Skip to main content

Towards Generalizable Machinery Prognostics

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13087))

Included in the following conference series:

  • 1035 Accesses

Abstract

In recent scientific work, a classification-based approach to the machinery prognostics problem has been elaborated as an alternative to the Remaining Useful Life approaches. The classification-based approaches rely on a prediction horizon parameter, to which the model quality is sensitive. However, existing studies do not provide any means of determining this critical parameter. Instead, they rely on assumptions. We argue that the prediction horizon should be learned from data in order to overcome the challenges of its uncertainty. We propose a heuristic algorithm to learn the prediction horizon from data, as the first of its kind in the literature. We test its effectiveness with an ablation study based on a rich set of data. The results indicate a statistically significant improvement in model quality. This in turn increases the usability and generalizability of classification-based failure prediction approaches in the industry.

Supported by SAP SE, Walldorf, Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISO 13381-1:2015, Condition monitoring and diagnostics of machines—Prognostics—Part 1. Technical report, International Organization for Standardization, Geneva, Switzerland (2015)

    Google Scholar 

  2. Chebel-Morello, B.: From Prognostics and Health Systems Management to Predictive Maintenance 2. ISTE Ltd./Wiley, Hoboken, NJ (2017)

    Book  Google Scholar 

  3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. arXiv:1603.02754 [cs], pp. 785–794 (2016). https://doi.org/10.1145/2939672.2939785

  4. de Pádua Moreira, R., Nascimento, C.L.: Prognostics of aircraft bleed valves using a SVM classification algorithm. In: 2012 IEEE Aerospace Conference, pp. 1–8 (March 2012). https://doi.org/10.1109/AERO.2012.6187377

  5. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Deutsch, J., He, D.: Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Trans. Syst. Man Cybern. Syst. 48(1), 11–20 (2018). https://doi.org/10.1109/TSMC.2017.2697842

    Article  Google Scholar 

  7. Elasha, F., Shanbr, S., Li, X., Mba, D.: Prognosis of a wind turbine gearbox bearing using supervised machine learning. Sensors 19(14), 3092 (2019). https://doi.org/10.3390/s19143092

    Article  Google Scholar 

  8. Feremans, L., Vercruyssen, V., Cule, B., Meert, W., Goethals, B.: Pattern-based anomaly detection in mixed-type time series. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11906, pp. 240–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46150-8_15

    Chapter  Google Scholar 

  9. Gebraeel, N.Z., Lawley, M.A., Li, R., Ryan, J.K.: Residual-life distributions from component degradation signals: a Bayesian approach. IIE Trans. 37(6), 543–557 (2005). https://doi.org/10.1080/07408170590929018

    Article  Google Scholar 

  10. Gutschi, C., Furian, N., Suschnigg, J., Neubacher, D., Voessner, S.: Log-based predictive maintenance in discrete parts manufacturing. Procedia CIRP 79, 528–533 (2019). https://doi.org/10.1016/j.procir.2019.02.098

    Article  Google Scholar 

  11. Heng, A., Zhang, S., Tan, A.C., Mathew, J.: Rotating machinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Sig. Process. 23(3), 724–739 (2009). https://doi.org/10.1016/j.ymssp.2008.06.009

    Article  Google Scholar 

  12. Jardine, A.K.S., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Sig. Process. 20(7), 1483–1510 (2006). https://doi.org/10.1016/j.ymssp.2005.09.012

    Article  Google Scholar 

  13. Kaggle Inc.: Kaggle Pump Sensor Data for Predictive Maintenance Data Set, Version 1. San Francisco, United States (2018). https://kaggle.com

  14. Lin, D., Makis, V.: Recursive filters for a partially observable system subject to random failure. Adv. Appl. Probab. 35(1), 207–227 (2003)

    Article  MathSciNet  Google Scholar 

  15. Nowaczyk, S., Fink, O., Bulthe, J.: ECML PKDD Workshop and Tutorial: IoT Stream for Data Driven Predictive Maintenance (September 2020)

    Google Scholar 

  16. SAP SE: SAP Predictive Asset Insights Software, Version 2105. Walldorf, Germany (2021). https://help.sap.com

  17. Saxena, A., Goebel, K.: Turbofan engine degradation simulation data set. NASA Ames Prognostics Data Repository, pp. 1551–3203 (2008)

    Google Scholar 

  18. Schwabacher, M.: A survey of artificial intelligence for prognostics. In: AAAI Fall Symposium: Artificial Intelligence for Prognostics, pp. 108–115 (2007)

    Google Scholar 

  19. Si, X.S., Wang, W., Hu, C.H., Zhou, D.H.: Remaining useful life estimation – a review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011). https://doi.org/10.1016/j.ejor.2010.11.018

    Article  MathSciNet  Google Scholar 

  20. Sipos, R., Fradkin, D., Moerchen, F., Wang, Z.: Log-based predictive maintenance. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 1867–1876. Association for Computing Machinery, New York (August 2014). https://doi.org/10.1145/2623330.2623340

  21. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Industr. Inf. 11(3), 812–820 (2015). https://doi.org/10.1109/TII.2014.2349359

    Article  Google Scholar 

  22. von Birgelen, A., Buratti, D., Mager, J., Niggemann, O.: Self-organizing maps for anomaly localization and predictive maintenance in cyber-physical production systems. Procedia CIRP 72, 480–485 (2018). https://doi.org/10.1016/j.procir.2018.03.150

    Article  Google Scholar 

  23. Wang, Z.: ECML PKDD Tutorial: Predictive Maintenance From a Machine Learning Perspective (September 2015)

    Google Scholar 

  24. Weiss, G., Hirsh, H.: Learning to predict rare events in event sequences. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, pp. 359–363. AAAI Press (1998)

    Google Scholar 

  25. Zhou, Y., Gao, Y., Huang, Y., Hefenbrock, M., Riedel, T., Beigl, M.: Automatic remaining useful life estimation framework with embedded convolutional LSTM as the backbone. arXiv arXiv:2008.03961 [cs, stat] (August 2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cahit Baǧdelen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baǧdelen, C., Paulheim, H., Döhring, M., Tauschinsky, A.F. (2022). Towards Generalizable Machinery Prognostics. In: Li, B., et al. Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13087. Springer, Cham. https://doi.org/10.1007/978-3-030-95405-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95405-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95404-8

  • Online ISBN: 978-3-030-95405-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics