Skip to main content

An Empirical Study on Human Flying Imagery Using EEG

  • Conference paper
  • First Online:
Book cover Advanced Data Mining and Applications (ADMA 2022)

Abstract

Traditional electroencephalography (EEG) based brain computer interface (BCI) systems for performing three-dimensional (3-D) movement control used motor imagery paradigm, where the participants had to be trained to imagine certain combinations of movements of parts of their body such as hands, feet, and tongue to control the movements in separate dimensions. In the present work, we propose a new mental imagery - flying imagery - where the participants imagine flying in certain directions in the 3-D space surrounding them. As an empirical study, the present work used machine learning methods to classify flying imagery under two stages (preparation and execution) in six directions (forward, backward, left, right, up, and down) along with a control state where no movement was imagined. We also performed classification-based time-frequency analyses in identifying the significant frequency bands, time windows, and EEG features associated with flying imagery that differ between classes and contribute to the classification. We obtained classification results significantly better than chance levels, showing that the direction of flying imagery can be decoded from the EEG signals. Our results also suggest that the spatial information of flying imagery might be encoded mainly in alpha band activities over the parietal lobe, likely originated from the posterior parietal cortex (PPC).

Y. Tang and W. Chen—Contributed equally to the paper as co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abiri, R., Borhani, S., Sellers, E.W., Jiang, Y., Zhao, X.: A comprehensive review of EEG-based brain-computer interface paradigms. J. Neural Eng. 16(1), 011001 (2019)

    Article  Google Scholar 

  2. Andersen, R.A., Buneo, C.A.: Intentional maps in posterior parietal cortex. Ann. Rev. Neurosci. 25(1), 189–220 (2002)

    Article  Google Scholar 

  3. Andersen, R.A., Snyder, L.H., Bradley, D.C., Xing, J.: Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Ann. Rev. Neurosci 20(1), 303–330 (1997)

    Article  Google Scholar 

  4. Aydemir, O., Kayikcioglu, T.: Decision tree structure based classification of EEG signals recorded during two dimensional cursor movement imagery. J. Neurosci. Methods 229, 68–75 (2014)

    Article  Google Scholar 

  5. Barachant, A.: Pyriemann. https://github.com/pyRiemann/pyRiemann/tree/v0.2.6

  6. Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Riemannian geometry applied to BCI classification. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 629–636. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15995-4_78

    Chapter  Google Scholar 

  7. Bascil, M.S., Tesneli, A.Y., Temurtas, F.: Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN. Aust. Phys. Eng. Sci. Med. 39(3), 665–676 (2016). https://doi.org/10.1007/s13246-016-0462-x

    Article  Google Scholar 

  8. Bell, M.A., Cuevas, K.: Using EEG to study cognitive development: issues and practices. J. Cogn. Dev. 13(3), 281–294 (2012). https://doi.org/10.1080/15248372.2012.691143

    Article  Google Scholar 

  9. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  10. Congedo, M., Barachant, A., Bhatia, R.: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Comput. Interf. 4(3), 155–174 (2017)

    Article  Google Scholar 

  11. Doud, A.J., Lucas, J.P., Pisansky, M.T., He, B.: Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PloS one 6(10), e26322 (2011)

    Article  Google Scholar 

  12. Fabiani, G.E., McFarland, D.J., Wolpaw, J.R., Pfurtscheller, G.: Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Trans. Neural Syst. Rehabil. Eng 12(3), 331–338 (2004)

    Article  Google Scholar 

  13. Harrison, S.A., Tong, F.: Decoding reveals the contents of visual working memory in early visual areas. Nature 458(7238), 632–635 (2009)

    Article  Google Scholar 

  14. Herweg, N.A., Kahana, M.J.: Spatial representations in the human brain. Front. Human Neurosci. 12, 297 (2018)

    Article  Google Scholar 

  15. LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., He, B.: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface. J. Neural Eng. 10(4), 046003 (2013)

    Article  Google Scholar 

  16. Li, Y., et al.: An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Trans. Biomed. Eng. 57(10), 2495–2505 (2010)

    Article  Google Scholar 

  17. Lotte, F.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)

    Article  Google Scholar 

  18. Meng, J., Streitz, T., Gulachek, N., Suma, D., He, B.: Three-dimensional brain-computer interface control through simultaneous overt spatial attentional and motor imagery tasks. IEEE Trans. Biomed. Eng. 65(11), 2417–2427 (2018)

    Article  Google Scholar 

  19. Odom, J.V., et al.: Visual evoked potentials standard (2004). Documenta ophthalmologica 108(2), 115–123 (2004)

    Article  Google Scholar 

  20. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Royer, A.S., Doud, A.J., Rose, M.L., He, B.: EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 581–589 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Ian James Kirk (The University of Auckland) for providing insightful advice in EEG preprocessing and analysis; we thank Dr. Veema Lodhia (The University of Auckland) for providing technical support in using the GES 300 EEG system and the EEG lab. Dr Xuyun Zhang is the recipient of an ARC DECRA (project No. DE210101458) funded by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Y., Chen, W., Zhang, X. (2022). An Empirical Study on Human Flying Imagery Using EEG. In: Li, B., et al. Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13087. Springer, Cham. https://doi.org/10.1007/978-3-030-95405-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95405-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95404-8

  • Online ISBN: 978-3-030-95405-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics