Series Editors

Bruno Siciliano Dipartimento di Ingegneria Elettrica e Tecnologie dell'Informazione Università degli Studi di Napoli Federico II Napoli, Napoli, Italy

Oussama Khatib Robotics Laboratory Department of Computer Science Stanford University Stanford, CA, USA

Advisory Editors

Gianluca Antonelli, Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, Italy

Dieter Fox, Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA

Kensuke Harada, Engineering Science, Osaka University Engineering Science, Toyonaka, Japan

M. Ani Hsieh, GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA

Torsten Kröger, Karlsruhe Institute of Technology, Karlsruhe, Germany

Dana Kulic, University of Waterloo, Waterloo, ON, Canada

Jaeheung Park, Department of Transdisciplinary Studies, Seoul National University, Suwon, Korea (Republic of)

The Springer Proceedings in Advanced Robotics (SPAR) publishes new developments and advances in the fields of robotics research, rapidly and informally but with a high quality.

The intent is to cover all the technical contents, applications, and multidisciplinary aspects of robotics, embedded in the fields of Mechanical Engineering, Computer Science, Electrical Engineering, Mechatronics, Control, and Life Sciences, as well as the methodologies behind them.

The publications within the "Springer Proceedings in Advanced Robotics" are primarily proceedings and post-proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. Also considered for publication are edited monographs, contributed volumes and lecture notes of exceptionally high quality and interest.

An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.

Indexed by SCOPUS, SCIMAGO, WTI Frankfurt eG, zbMATH.

All books published in the series are submitted for consideration in Web of Science.

More information about this series at https://link.springer.com/bookseries/15556

Tamim Asfour · Eiichi Yoshida · Jaeheung Park · Henrik Christensen · Oussama Khatib Editors

Robotics Research

The 19th International Symposium ISRR

Editors Tamim Asfour Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology Karlsruhe, Baden-Württemberg, Germany

Jaeheung Park Seoul National University Seoul, Korea (Republic of)

Oussama Khatib Department of Computer Science Stanford University Stanford, CA, USA Eiichi Yoshida Department of Information Technology and Human Factors National Institute of Advanced Industrial Science and Technology Tsukuba, Japan

Henrik Christensen Jacobs School of Engineering Institute for Contextual Robotics San Diego, CA, USA

 ISSN 2511-1256
 ISSN 2511-1264 (electronic)

 Springer Proceedings in Advanced Robotics
 Robotics

 ISBN 978-3-030-95458-1
 ISBN 978-3-030-95459-8 (eBook)

 https://doi.org/10.1007/978-3-030-95459-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

At the dawn of the century's third decade, robotics is reaching an elevated level of maturity and continues to benefit from the advances and innovations in its enabling technologies. These all are contributing to an unprecedented effort in bringing robots to human environment in hospitals and homes, factories, and schools, in the field for robots fighting fires, making goods and products, picking fruits and watering the farmland, and saving time and lives. Robots today hold the promise for making a considerable impact in a wide range of real-world applications from industrial manufacturing to health care, transportation, and exploration of the deep space and sea. Tomorrow, robots will become pervasive and touch upon many aspects of modern life.

The Springer Tracts in Advanced Robotics (STAR) was launched in 2002 with the goal of bringing to the research community the latest advances in the robotics field based on their significance and quality. During the latest fifteen years, the STAR series has featured the publication of both monographs and edited collections. Among the latter, the proceedings of thematic symposia devoted to excellence in robotics research, such as ISRR, ISER, FSR, and WAFR, have been regularly included in STAR.

The expansion of our field as well as the emergence of new research areas has motivated us to enlarge the pool of proceedings in the STAR series in the past few years. This has ultimately led to launching a sister series in parallel to STAR. The *Springer Proceedings in Advanced Robotics (SPAR)* is dedicated to the timely dissemination of the latest research results presented in selected symposia and workshops.

This volume of the SPAR series brings the proceedings of the seventeen edition of the International Symposium of Robotics Research (ISRR). The event took place in Hanoi, Vietnam, from October 6 to 10, 2019. The volume edited by Tamim Asfour, Eiichi Yoshida, Jaeheung Park, Philippe Bidaud, Henrik Christensen, and Oussama Khatib is a collection of 60 articles addressing a broad range of topics in robotics ranging from design to control, from vision to learning, and from planning to integrated systems. The content of these contributions provides a wide coverage of the current state of robotics research: the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new emerging areas of applications. The diversity, novelty, and span of the work unfolding in these areas reveal the field's increased pace of development and expanded scope.

From its beautiful venue to its excellent program, the seventeen edition of ISRR culminates with this important reference on the current developments and new directions in the field of robotics—a true tribute to its contributors and organizers!

January 2021

Bruno Siciliano Oussama Khatib SPAR Editors

Preface

This volume contains the papers that were presented at the 17th International Symposium of Robotics Research (ISRR). This biennial meeting is sponsored and organized by the International Foundation of Robotics Research (IFRR). The ISRR promotes the development and dissemination of groundbreaking research and technological innovation in robotics useful to society by providing a lively, intimate, forward-looking forum for discussion and debate about the current status and future trends of robotics with great emphasis on its potential role to benefit humankind.

This particular meeting took place in Hanoi during October 6–10, 2019. As one of the pioneering symposia in robotics, ISRR has established some of the most fundamental and lasting contributions in the field bringing together top experts in robotics from overall world since 1983. The ISRR 2019 program comprises a combination of distinguished talks, oral and interactive presentations as well as an attractive social program. Eighteen distinguished talks were given by leading roboticists presenting blue sky ideas and their views on the field including past experience, lessons learned, success and failure stories of robotics on society. In addition, the program includes 60 presentations, each presented in oral and interactive sessions, giving time for discussions between the participants. All presented papers were selected in a peer-review process of submitted papers in response to an open call for papers.

Scientific interaction is the keyword of ISRR, and the social program was designed to support the rich discussions among participants in the most suitable conditions, culminating in the collective trip to admire the beautiful Halong Bay on October 9 of this inspiring gathering. In addition, a workshop on robotics and AI was organized at the Hanoi University of Science & Technology (HUST) on October 10 with several talks given by ISSR2019 invited speakers, participation of HUST representative, and more than 300 students.

We are very grateful to all the contributing authors, distinguished speakers, the program committee, reviewers, sponsors as well as the organization supporting teams in Hanoi and Karlsruhe for their contributions and support to ISRR 2019.

Finally, the meeting would not have been possible without the support of the Sandra Tartarelli, Christine Grinewitsch, and Fabian Paus from KIT. We acknowledge and thank them all.

Tamim Asfour Eiichi Yoshida Jaeheung Park Philippe Bidaud Henrik Christensen Oussama Khatib

Organization

Program Committee

Tamim Asfour Kostas E. Bekris **Dmitry Berenson** Kostas E. Bekris Jeannette Bohg Oliver Brock Sonia Chernova Mehmet Dogar Ken Goldberg Marco Hutter Hanna Kurniawati Cecilia Laschi Maxim Likhachev Dinesh Manocha Jun Morimoto Frank Park Jaeheung Park Alberto Rodriguez Daniela Rus Bruno Siciliano Wataru Takano Rudolph Triebel Eiichi Yoshida

Karlsruhe Institute of Technology **Rutgers University** University of Michigan **Rutgers University** Stanford University Technische Universität Berlin Georgia Institute of Technology University of Leeds UC Berkeley ETH Zurich Australian National University Scuola Superiore Sant'Anna Carnegie Mellon University University of Maryland ATR Computational Neuroscience Labs Seoul National University Seoul National University Massachusetts Institute of Technology Massachusetts Institute of Technology Univ. Napoli Federico II Osaka University German Aerospace Center - DLR National Inst. of AIST

Globally Optimal Joint Search of Topology and Trajectory for Planar	
Linkages	1
Asymmetric Dual-Arm Task Execution Using an Extended Relative Jacobian Diogo Almeida and Yiannis Karayiannidis	18
Consensus-Based ADMM for Task Assignment in Multi-robot Teams Ravi N. Haksar, Olaoluwa Shorinwa, Patrick Washington, and Mac Schwager	35
Rapidly-Exploring Quotient-Space Trees: Motion Planning Using Sequential Simplifications Andreas Orthey and Marc Toussaint	52
Optimally Convergent Trajectories for Navigation	69
Introducing PIVOT: Predictive Incremental Variable Ordering Tactic for Efficient Belief Space Planning Khen Elimelech and Vadim Indelman	85
Fast and Fine Manipulation of RBCs in Artificial Capillary and TheirMysterious BehaviorsMakoto Kaneko and Chia-Hung Dylan Tsai	102
Certified Grasping	114
KPAM: KeyPoint Affordances for Category-Level Robotic Manipulation Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake	132

Unsupervised Real-Time Control Through Variational Empowerment Maximilian Karl, Philip Becker-Ehmck, Maximilian Soelch, Djalel Benbouzid, Patrick van der Smagt, and Justin Bayer	158
Multilevel Monte-Carlo for Solving POMDPs Online	174
Fast Reciprocal Collision Avoidance Under Measurement Uncertainty Guillermo Angeris, Kunal Shah, and Mac Schwager	191
Learning Collaborative Action Plans from YouTube Videos Hejia Zhang, Po-Jen Lai, Sayan Paul, Suraj Kothawade, and Stefanos Nikolaidis	208
ScRATCHS: Scalable and Robust Algorithms for Task-Based Coordination from High-Level Specifications	224
Embedded Neural Networks for Robot Autonomy Sarah Aguasvivas Manzano, Dana T. Hughes, Cooper R. Simpson, Radhen Patel, Christoffer Heckman, and Nikolaus Correll	242
Multi-objective Policy Generation for Multi-robot Systems UsingRiemannian Motion PoliciesAnqi Li, Mustafa Mukadam, Magnus Egerstedt, and Byron Boots	258
Deep Transfer Learning of Pick Points on Fabric for Robot Bed-Making Daniel Seita, Nawid Jamali, Michael Laskey, Ajay Kumar Tanwani, Ron Berenstein, Prakash Baskaran, Soshi Iba, John Canny, and Ken Goldberg	275
Taming Combinatorial Challenges in Clutter RemovalWei N. Tang and Jingjin Yu	291
Probabilistically Safe Corridors to Guide Sampling-Based Motion Planning	311
A Photo-Realistic Synthetic Dataset for Analyzing the Effects of Moving Objects on Visual Localization Algorithms for Drones Jeonggi Yang, Soojeon Lee, and Byoung-Sun Lee	328
Aerial Manipulation and Grasping by the Versatile MultilinkedAerial Robot DRAGONMoju Zhao, Kei Okada, and Masayuki Inaba	343

Towards Assistive Robotic Pick and Place in Open World Environments	360
Dian Wang, Colin Kohler, Andreas ten Pas, Alexander Wilkinson, Maozhi Liu, Holly Yanco, and Robert Platt	
Inferring Occluded Geometry Improves Performance When Retrieving an Object from Dense Clutter	376
Generalized Proximal Methods for Pose Graph Optimization Taosha Fan and Todd Murphey	393
Joint Space Stiffness and Damping for Cartesian and Null Space Impedance Control of Redundant Robotic Manipulators Carlos Saldarriaga, Nilanjan Chakraborty, and Imin Kao	410
Robot-Assisted Feeding: Generalizing Skewering Strategies Across Food Items on a Plate	427
The Blindfolded Robot: A Bayesian Approach to Planningwith Contact FeedbackBrad Saund, Sanjiban Choudhury, Siddhartha Srinivasa,and Dmitry Berenson	443
Learning User Preferences for Trajectories from Brain Signals Henrich Kolkhorst, Wolfram Burgard, and Michael Tangermann	460
Attitude Tracking from a Camera and an Accelerometer on Gyro-Less Devices Tien Do, Leo Neira, Yang Yang, and Stergios I. Roumeliotis	477
A Unified Pipeline for 3D Detection and Velocity Estimation of Vehicles Xinxin Du, Marcelo H. Ang Jr., Sertac Karaman, and Daniela Rus	493
Automatic Encoding and Repair of Reactive High-Level Tasks with Learned Abstract RepresentationsAdam Pacheck, George Konidaris, and Hadas Kress-Gazit	509
Multi-class Target Tracking Using the Semantic PHD Filter	526
Task-Motion Planning for Navigation in Belief SpaceAntony Thomas, Fulvio Mastrogiovanni, and Marco Baglietto	542
Exploration Without Global Consistency Using Local Volume Consolidation	559
Titus Cieslewski, Andreas Ziegler, and Davide Scaramuzza	559

Vision-Based Autonomous UAV Navigation and Landing for Urban Search and Rescue	575
Mayank Mittal, Rohit Mohan, Wolfram Burgard, and Abhinav Valada	
Taking Recoveries to Task: Recovery-Driven Developmentfor Recipe-Based Robot TasksSiddhartha Banerjee, Angel Daruna, David Kent, Weiyu Liu,Jonathan Balloch, Abhinav Jain, Akshay Krishnan, Muhammad Asif Rana,Harish Ravichandar, Binit Shah, Nithin Shrivatsav, and Sonia Chernova	593
Adaptive Underwater Robotic Sampling of Dispersal Dynamicsin the Coastal OceanGunhild Elisabeth Berget, Jo Eidsvik, Morten Omholt Alver, Frédéric Py,Esten Ingar Grøtli, and Tor Arne Johansen	610
Composition of Templates for Transitional Pedipulation Behaviors T. Turner Topping, Vasileios Vasilopoulos, Avik De, and Daniel E. Koditschek	626
Belief-Space Planning Using Learned Models with Application to Underactuated HandsAndrew Kimmel, Avishai Sintov, Juntao Tan, Bowen Wen, Abdeslam Boularias, and Kostas E. Bekris	642
Introspective Robot Perception Using Smoothed Predictions from Bayesian Neural Networks Jianxiang Feng, Maximilian Durner, Zoltán-Csaba Márton, Ferenc Bálint-Benczédi, and Rudolph Triebel	660
Autonomous Exploration Under Uncertainty via Graph Convolutional Networks	676
Manipulation with Suction Cups Using External Contacts	692
Probabilistic Mapping of Tissue Elasticity for Robot-Assisted Medical Ultrasound Michael E. Napoli, Soumya Goswami, Stephen A. McAleavey, Marvin M. Doyley, and Thomas M. Howard	709
Combining Coarse and Fine Physics for Manipulation Using Parallel-in-Time Integration Wisdom C. Agboh, Daniel Ruprecht, and Mehmet R. Dogar	725
Visual-Inertial Localization for Skid-Steering Robots with Kinematic Constraints Xingxing Zuo, Mingming Zhang, Yiming Chen, Yong Liu, Guoquan Huang, and Mingyang Li	741

REACH: Reducing False Negatives in Robot Grasp Planning with a Robust Efficient Area Contact Hypothesis Model Michael Danielczuk, Jingyi Xu, Jeffrey Mahler, Matthew Matl, Nuttapong Chentanez, and Ken Goldberg	757
A Unified Sampling-Based Approach to Integrated Task and Motion Planning	773
Bilevel Optimization for Planning Through Contact: A Semidirect Method	789
Bright: Benchmarking Research Infrastructure for Generalized Heterogeneous Teams Taskin Padir	805
Temporal Scheduling and Optimization for Multi-MAV Planning William Wu, Fei Gao, Luqi Wang, Boyu Zhou, and Shaojie Shen	813
Active Rendezvous for Multi-robot Pose Graph Optimization Using Sensing over Wi-Fi Weiying Wang, Ninad Jadhav, Paul Vohs, Nathan Hughes, Mark Mazumder, and Stephanie Gil	832
Robust Motion Planning for Non-holonomic Robots with Planar Geometric Constraints Pouria Tajvar, Anastasiia Varava, Danica Kragic, and Jana Tumova	850
On the Use of Cayley Transform for Kinematic Shape Reconstruction of Soft Continuum Robots	867
Compliance Optimization Considering Dynamics for Whole-Body Control of a Humanoid	876
A Billion Ways to Grasp: An Evaluation of Grasp Sampling Schemes on a Dense, Physics-Based Grasp Data Set	890
Mitigating Network Latency in Cloud-Based Teleoperation Using Motion Segmentation and Synthesis Nan Tian, Ajay Kumar Tanwani, Ken Goldberg, and Somayeh Sojoudi	906
Towards Resilient Autonomous Navigation of Drones Angel Santamaria-Navarro, Rohan Thakker, David D. Fan, Benjamin Morrell, and Ali-akbar Agha-mohammadi	922

Contact Inertial Odometry: Collisions are your Friends Thomas Lew, Tomoki Emmei, David D. Fan, Tara Bartlett, Angel Santamaria-Navarro, Rohan Thakker, and Ali-akbar Agha-mohammadi	938
Model-Free Visual Control for Continuum Robot Manipulators via Orientation Adaptation Mrinal Verghese, Florian Richter, Aaron Gunn, Phil Weissbrod, and Michael Yip	959
The PRISMA Hand II: A Sensorized Robust Hand for AdaptiveGrasp and In-Hand ManipulationHuan Liu, Pasquale Ferrentino, Salvatore Pirozzi, Bruno Siciliano,and Fanny Ficuciello	971
What Can Robotics Research Learn from Computer VisionResearch?Peter Corke, Feras Dayoub, David Hall, John Skinner,and Niko Sünderhauf	987
Author Index.	1005