Skip to main content

SEPoW: Secure and Efficient Proof of Work Sidechains

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13157))

Abstract

Since the advent of sidechains in 2014, they have been acknowledged as the key enabler of blockchain interoperability and upgradability. However, sidechains suffer from significant challenges such as centralization, inefficiency and insecurity, meaning that they are rarely used in practice. In this paper, we present SEPoW, a secure and efficient sidechains construction that is suitable for proof of work (PoW) sidechain systems. The drawbacks for the centralized exchange of cross-chain assets in the participating blockchains are overcome by our decentralized SEPoW. To reduce the size of a cross-chain proof, we introduce merged mining into our SEPoW such that the proof consists of two Merkle tree paths regardless of the size of the current blockchain. We prove that the proposed SEPoW achieves the desirable security properties that a secure sidechains construction should have. As an exemplary concrete instantiation we propose SEPoW for a PoW blockchain system consistent with Bitcoin. We evaluate the size of SEPoW proof and compare it with the state-of-the-art PoW sidechains protocols. Results demonstrate that SEPoW achieves a proof size of 416 bytes which is roughly 123\(\times \), 510\(\times \) and 62000\(\times \) smaller than zkRelay proof, PoW sidechains proof and BTCRelay proof, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See https://blockchair.com/zh/bitcoin/charts/total-transaction-count.

  2. 2.

    See https://github.com/01007467319/sepow.git.

References

  1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.org/bitcoin.pdf

  2. Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: S&P 2019, Piscataway, pp. 139–156. IEEE (2019)

    Google Scholar 

  3. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 313–326. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_18

    Chapter  Google Scholar 

  4. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014). https://www.blockstream.com/sidechains.pdf

  5. Buterin, V.: Ethereum: a next-generation smart contract and decentralized application platform (2014). https://www.github.com/ethereum/wiki/wiki/ White-Paper

  6. BTCRelay, Community: BTCRelay reference implementation (2017). https://www.github.com/ethereum/btcrelay

  7. Kiayias, A., Zindros, D.: Proof-of-work sidechains. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.) FC 2019. LNCS, vol. 11599, pp. 21–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1_3

    Chapter  Google Scholar 

  8. Garoffolo, A., Kaidalov, D., Oliynykov, R.: Zendoo: a zk-SNARK verifiable cross-chain transfer protocol enabling decoupled and decentralized sidechains. In: ICDCS 2020, Piscataway, pp. 1257–1262. IEEE (2020)

    Google Scholar 

  9. Dilley, J., Poelstra, A., Wilkins, J., Piekarska, M., Gorlick, B., Friedenbach, M.: Strong federations: an interoperable blockchain solution to centralized third party risks. CoRR arXiv:1612.05491 (2016)

  10. Sztorc, P.: Drivechain - the simple two way peg (2015). https://www.truthcoin.info/blog/drivechain/

  11. Lerner, S.D.: Drivechains, sidechains and hybrid 2-way peg designs (2016). https://docs.rsk.co/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf

  12. Westerkamp, M., Eberhardt, J.: zkRelay: facilitating sidechains using zkSNARK-based chain-relays. In: Euro S&P Workshops, Piscataway, pp. 378–386. IEEE (2020)

    Google Scholar 

  13. Lerner, S.D.: Rootstock: smart contracts on bitcoin network (2015). https://blog.rsk.co/wp-content/uploads/2019/02/RSK_White_Paper-ORIGINAL.pdf

  14. Singh, A., Click, K., Parizi, R.M., Zhang, Q., Dehghantanha, A., Choo, K.R.: Sidechain technologies in blockchain networks: an examination and state-of-the-art review. J. Netw. Comput. Appl. 149, 102471 (2020)

    Article  Google Scholar 

  15. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum Smart Contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_8

    Chapter  Google Scholar 

  16. Moore, T., Christin, N.: Beware the middleman: empirical analysis of bitcoin-exchange risk. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 25–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_3

    Chapter  Google Scholar 

  17. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 505–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_27

    Chapter  Google Scholar 

  18. Judmayer, A., Zamyatin, A., Stifter, N., Voyiatzis, A.G., Weippl, E.: Merged mining: curse or cure? In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-Joancomartí, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp. 316–333. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0_18

    Chapter  Google Scholar 

  19. Wang, J., Wang, H.: Monoxide: scale out blockchains with asynchronous consensus zones. In: Lorch, J.R., Yu, M. (eds.) NSDI 2019, pp. 95–112. USENIX Association, Berkeley (2019)

    Google Scholar 

  20. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10

    Chapter  Google Scholar 

  21. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_22

    Chapter  MATH  Google Scholar 

  22. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols. IACR Cryptol. ePrint Arch. 2015, 1019 (2015)

    Google Scholar 

  23. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  24. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_16

    Chapter  Google Scholar 

  25. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC 2013, pp. 111–120. ACM, New York (2013)

    Google Scholar 

  26. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: FlyClient: super-light clients for cryptocurrencies. In: S&P 2020, Piscataway, pp. 928–946. IEEE (2020)

    Google Scholar 

  27. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a von Neumann architecture. In: Fu, K., Jung, J. (eds.) USENIX Security 2014, pp. 781–796. USENIX Association, Berkeley (2014)

    Google Scholar 

  28. Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework (2016). https://www.polkadot.network

  29. Buchman, E.: Tendermint: byzantine fault tolerance in the age of blockchains (2016). https://github.com/tendermint/tendermint

  30. Group, T.I.P.C.: Interledger protocol v4 (2021). https://www.interledger.org

  31. Hosp, J., Hoenisch, T., Kittiwongsunthorn, P.: COMIT - cryptographically-secure off-chain multi-asset instant transaction network. CoRR arXiv:1810.02174 (2018)

  32. Tian, W., Pan, W., Shaobin, C., Ying, M., Anfeng, L., Mande, X.: A unified trustworthy environment establishment based on edge computing in industrial IoT. IEEE Trans. Ind. Inform. 16(9), 6083–6091 (2020). https://doi.org/10.1109/TII.2019.2955152

    Article  Google Scholar 

  33. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts (2017). https://www.plasma.io/plasma.pdf

  34. Tian, W., et al.: Propagation modeling and defending of a mobile sensor worm in wireless sensor and actuator networks. Sensors 17(1), 139 (2017). https://doi.org/10.3390/s17010139

    Article  Google Scholar 

  35. Khalil, R., Gervais, A.: NOCUST - a non-custodial 2nd-layer financial intermediary. IACR Cryptol. ePrint Arch. 2018, 642 (2018)

    Google Scholar 

  36. Mingfeng, H., Anfeng, L., Tian, W., Changqin, H.: Green data gathering under delay differentiated services constraint for internet of things. Wirel. Commun. Mob. Comput. 2018, 1–23 (2018). https://doi.org/10.1155/2018/9715428

    Article  Google Scholar 

  37. Teutsch, J., Straka, M., Boneh, D.: Retrofitting a two-way peg between blockchains. CoRR arXiv:1908.03999 (2019)

  38. Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., Knottenbelt, W.J.: XCLAIM: trustless, interoperable, cryptocurrency-backed assets. In: S&P 2019, Piscataway, pp. 193–210. IEEE (2019)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank the anonymous reviewers of ICA3PP 2021 for their insightful suggestions. This work is partially supported by the Shandong Provincial Key Research and Development Program under Grant Number 2019JZZY020127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taotao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, T., Wang, M., Deng, Z., Liu, D. (2022). SEPoW: Secure and Efficient Proof of Work Sidechains. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13157. Springer, Cham. https://doi.org/10.1007/978-3-030-95391-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95391-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95390-4

  • Online ISBN: 978-3-030-95391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics