Skip to main content

FreeSee: A Parameter-Independent Pattern-Based Device-Free Human Behaviour Sensing System with Wireless Signals of IoT Devices

  • Conference paper
  • First Online:
Book cover Advanced Data Mining and Applications (ADMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13087))

Included in the following conference series:

  • 1055 Accesses

Abstract

Wireless signal-based device-free human behavior sensing is an innovative method for accurate sensing and understanding human behaviors, which is the core technology to enable high level human computer interaction via off-the-shelf IoT devices. Currently, tremendous on-site human behavior sensing methods with wireless signals collected from IoT devices were proposed to use for fall detection, daily behaviors sensing, finger gesture recognition and other potential applications. However, wireless signal-based human behavior sensing often occurs in different indoor environments with different structures, room sizes, and obstacles. Therefore, it is difficult to get the empirical parameters for accurate human behavior sensing in practical use, the history data presented in current works also could not fit all the scenarios. In order to resolve this issue, this paper proposes FreeSee, a parameter-independent pattern-based human behaviour sensing system, the main contributions include i) we added time-domain features to the training data to accurate sense human behaviours both by coarse-grained and fine-grained wireless signatures; ii) we extract the dominant parameters from each module as the decision variables; and iii) we propose to use a genetic algorithm (GA) to find the optimized parameters for accurate human behaviour sensing which could be adapted in the multiple scenarios. Experimental results show that FreeSee could optimize the parameters in decision variables according to different datasets with accepted converge time.

Supported by Science and Technology Project of Jilin Provincial Department of Education (JJKH20210457KJ), Undergraduate Training Programs for Innovation and Entrepreneurship Project of Jilin Province (2021JLSFDX-JSJ03) and Innovation capacity building Foundation of Jilin Provincial Development and Reform Commission, grant number 2021C038-7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, C., Zhang, F., Hu, Y., Liu, K.J.R.: GaitWay: monitoring and recognizing gait speed through the walls. IEEE Trans. Mob. Comput. 20, 2186–2199 (2020)

    Article  Google Scholar 

  2. Chen, W., Long, G., Yao, L., et al.: AMRNN: attended multi-task recurrent neural networks for dynamic illness severity prediction. World Wide Web 23(5), 2753–2770 (2020)

    Article  Google Scholar 

  3. Chen, W., Yue, L., Li, B., Wang, C., Sheng, Q.Z.: DAMTRNN: a delta attention-based multi-task RNN for intention recognition. In: Li, J., Wang, S., Qin, S., Li, X., Wang, S. (eds.) ADMA 2019. LNCS (LNAI), vol. 11888, pp. 373–388. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35231-8_27

    Chapter  Google Scholar 

  4. Chen, W., Wang, S., Zhang, X., et al.: EEG-based motion intention recognition via multi-task RNNs. In: Proceedings of the 2018 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, pp. 279–287 (2018)

    Google Scholar 

  5. Wu, D., Zhang, D., Xu, C., Wang, H., Li, X.: Device-free WiFi human sensing: from pattern-based to model-based approaches. IEEE Commun. Mag. 55(10), 91–97 (2017)

    Article  Google Scholar 

  6. Decker, R., Shademan, A., Opfermann, J., Leonard, S., Kim, P., Krieger, A.: A bio-compatible near-infrared 3D tracking system. IEEE Trans. Biomed. Eng. 64(3), 549–556 (2017)

    Google Scholar 

  7. Zhang, D., Wang, H., Wu, D.: Toward centimeter-scale human activity sensing with Wi-Fi signals. IEEE Comput. 50(1), 48–57 (2017)

    Article  Google Scholar 

  8. Zhang, F., et al.: SMARS: sleep monitoring via ambient radio signals. IEEE Trans. Mob. Comput. 20, 217–231 (2019)

    Article  Google Scholar 

  9. Adib, F., Mao, H., Kabelac, Z., Katabi, D., Miller, R.C.: Smart homes that monitor breathing and heart rate. In: ACM Conference on Human Factors in Computing Systems (CHI) (2015)

    Google Scholar 

  10. Sun, H., Lu, Z., Chen, C., Cao, J., Tan, Z.: Accurate human gesture sensing with coarse-grained RF signatures. IEEE Access 7, 81227–81245 (2019)

    Article  Google Scholar 

  11. Abdelnasser, H., Harras, K.A., Youssef, M.: UbiBreathe: a ubiquitous non-invasive WiFi-based breathing estimator. In: ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc) (2015)

    Google Scholar 

  12. Li, H., Yang, W., Wang, J., Xu, Y., Huang, L.: WiFinger: talk to your smart devices with finger-grained gesture. In: ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp) (2016)

    Google Scholar 

  13. Wang, H., Zhang, D., Wang, Y., Ma, J., Wang, Y., Li, S.: RT-Fall: a real-time and contactless fall detection system with commodity WiFi devices. IEEE Trans. Mob. Comput. 16(2), 511–526 (2017)

    Article  Google Scholar 

  14. Fei, H., Xiao, F., Han, J., Huang, H., Sun, L.: Multi-variations activity based gaits recognition using commodity WiFi. IEEE Trans. Veh. Technol. 69(2), 2263–2273 (2020)

    Article  Google Scholar 

  15. Jiang, W., et al.: Towards 3D human pose construction using WiFi. In: International Conference on Mobile Computing and Networking (MobiCom) (2020)

    Google Scholar 

  16. Chauhan, J., Hu, Y., Seneviratne, S., Misra, A., Seneviratne, A., Lee, Y.: BreathPrint: breathing acoustics-based user authentication. In: International Conference on Mobile Systems, Applications, and Services (MobiSys) (2017)

    Google Scholar 

  17. Niu, K., et al.: WiMorse: a contactless Morse code text input system using ambient WiFi signals. IEEE Internet Things J. 6(6), 9993–10008 (2019)

    Article  Google Scholar 

  18. Qian, K., et al.: Decimeter level passive tracking with WiFi. In: Proceedings of the ACM Workshop on Hot Topics in Wireless, pp. 44–48 (2016)

    Google Scholar 

  19. Ling, K., Dai, H., Liu, Y., Liu, A.X.: UltraGesture: fine-grained gesture sensing and recognition. In: IEEE International Conference on Sensing, Communication, and Networking (SECON) (2018)

    Google Scholar 

  20. Ali, K., Liu, A.X., Wang, W., Shahzad, M.: Keystroke recognition using WiFi signals. In: International Conference on Mobile Computing and Networking (MobiCom) (2015)

    Google Scholar 

  21. Li, T., An, C., Tian, Z., Campbell, A.T., Zhou, X.: Human sensing using visible light communication. In: Annual International Conference on Mobile Computing and Net-working (MobiCom), New York, NY, USA, pp. 331–344 (2015)

    Google Scholar 

  22. Raja, M., Sigg, S.: RFexpress! - exploiting the wireless network edge for RF-based emotion sensing. In: IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (2017)

    Google Scholar 

  23. Zhao, M., Adib, F., Katabi, D.: Emotion recognition using wireless signals. Commun. ACM 61(9), 91–100 (2018)

    Article  Google Scholar 

  24. Yu, N., Wang, W., Liu, A.X., Kong, L.: QGesture: quantifying gesture distance and direction with WiFi signals. ACM Interact. Mob. Wearable Ubiquit. Technol. Arch. 2(1), 51:1-51:23 (2018)

    Google Scholar 

  25. Zhang, O., Srinivasan, K.: User-friendly fine-grained gesture recognition using WiFi signals. In: International on Conference on Emerging Networking Experiments and Technologies (CoNEXT) (2016)

    Google Scholar 

  26. Nguyen, P., Zhang, X., Halbower, A., Vu, T.: Continuous and fine-grained breathing volume monitoring from afar using wireless signals. In: IEEE Conference on Computer Communications (INFOCOM) (2016)

    Google Scholar 

  27. Pu, Q., Gupta, S., Gollakota, S., Patel, S.: Whole-home gesture recognition using wireless signals. In: International Conference on Mobile Computing and Networking (MobiCom) (2013)

    Google Scholar 

  28. Maheshwari, S., Tiwari, A.K.: Ubiquitous fall detection through wireless channel state in-formation. In: International Conference on Computing and Network Communications (Co-CoNet) (2015)

    Google Scholar 

  29. Shi, S., Xie, Y., Li, M., Liu, A.X., Zhao, J.: Synthesizing wider WiFi bandwidth for respiration rate monitoring in dynamic environments. In: Conference on Computer Communications (INFOCOM) (2019)

    Google Scholar 

  30. Wang, W., Liu, A.X., Shahzad, M., Ling, K., Lu, S.: Understanding and modeling of WiFi signal based human activity recognition. In: International Conference on Mobile Computing and Networking (MobiCom) (2015)

    Google Scholar 

  31. Chen, W., et al.: Taprint: secure text input for commodity smart wristbands. In: The 25th Annual International Conference on Mobile Computing and Networking (MobiCom), New York, NY, USA, pp. 1–16 (2019)

    Google Scholar 

  32. Wu, C., Zhang, F., Fan, Y., Ray Liu, K.J.: RF-based inertial measurement. In: Annual Conference of the ACM Special Interest Group on Data Communication (Sigcomm) (2019)

    Google Scholar 

  33. Ma, X., Zhao, Y., Zhang, L., Gao, Q., Pan, M., Wang, J.: Practical device-free gesture recognition using WiFi signals based on metalearning. IEEE Trans. Ind. Inf. 16(1), 228–237 (2020)

    Article  Google Scholar 

  34. Li, X., et al.: Dynamic-music: accurate device-free indoor localization. In: Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 196–207 (2016)

    Google Scholar 

  35. Lu, Y., Lv, S.H., Wang, X.D., Zhou, X.M.: A survey on WiFi based human behavior analysis technology. Chin. J. Comput. 41(27), 1–23 (2018)

    Google Scholar 

  36. Tian, Y., Lee, G.-H., He, H., Hsu, C.-Y., Katabi, D.: RF-based fall monitoring using convolutional neural networks. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 2(3), 1371–13724 (2018)

    Article  Google Scholar 

  37. Yue, L., Tian, D., Chen, W., et al.: Deep learning for heterogeneous medical data analysis. World Wide Web 23(5), 2715–2737 (2020)

    Article  Google Scholar 

  38. Yue, L., Shen, H., Wang, S., et al.: Exploring BCI control in smart environments: intention recognition via EEG representation enhancement learning. ACM Trans. Knowl. Disc. Data (TKDD) 15(5), 1–20 (2021)

    Article  Google Scholar 

  39. Yue, L., Tian, D., Jiang, J., Yao, L., Chen, W., Zhao, X.: Intention recognition from spatio-temporal representation of EEG signals. In: Qiao, M., Vossen, G., Wang, S., Li, L. (eds.) ADC 2021. LNCS, vol. 12610, pp. 1–12. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69377-0_1

    Chapter  Google Scholar 

  40. Zeng, Y., Gu, T., Zhang, D.: FingerDraw: sub-wavelength level finger motion tracking with WiFi signals. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 4(1), 31–58 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Ling Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, H., Zhang, X., Lu, Y., Chen, CL., Song, X. (2022). FreeSee: A Parameter-Independent Pattern-Based Device-Free Human Behaviour Sensing System with Wireless Signals of IoT Devices. In: Li, B., et al. Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13087. Springer, Cham. https://doi.org/10.1007/978-3-030-95405-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95405-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95404-8

  • Online ISBN: 978-3-030-95405-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics