
Task-Motion Planning for Navigation in Belief
Space

Antony Thomas, Fulvio Mastrogiovanni, and Marco Baglietto

Abstract We present an integrated Task-Motion Planning (TMP) framework for
navigation in large-scale environment. Autonomous robots operating in real world
complex scenarios require planning in the discrete (task) space and the continuous
(motion) space. In knowledge intensive domains, on the one hand, a robot has to
reason at the highest-level, for example the regions to navigate to; on the other hand,
the feasibility of the respective navigation tasks have to be checked at the execution
level. This presents a need for motion-planning-aware task planners. We discuss a
probabilistically complete approach that leverages this task-motion interaction for
navigating in indoor domains, returning a plan that is optimal at the task-level.
Furthermore, our framework is intended for motion planning under motion and sens-
ing uncertainty, which is formally known as belief space planning. The underlying
methodology is validated with a simulated office environment in Gazebo. In addition,
we discuss the limitations and provide suggestions for improvements and future work.

1 Introduction

Autonomous robots operating in complex real world scenarios require different levels
of planning to execute their tasks. High-level (task) planning helps break down a given
set of tasks into a sequence of sub-tasks. Actual execution of each of these sub-tasks
would require low-level control actions to generate appropriate robot motions. In
fact, the dependency between logical and geometrical aspects is pervasive in both
task planning and execution. Hence, planning should be performed in the task-motion
or the discrete-continuous space.

In recent years, combining high-level task planningwith low-levelmotion planning
has been a subject of great interest among the Robotics and Artificial Intelligence

The authors are with the Department of Informatics, Bioengineering, Robotics, and Systems Engi-
neering, University of Genoa, Via All’Opera Pia 13, 16145 Genoa, Italy.
e-mail: antony.thomas@dibris.unige.it,{fulvio.mastrogiovanni,marco.baglietto}@unige.it

1

ar
X

iv
:1

91
0.

11
68

3v
1

 [
cs

.R
O

]
 2

4
O

ct
 2

01
9

2 Antony Thomas, Fulvio Mastrogiovanni, and Marco Baglietto

(AI) community. Traditionally, task planning and motion planning have evolved as
two independent fields. AI planning frameworks as the Planning Domain Definition
Language (PDDL) [1] mainly focus on high-level task planning supposing that the
geometric preconditions (e.g., grasping poses for a pick-up task [2]) for the robot
motion to carry out these tasks are achievable. However, in reality, such an assumption
can be catastrophic as an action or sequence of actions generated by the task planner
might turn out to be unfeasible at the controller execution level.

This paper contributes an approach that provides an interface between task and
motion planning for navigating in large knowledge-intensive domains. Such domains
require a robot to reason about different objects and locations to navigate to, subject
to expending as less cost as possible. Our task-motion interface layer facilitates this
reasoning by communicating the motion feasibility and the corresponding planned
motion costs to the task planner, synthesizing an optimal plan. While our approach is
applicable to any domains that require task-motion interaction, we establish the key
ideas through a motivating example.

Fig. 1: Blueprint of an office envi-
ronment.

Motivating example:Consider the office envi-
ronment shown in Fig 1. The regions {ci}(i=1,...,9)
are cubicles and L denotes a lift. The robot, start-
ing from region S have to visit certain cubicles to
receive documents. These documents then have
to be delivered to the next floor, via the lift L.
The stars with different colors represent certain
unique features like, printer, trash can, lounge,
that aids the robot in better localization. Once the
robot knows the regions to visit, then it suffices
to perform goto ci actions and collect the doc-
uments from these regions. However, to synthe-
size an optimal plan it is necessary to sequence
these actions in an order that minimizes the cost function. It is therefore inevitable
to obtain the motion costs of these goto ci actions, so as to accurately synthesize the
optimal plan.

Yet, real-world scenarios often induce uncertainties. Such uncertainties arise due
to insufficient knowledge about the environment, inexact robot motion or imper-
fect sensing. In such scenarios, the robot poses or other variables of interest can
only be dealt with, in terms of probabilities. Planning is therefore done in the be-
lief space, which corresponds to the probability distributions over possible robot
states. Consequently, for efficient planning and decision making, it is required to rea-
son about future belief distributions due to candidate actions and the corresponding
expected observations. Such a problem falls under the category of Partially Observ-
able Markov Decision Processes (POMDPs) [3]. Our motion planner is therefore
equipped to perform planning in partially-observable state-spaces with motion and
sensing uncertainty.

We develop a probabilistically complete Task-Motion Planning (TMP) framework
for mobile robot navigation under partial-observability, embedding a motion planner
within a task planner through an interface layer. An overview of our TMP approach is

Task-Motion Planning for Navigation in Belief Space 3

Fig. 2: a1, a2, a3, ..., an are the discrete actions. Different motion plans are generated
for the symbolic actions via semantic attachment. The best candidate (red in figure)
among these is then selected, returning the motion cost to the task planner.

shown in Fig. 2. A = {a1, ..., an} is the finite set of symbolic actions available to the
task planner. Once an action that require appropriate robot motions to be generated is
expanded by the task planner, a call to an external library is triggered. The symbolic
parameters are then converted to their corresponding geometric instantiations. For
example, for an action that takes the robot to a particular region, the instantiations
would be the different sampled poses in that region. These geometric instantiations
are pre-sampled since the map of the environment is known. The instantiations give
rise to different motion plans and the best among them is chosen according to a certain
metric. The cost of the selected motion plan is then returned to the task planner as
the cost of the corresponding action.

2 Related Work

TMP has emerged as an active research area in the recent past, with particular
focus on manipulation robots. Manipulation task are often rendered infeasible due to
the robot’s end-effector’s reachability workspace. This calls for an integrated TMP
approach to ensure geometric feasibility of the high-level tasks.

The genesis of TMP can be credited to Fikes and Nilsson for their work on
STRIPS [4] which further led to the Shakey project [5]. Shakey’s planner performed
a logical search first, assuming that the resulting robotmotion plans can be formulated.
This assumption limits the capability of the agent as the high-level actions may turn
out to be non executable due to geometric limitations. Later works either carried out
the generated plans, validating them using a robot motion planner [6] or performed a
combined search in the logical and geometric spaces using a state composed of both
the symbolic and geometric paths [7]. The aSyMov planner in [7] adopts a combi-
nation of Metric-FF [8] and a sampling based motion planner. In contrast, we use a
temporal task planner, POPF-TIF [9] with roadmap based sampling, incorporating

4 Antony Thomas, Fulvio Mastrogiovanni, and Marco Baglietto

robot state uncertainty. Srivastava et al. [2] implicitly incorporate geometric variables,
performing symbolic-geometricmapping using a planner-independent interface layer.

Kaelbling and Lozano-Péres [10] propose a hierarchical approach that tightly
integrates the logical and geometric planning. The complexities arising out of long
horizon planning are tackled to the extent that planning is done at different levels of
abstraction, thereby reducing the long horizons to a number of feasible sub-plans of
shorter horizon. This regression-based planner assumes that the actions are reversible
while backtracking. In contrast to their earlier work the serializability assumption of
the subgoals is relaxed. This work is extended in [11] to consider the current state
uncertainty, modeling the planning problem in the belief space. Uncertain outcomes
aremodeled by converting aMarkov decision processes (MDP) into aweighted graph,
thereby modifying their earlier approach of hierarchical planning in the now. Belief
update is then performed when observations are obtained. FFRob [12] performs
task planning, by performing search over a sampled finite set of poses, grasps and
configurations. They extend the FF heuristics, incorporating geometric and kinematic
planning constraints that provide a tight estimate of the distance to the goal.

Toussaint [13] performs optimization over an objective function based on the
final geometric configuration (and the cost thereby), finding approximately locally
optimal solutions by minimizing the objective function. The planning problem is
modeled as a constraint satisfaction problem with symbolic states used to define the
constraints in the optimization. Lozano-Péres and Kaelbling [14] model the motion
planning as a constraint satisfaction problem over a subset of the configuration space.
Iteratively Deepened Task and Motion Planning (IDTMP) is a constraint based task
planning approach that incorporates geometric information (motion feasibility) at
the task planning level [15]. In our architecture, the motion costs are returned to the
task planner, similar to the motion planner information that guides the IDTMP task
planner. IDTMP performs task-motion interaction using abstraction and refinement
functions whereas we use semantic attachments [16] to that aim.

Though the above discussed approaches fall under the category of TMP for ma-
nipulation, the scope of TMP is not limit to manipulation problems alone. TMP for
navigation is pervasive in most real world scenarios. Yet, TMP for robot navigation
has received less attention in the past. While navigating in large scale environments
it is straightforward to plan first in terms of the places to navigate before steering the
robot (see motivating example, Section 1). This calls for task plans that are motion-
plan aware, in terms of motion costs and its feasibility. PETLON [17] is the closest
work to our approach since they also discuss a TMP approach for navigation that
is task level optimal. However, the action costs returned by their motion planner is
the trajectory length and they assume completely observable domains. In contrast,
our framework is more general, since our motion planner assumes partial observ-
ability by performing planning in the belief space. In Section 5.2, we benchmark the
scalability of our approach by comparing with a motion planner that evaluates the
geometric-level cost of navigation.

Task-Motion Planning for Navigation in Belief Space 5

3 Preliminaries and Definitions

TMP essentially involves combining discrete and continuous decision-making to
facilitate efficient interaction between the two domains. Below we define the TMP
problem formally. The notations and formalism correspond to that of a state-transition
system [18].

Definition 1 Task domain can be represented via state transition system and is a tuple
Ω = (S, A, γ, s0, Sg) where

• S is a finite set of states, each state is a conjunction of propositions.
• A is a finite set of actions
• γ : S × A→ S is the state transition function such that s′ = γ(s, a)
• s0 ∈ S is the start state
• Sg ⊆ S is the set of goal states

Definition 2 Task Plan for a task domain Ω is the sequence of actions a0, ..., an such
that si+1 = γ(si, ai), for i = 0, ..., n and sn+1 satisfies Sg.

Due to the popularity of PDDL among the Planning community, we resort to the
same for modeling our task domain. PDDL is an action-centred language, where each
action, ai is described as a tuple ai = (preai , e f fai). preai (precondition for ai) is a
conjunction of positive and negative propositions that must hold for action execution
and e f fai (effects of ai) is a conjunction of positive (e f f +ai

) and negative (e f f −ai
)

propositions that are added or deleted upon action application, thereby changing
the system state. The positive effects, e f f +ai

, is the set of propositions that become
true upon the execution of action ai and the negative effects, e f f −ai

, is the set of
propositions that evaluates to false. An action ai is said to be applicable to a state
si if each proposition of the preconditions hold in si , that is, prea ⊆ si . If an action
ai is applicable in state si , the corresponding successor state si+1 is obtained as,
si+1 = γ(si, ai), where si+1 = (si \ e f f −ai

) ∪ e f f +ai
. A valid plan is a sequence of

actions that when executed from s0, results in Sg.
A planning problem with PDDL is created by providing a domain description-

that describes the predicates and action schemas with free variables, and a problem
description- that specifies the objects, initial state and the goal condition. The ob-
jects are used to instantiate the predicates and action schemas, through a process
called grounding. Grounding is the process by which every combination of objects
is used to replace the free variables in predicates and action schemas to obtain
propositions and ground actions respectively. In this paper, we use an extension of
PDDL [19] that supports durative actions and numeric-valued fluents. A task domain
that supports the same, can be written as, Ω = (S,V, A, γ, s0, Sg), where V is a set
of real valued variables, s0 ∈ S ∪ V and Sg ⊆ S ∪ V . A durative action is a tuple
ai = (preai , e f fai , durai), where preai and e f fai are temporally annotated by spec-
ifying conditions/effects that holds at the start, end or during the entire interval and
are expressed using the constructs at start, at end and over all respectively. durai

corresponds to the duration of action ai .

6 Antony Thomas, Fulvio Mastrogiovanni, and Marco Baglietto

Definition 3 Motion Planning Problem is a tuple M = (C, f , q0,G) where

• C is the configuration space or the space of possible robot poses
• f = {1, 0} determines if a configuration is collision free (Cf ree with f = 1) or not

(f = 0)
• q0 is the initial configuration
• G is the set of goal configurations

A motion plan essentially involves finding a valid trajectory in C from q0 to
qn ∈ G such that f evaluates to true for q0, ..., qn. A motion plan can also be defined
as τ : [0, 1] → Cf ree such that τ(0) = q0 and τ(1) ∈ G. We will use a combination
of the two to define the TMP problem and use roadmap based motion planner to
generate collision free configurations.

Definition 4 Task-Motion Planning Problem is a tuple Ψ = (C,Ω, φ, ξ) where

• φ : S → 2C , mapping states to the configuration space
• ξ : A→ 2C , mapping actions to motion plans

and the TMP problem is to find a sequence of actions a0, ..., an such that si+1 =
γ(si, ai), sn+1 ∈ Sg and to find a sequence of motion plans τ0, ..., τn, τn(1) ∈ G such
that for i = 0, ..., n, it holds that

τi(0) ∈ φ(si) and τi(1) ∈ φ(si+1) (1)
τi+1(0) = τi(1) (2)
τi ∈ ξ(ai) (3)

In this paper, we consider the TMP problem for a mobile robot operating in a
partially-observable, pre-mapped environment. At any time k, we denote the robot
pose (or configuration qk) by xk � (x, y, θ), the measurement acquired is denoted by
zk and the control action applied is denoted as uk . We consider a standard motion
model with Gaussian noise

xk+1 = f (xk, uk) + wk , wk ∼ N(0, Rk) (4)

where wk and Rk are the Gaussian noise and process covariance respectively. To
process the landmarks in the environment we measure the range and the bearing of
each landmark relative to the robot’s local coordinate frame. In general, we consider
the observation model with Gaussian noise,

zk = h(xk) + vk , vk ∼ N(0,Qk) (5)

It is to be noted that we assume data association as solved and hence given a
measurement we know the corresponding landmark that generated it. The motion
(4) and observation (5) models can be written probabilistically as p(xk+1 |xk, uk)
and p(zk |xk) respectively. Given an initial distribution p(x0), and the motion and
observation models, the posterior probability distribution at time k can be written as

p(X0:k |Z0:k,U0:k−1) = p(x0)
k∏
i=1

p(xk |xk−1, uk−1)p(zk |xk) (6)

Task-Motion Planning for Navigation in Belief Space 7

where X0:k � {x0, ..., xk}, Z0:k � {z0, ..., zk} and U0:k−1 � {u0, ..., uk−1}. This pos-
terior probability distribution is the belief at time k, denoted by b[Xk] ∼ N(µk, Σk).
Similarly, given an action uk , the propagated belief can be written as

b[¯Xk+1] = p(Xk |Zk,Uk−1)p(xk+1 |xk, uk) (7)

Given the current belief b[Xk], the control uk , the propagated belief parameters
can be computed using the standard Extended Kalman Filter (EKF) prediction as

µ̄k+1 = f (µk, uk)
Σ̄k+1 = FkΣkFT

k + Rk

(8)

where Fk is the Jacobian of f (·) with respect to xk . Upon receiving a measurement
zk , the posterior belief b[Xk+1] is computed using the EKF update equations

Kk = Σ̄k+1HT
k (Hk Σ̄k+1HT

k +Qk)−1

µk+1 = µ̄k+1 + Kk(zk+1 − h(µ̄k+1, li))
Σk+1 = (I − KkHk)Σ̄k+1

(9)

where Hk is the Jacobian of h(·) with respect to xk , Kk is the Kalman gain and
I ∈ R3×3.

4 Approach

PDDL based planning frameworks are limited, as they are incapable of handling
rigorous numerical calculations. Most approaches perform such calculations via ex-
ternal modules or semantic attachments, e.g. [16]. The term semantic attachment was
coined by Weyhrauch [20] to describe attaching algorithms to function and predicate
symbols via external procedures. However, the effects returned by these semantic
attachments are not exploited in identifying helpful actions during search and hence
do not provide any heuristic guidance, deeming the task unsolvable most often. An
action is considered helpful if it achieves at least one of the lowest level goals in
the relaxed plan to the state at hand [8]. Recently, Bernardini et al. [21] developed a
PDDL based temporal planner to implicitly trigger such external calls via a special-
ized semantic attachments called external advisors. They classify variables into direct
(Vdir), indirect (V ind) and free (V f ree). Vdir /V f ree variables are the normal PDDL
function variables whose values are changed in the action effects, in accordance with
PDDL semantics. V ind variables are affected by the changes in the Vdir variables.
A change in a Vdir variable invokes the external advisor which in turn computes the
V ind variables. The Temporal Relaxed Plan Graph (TRPG) [22] construction stage of
the planner incorporates the indirect variable values for heuristic calculation, thereby
synthesizing an efficient goal-directed search. We employ this semantic attachment
based approach for task-motion interaction. The overall procedure and the interface
layer are discussed in detail in the remainder of this section.

8 Antony Thomas, Fulvio Mastrogiovanni, and Marco Baglietto

4.1 Task Planner

TMP for navigation requires that the task planner takes into account the motion
feasibility and the corresponding motion costs while synthesizing a plan. As opposed
to the manipulation domain, where the motion feasibility is corroborated with the
end-effector’s reachability workspace, in navigation domains this is often validated
against the cost constraints. For example, a robot navigating in a corridor with a
bound on the pose covariance to avoid collision. In our tests, PDDL is used to define
the task domain.

A fragment of the PDDL domain is shown in Fig. 3. The actions goto_region and
goto_lift invoke the external module call once the facts (increase (act-cost) (external))
and (increase (goal-trace) (bound)) is encountered. Here, act-cost and goal-trace are
the Vdir variables and external and bound are the V ind variables. The function (trig-
gered ?from?to) is assigned unity each time the actions are expanded and re-initialized
to zero once the action duration is completed. In this way, the grounded variables from
(start) and to (goal) are communicated to the motion planner. The variables extern
and bound returns the motion cost and goal covariance trace respectively, which are
computed by the external module. The action collect_document does not invoke the
motion planner. The function get ?r, where r is a free variable denoting cubicles, is
initialized to unity for the cubicles from which the documents are to be collected and
to zero for the remaining.

4.2 Motion Planner

Weuse a sampling based Probabilistic Roadmap (PRM) [23] to instantiate robot poses
for the task actions. To begin with, the initial mean and covariance of the robot pose
is assumed to be known. This means that the initial state s0 corresponds to a single
pose instantiation q0. The regions to be navigated to (as discussed in the motivating
example) are also instantiated into poses, by sampling from the pose space within
each region/cubicle. In other words, the pose instantiations are the poses that lie inside
cubicles and are sampled once themap of the environment is available. Once an action
ai (goto_region or goto_lift) is expanded by the task planner, the corresponding start
and goal state, that is si and si+1 are communicated to the motion planner. With
the pose instantiation of si as the start node, for each pose instantiation of si+1, a
breadth first search is performed, parallelly simulating a sequence of controls long
each edge and estimating the beliefs at the nodes. The instantiation corresponding to
the minimum cost is then selected as the goal pose to be arrived at, for the state si+1.
This instantiation then becomes the start node when an expansion is attempted from
state si+1.

Since we plan in the belief space of the robot state, given the mean and covariance
of the starting node (initial mean pose and covariance known) we propagate the belief
along the edges of the PRM as the roadmap is expanded following a breadth first
search. Belief update is performed upon reaching a node if a landmark falls within
the sensor range. Since we are in the planning phase and yet to obtain observations,

Task-Motion Planning for Navigation in Belief Space 9

Algorithm 1 TMP for Navigation in Belief Space
Input: Ω, M , φ, s0, ξ , Sg , q0 , η
1: while true do
2: ai ← TRPG construction of Task Planner

. ai = an action selected to expand to the next symbolic state
3: if ai ∈ {goto_region, goto_lift} then
4: External module←V dir

.V dir = {act-cost, goal-trace}
5: si = f rom, si+1 = to
6: cost← ∅, motion_plan← ∅
7: for j=1:p do
8: BFS with belief propagation along the edges

. start node = τ j
i (0) = φ(si), goal node = τ

j
i (1) = φ(si+1)

9: cost.push(c j
Σ
), motion_plan.push(τ j

i)
10: end for
11: external← min cost, j∗ = argmin cost
12: bound← trace(Σ

τ
j∗
i (1)
)

13: τi ← τ
j∗

i
14: end if
15: end while
16: π∗ ← Task Planner(Ψ)
17: for each ai ∈ π∗ do
18: if bound > η then
19: π∗ ← ∅
20: break
21: end if
22: end for
23: return π∗

we simulate future observations zk+1 given the propagated belief b[¯Xk+1], the set
of landmarks lm and the measurement model (5). Given a pose x ∈ b[¯Xk+1], the
nominal observation ẑ = h(x, lmi) is corrupted with noise to obtain zk+1.

4.3 Task-Motion Planning for Navigation

An overview of our TMP approach is presented in Algorithm 1. In our approach, the
task-motion interaction occurs through semantic attachment by dynamically loading
a shared library, that is passed to the planner as an input. The semantic attachment
is called only if the action to be expanded is either goto_region or goto_lift (see
line 3). Once an action ai is expanded by the task planner, the corresponding start
(si) and goal (si+1) state are communicated to the motion planner through the the
function (triggered ?from ?to) (see line 5). The pose instantiation of si , that is,
τi(0) = φ(si) is known, since it is the mean of the current belief distribution. For
each pose instantiation of τ ji (1) = φ(si+1), a motion plan is attempted with τi(0) =
τ1
i (0) = ... = τ

p
i (0) as the start node, where p is the number of pose instantiations of

si+1. The set of feasible motion plans is obtained by performing a breadth first search

10 Antony Thomas, Fulvio Mastrogiovanni, and Marco Baglietto

(:durative-action g o t o _ r e g i o n
:parameters (? v − r o b o t ? from ? t o − r e g i o n)
:duration (= ? d u r a t i o n 100)
:condition (a t s t a r t (r o b o t _ i n ?v ? from))
:effect (and (a t s t a r t (no t (r o b o t _ i n ?v ? from)))
(a t s t a r t (i n c r e a s e (t r i g g e r e d ? from ? t o) 1))
(a t end (r o b o t _ i n ?v ? t o)) (a t end (a s s i g n (t r i g g e r e d ? from ? t o) 0))
(a t end (i n c r e a s e (ac t − c o s t) (e x t e r n a l)))
(a t end (i n c r e a s e (goa l − t r a c e) (bound))))

(:durative-action c o l l e c t _ d o c umen t
:parameters (? v − r o b o t ? r − r e g i o n)
:duration (= ? d u r a t i o n 20)
:condition (and (a t s t a r t (r o b o t _ i n ?v ? r)) (a t s t a r t (> (g e t ? r) 0))
(ove r a l l (r o b o t _ i n ?v ? r)))
:effect (and (a t end (c o l l e c t e d ? r)) (a t end (i n c r e a s e (ac t − c o s t) 4))))

(:durative-action g o t o _ l i f t
:parameters (? v − r o b o t ? from ? t o − r e g i o n)
:duration (= ? d u r a t i o n 100)
:condition (and (a t s t a r t (r o b o t _ i n ?v ? from))
(a t s t a r t (= (p r e p a r e d) 1)))
:effect (and (a t s t a r t (no t (r o b o t _ i n ?v ? from)))
(a t s t a r t (i n c r e a s e (t r i g g e r e d ? from ? t o) 1))
(a t end (r e a ch ed ? t o)) (a t end (a s s i g n (t r i g g e r e d ? from ? t o) 0))
(a t end (i n c r e a s e (ac t − c o s t) (e x t e r n a l))))

Fig. 3: A fragment of the PDDL office domain.

over the roadmap. Along each edge of the roadmap, the belief at si is propagated
using by simulating the sequence of controls and observations. We use EKF to
compute the appropriate matrices for belief computation. Posterior belief is computed
at each node if a landmark falls within the sensor range. From the set of feasible
motion plans generated, the minimum cost and the corresponding goal state trace,
trace(Σ

τ
j∗
i (1)
), are assigned to the V ind variables, external and bound (see lines 11-

12). The corresponding motion plan (τi) and the goal node (τ j
∗

i (1)) are also stored.
The goal node τ j

∗

i (1), subsequently becomes the start node for the roadmap search
from si+1. Consequently, the belief estimates returned by the semantic attachments
guide the TRPG in identifying the helpful actions, besides providing an efficient
heuristic evaluation for the task plan.

The feasibility for the motion plan τ j
∗

i is checked by accounting for the trace of
the covariance matrix upon reaching a cubicle si+1, that is, trace(Σ

τ
j∗
i (1)
) . Since the

cubicle doors are of specific length, we bound the trace by a constant η. However,
the failure of an action ai to find a feasible motion plan during the current expansion
doesn’t mean that it has to be discarded. Feasibility also depends on the sequence
of actions performed earlier. A different action sequence prior to ai can render ai
feasible. Hence infeasible actions are not discarded and are set aside for reattempting

Task-Motion Planning for Navigation in Belief Space 11

later. Consequently the feasibility check is performed for the optimal plan returned
(see lines 17-21).

Optimality: For a given roadmap, the plan synthesized by our approach is optimal
at the task-level. This means that the task plan cost returned by our approach (π∗) is
lower than any of the other possible task plans (π). Let us consider that there exists a
plan π < π∗. If both π and π∗ have the same sequence of actions, this is not possible
since the action costs are evaluated by the motion planner and for a given roadmap,
the motion cost returned is the optimal for each action, giving π∗ ≤ π. If both π and
π∗ have a different sequence of actions, the task planner ensures that the returned
plan is optimal, giving π∗ ≤ π. Therefore, in both the case, we have π∗ ≤ π.

Completeness:Weprovide a sufficient condition underwhich the probability of our
approach returning a plan approaches one exponentially with the number of samples
used in the construction of the roadmap. A task planning problem,Ω = (S, A, γ, s0, Sg)
is complete if it does contain any dead-ends [24], that is there are no states from
which goal states cannot be reached. The PRM motion planner is probabilistically
complete [25], that is the probability of failure decays to zero exponentially with the
number of samples used in the construction of the roadmap. Therefore, if the motion
planner terminates each time it is invoked then probability of finding a plan, if it
exists, approaches one.

On the one hand our approach is probabilistically complete; on the other hand, it is
also resolution complete since the motion plan feasibility depends on the parameter
η. Nevertheless, given a fixed value of η, the probability that the planner fails to return
a solution, if one exists, tends to zero as the number of samples approaches infinity.
In this sense the best that we can guarantee is probabilistic completeness.

5 Results

To validate our approach we construct an office environment (36m× 25m) in Gazebo
as described in the motivating example discussed in Section 1. The robot is required
to collect documents from different cubicles which are then taken to the next floor
via the lift L (see Fig. 1). The top view of the simulated environment is shown in
Fig. 4(a). We use the temporal POPF-TIF as our task planner by customizing it to
dynamically load a shared library that performs a PRM based planning in the belief
space. Though we use off-the-shelf task and motion planners, we would like to stress
the fact that any task planner customized to perform semantic attachments can be
employed for discrete planning. Our approach is also not restricted to roadmap based
planners and can be easily adapted to different motion planners, for example RRT
and its variants. The robot kinematics is modeled using the standard odometry based
motion model. The performances are evaluated on an Intel® Core i7-6500U under
Ubuntu 16.04 LTS.

12 Antony Thomas, Fulvio Mastrogiovanni, and Marco Baglietto

(a) (b)

Fig. 4: (a) Simulated environment in Gazebo. See motivating example in Section 1
for a detailed description. (b) Plan length with overall planning time. config 1 is run
with d = 1.5.

5.1 Validation

To benchmark our approach we consider four different configurations that differ
in their motion cost computation. Though our formulation can be adapted to any
general cost function, we choose the following four configurations to demonstrate the
efficiency of our approach

• config 1: In this configuration, the motion planner returns the trajectory length
or the geometric-level cost of traversing from si to si+1, that is τi(0) ∈ φ(si) to
τi(1) ∈ φ(si+1).

• config 2: Here the motion planner is never called and the task cost are evaluated
computing the euclidean distance between the geometric instantiations of si and
si+1, that is, between τ ji (0) and τ

j
i (1).

• config 3: This configuration evaluates the motion cost as the sum of Euclidean
distance between τi(0) and τi(1) and the cost due to uncertainty, defined as cΣ =
trace(Σ), where Σ is the covariance at each node of τi . In addition, we also
employ a term cΣg , which is defined as the trace of the covariance at the goal node
(τi(1) = φ(si+1)) , where si+1 is a cubicle. The cubicle doors have a width of 2m
and considering maximum uncertainty along the door width we fix η = 1m as the
maximum upper limit and discard the motion plans with cΣg > 1.

• config 4: A combination of cΣ and cΣg is used for motion cost evaluation.

We first demonstrate the need for a combined TMP for navigation. Consider the
following scenario inwhich th robot is required to collect documents from the cubicles
c3, c4, c6 and c9. We first ran the planner with config 2 to synthesize the task plan.
We remind that in this configuration, the motion planner is never called and the action
costs are evaluated by considering the Euclidean distance between the start and goal
regions. Essentially, config 2 correspond to planners that pre-compute motion costs
of all task-level action. The plan synthesized is, S → c3 → c4 → c6 → c9 → L.

Task-Motion Planning for Navigation in Belief Space 13

This plan is then given to the motion planner, to compute the corresponding cost due
to uncertainty cΣ and cΣg . The task planning cost and the motion planning cost are
added to estimate the overall planning cost, which equated to 298.84. In the same
way, the overall planning time was computed to be 0.94 seconds. Next, we ran the
planner with config 3, returning the plan, S → c4 → c9 → c6 → c3 → L, in 1.28
seconds with a total cost of 90.89. It is seen that there is a significant difference in the
plan quality as the cost is improved by a factor of 3, clearly showing the efficiency of a
combined TMP approach as opposed to performing them separately. This difference
in cost is attributed to the different task sequence synthesized.

Next, we run the planner with config 1 and config 4 to demonstrate the advantage
of planning in belief space. Similar to PETLON [17], in config 1, the motion planner
evaluates the geometric-level cost of traversing τi(0) to τi(1), whereas in config 4, the
cost due to uncertainty is returned. We consider a scenario in which the robot has to
collect a document from cubicle c3. The planned trajectories in both the scenarios
with the corresponding covariance estimated at each node (only the (x,y) portion
shown) is shown in Fig. 5. Clearly, the belief space planner (config 4) returns a route
which is rich in sensor information (see center, Fig. 5), enabling effective localization.
Fig. 5 (right), shows the traces of true robot state for 25 different simulations, the
initial state being sampled from the known initial belief.

Fig. 5: (left and center) Figures showing the propagated belief distributions along
the planned paths for config 1 and config 4. The figures show the belief estimates for
a single planning instantiation corresponding to a unique set of simulated observa-
tions. The dots (black), represents the sampled poses. (left) Shortest path route that
corresponds to config 1. (center) Belief space planning corresponding to config 4,
returning an information rich route. (right) Traces of robot’s true state while starting
from the initial belief.

5.2 Scalability

Finally, we test the scalability of our approach by increasing the task-level increasing
the task-level complexity. We run our planner on three different scenarios where, 2,
4, 6 number of cubicles (c = 2, 4, 6) are to be visited to collect the corresponding
number of documents. This results in evaluating more task-level actions, escalating

14 Antony Thomas, Fulvio Mastrogiovanni, and Marco Baglietto

Configuration d Overall time (s) Cost
c = 2 c = 4 c = 6 c = 2 c = 4 c = 6

config 1 1 0.47 0.77 1.77 47.80 84.88 161.47
1.5 3.17 4.91 7.10 55.77 95.74 174.90
2 6.08 9.86 15.14 56.19 95.77 181.06

c = 2 c = 4 c = 6 c = 2 c = 4 c = 6
config 4 1 1.34 2.24 - 13.84 90.27 -

1.5 3.41 7.16 14.04 20.18 57.01 79.86
2 9.11 28.48 46.15 16.32 54.96 82.02

Table 1: Overall planning time and cost returned for config 1 and config 4 with
different sample densities. c = 2, 4 and 6 denotes the number of cubicles to be visited,
increasing the task-level complexity.

the task level complexity. We also test these scenarios on varying levels of sample
densities. We choose d = 1, 1.5, 2, where d = i corresponds to an average of i
samples per square meter. The tests are run, using config 1 and config 4. The overall
planning time and the cost returned can be seen in Table 1. config 4 for d = 1 and
c = 6 did not produce a feasible motion plan as the condition η < 1 was violated.
However, for higher sample densities, a feasible motion plan was found. The plan
quality is increased with increase in d, but at the expense of exponentially increasing
computation time. It is clearly seen that for our considered scenario d = 1.5 can be
chosen, without much loss of plan quality.

In [17], TMP for navigation is performed by evaluating the geometric cost of
traversing and a scenario in which 2 objects are to be delivered to a person took about
15 seconds with a plan length of 37m. In comparison our approach fares superiorly
with respect to increased task-level complexity. Though the environment considered
in [17] is larger than ours, we evaluate the planning time with respect to the plan
length by running our planner with conifg 1. For a plan length of about 150m with
d = 1.5 and c = 6, config 1 returned a plan in about 7 seconds (see Fig. 4(b)). To
provide a better comparison, we also evaluate our approach by considering a much
larger environment, the willow garage world (58m × 45m) as shown in Fig. 6(a). In
this example, the robot needs to collect two objects (9 objects marked as green),
to be delivered to a person at the goal location (shown in red). We ran our planner
with config 1, returning an optimal plan of length 53.94m in 3.69 seconds. This
clearly elucidates the superiority of our approach. The scalability to increasing task
complexity is tested by varying the number of objects to be collected (see Fig. 6(b)).
The task in which 4 objects are to be collected was completed in only about 25
seconds.

The plan generated is executed with a TurtleBot robot in the simulated Gazebo
environment. We use AprilTags [26] to identify objects like printers, trash cans, as
landmarks. The ROS infrastructure was used to perform the implementation. Belief
estimation is carried out using EKF.

Task-Motion Planning for Navigation in Belief Space 15

(a) (b)

Fig. 6: (a) The optimal solution (blue path) for the willow garage environment when 2
documents are to be collected. The planner is run with config 1. (b) Overall planning
time with increasing number of objects to be collected for delivering.

6 Conclusion and Future Work

This paper introduces an approach for task-motion planning undermotion and sensing
uncertainty. Task-motion interaction is facilitated by means of semantic attachments
that return motion costs to the task planner. In this way, the action costs of the task
plans are evaluated using a motion planner. The plan synthesized is optimal at the
task-level since the overall action cost is less than that of other task plans generated
for a given roadmap. The proposed approach is probabilistically complete and we
have validated the framework using a simulated office environment in Gazebo. The
approach has been evaluated with different configurations, clearly illustrating the
need for a combined TMP approach for navigation in belief space. The results also
suggest that our approach fares well with respect to increased task-complexity and
plan length.

For the motion planning search on the roadmap, we currently employ a breadth
first search propagating beliefs along the edges and estimating the beliefs at each
node using EKF. Breadth first search expands in a first-in, first-out fashion and
given a roadmap, it does not guarantee a globally optimal solution. Hence, given a
roadmap, the motion plan returned for each action is only locally optimal. A more
judicious approach would involve employing an A? search. However, developing an
admissible heuristic for the search is challenging as the covariance evolution is not
monotonic. Developing a suitable heuristic is a topic for future work. Yet, the plan
synthesized at the task-level has an overall action cost that is less than that of other
task plans generated for the given roadmap. It is to be noted that the action cost also
encompasses the motion cost. Presently, as the number of samples vary, the search
is performed again. It is our future direction to efficiently utilize the previous search
results to reduce the computation time for increased samples. Currently, the planning
is performed offline and we also plan to extend it to an online planner.

16 Antony Thomas, Fulvio Mastrogiovanni, and Marco Baglietto

References

1. D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, D. Wilkins,
in AIPS-98 Planning Competition Committee (1998)

2. S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, P. Abbeel, in Robotics and Automation
(ICRA), IEEE International Conference on (IEEE, 2014), pp. 639–646

3. L.P. Kaelbling, M.L. Littman, A.R. Cassandra, Artificial Intelligence 101(1-2), 99 (1998)
4. R.E. Fikes, N.J. Nilsson, Artificial Intelligence 2(3-4), 189 (1971)
5. N.J. Nilsson, Shakey the robot. Tech. Rep. 323, Airtificial Intellignece Center, SRI International,

Menlo Park, California (1984)
6. C. Dornhege, M. Gissler, M. Teschner, B. Nebel, in Safety, Security & Rescue Robotics (SSRR),

IEEE International Workshop on (IEEE, 2009), pp. 1–6
7. S. Cambon, R. Alami, F. Gravot, The International Journal of Robotics Research 28(1), 104

(2009)
8. J. Hoffmann, Journal of Artificial Intelligence Research 20, 291 (2003)
9. C. Piacentini, V. Alimisis, M. Fox, D. Long, Artificial intelligence 229, 210 (2015)
10. L.P. Kaelbling, T. Lozano-Pérez, Integrated robot task and motion planning in the now. Tech.

Rep. 2012-018, Computer Science and Artificial Intelligence Laboratory, Massachusetts Insti-
tute of Technology (2012)

11. L.P. Kaelbling, T. Lozano-Pérez, The International Journal of Robotics Research 32(9-10),
1194 (2013)

12. C.R. Garrett, T. Lozano-Perez, L.P. Kaelbling, The International Journal of Robotics Research
37(1), 104 (2018)

13. M. Toussaint, in Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)
14. T. Lozano-Pérez, L.P. Kaelbling, in Intelligent Robots and Systems (IROS), IEEE/RSJ Interna-

tional Conference on (IEEE, 2014), pp. 3684–3691
15. N.T. Dantam, Z.K. Kingston, S. Chaudhuri, L.E. Kavraki, International Journal of Robotics

Research, Special Issue on the 2016 Robotics: Science and Systems Conference 37(10), 1134
(2018)

16. C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, B. Nebel, in International Conference
on Automated Planning and Scheduling (ICAPS) (Thessaloniki, Greece, 2009), pp. 114–121

17. S.Y. Lo, S. Zhang, P. Stone, in Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems (International Foundation for Autonomous Agents
and Multiagent Systems, 2018), pp. 220–228

18. M. Ghallab, D. Nau, P. Traverso, Automated Planning: Theory and Practice (Elsevier, 2004)
19. M. Fox, D. Long, Journal of artificial intelligence research 20, 61 (2003)
20. R.W. Weyhrauch, Artificial Intelligence 13 (1980)
21. S. Bernardini, M. Fox, D. Long, C. Piacentini, in International Conference on Automated

Planning and Scheduling (ICAPS) (Pittsburgh, PA, USA, 2017), pp. 29–37
22. A.J. Coles, A.I. Coles, M. Fox, D. Long, in Twentieth International Conference on Automated

Planning and Scheduling (2010)
23. L.E. Kavraki, P. Svestka, J.C. Latombe, M.H. Overmars, IEEE transactions on Robotics and

Automation 12(4), 566 (1996)
24. J. Hoffmann, B. Nebel, Journal of Artificial Intelligence Research 14, 253 (2001)
25. S. Karaman, E. Frazzoli, The international journal of robotics research 30(7), 846 (2011)
26. E. Olson, in Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA) (IEEE, 2011), pp. 3400–3407

