https://doi.org/10.1007/978-981-16-0178-1

  28. Ma, X., Tao, Z., Wang, Y., Yu, H.: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C-Emerging Technol. 54, 187–197 (2015)

    Google Scholar 

  29. Ye, J., Zhao, J., Ye, K., Xu, C.: How to build a graph-based deep learning architecture in traffic domain: a survey. ArXiv abs/2005.11691 (2020)

    Google Scholar 

  30. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: ICLR (2018)

    Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 61872050 and No. 62172066), and sponsored by DiDi GAIA Research Collaboration Plan. Xuefeng Xie and Jie Zhao contributed equally to this work and share the first authorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, X., Zhao, J., Chen, C., Wang, L. (2022). AF-TCP: Traffic Congestion Prediction at Arbitrary Road Segment and Flexible Future Time. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13157. Springer, Cham. https://doi.org/10.1007/978-3-030-95391-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95391-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95390-4

  • Online ISBN: 978-3-030-95391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics