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Abstract. While visual localization or SLAM has witnessed great progress in
past decades, when deploying it on a mobile robot in practice, few works have
explicitly considered the kinematic (or dynamic) constraints of the real robotic
system when designing state estimators. To promote the practical deployment
of current state-of-the-art visual-inertial localization algorithms, in this work we
propose a low-cost kinematics-constrained localization system particularly for a
skid-steering mobile robot. In particular, we derive in a principle way the robot’s
kinematic constraints based on the instantaneous centers of rotation (ICR) model
and integrate them in a tightly-coupled manner into the sliding-window bundle
adjustment (BA)-based visual-inertial estimator. Because the ICR model param-
eters are time-varying due to, for example, track-to-terrain interaction and ter-
rain roughness, we estimate these kinematic parameters online along with the
navigation state. To this end, we perform in-depth the observability analysis and
identify motion conditions under which the state/parameter estimation is viable.
The proposed kinematics-constrained visual-inertial localization system has been
validated extensively in different terrain scenarios.

1 Introduction

It is essential for mobile robots to perform robust and accurate real-time localization
when deployed in real-world applications such as autonomous delivery. While visual
localization or SLAM has made significant progress in the last decades, most of current
algorithms are generally purposed and not tailored to particular robotic systems – that
is, their design is often independent of robots. However, the robotic system can pro-
vide informative state constraints due to its dynamics and/or kinematics, which should
be exploited when designing localization algorithms for robots at hand. In this paper,
bearing this in our mind, we develop a kinematics-constrained visual-inertial localiza-
tion algorithm for skid-steering robots, which tightly fuses low-cost camera, IMU and
odometer sensors to provide high-precision real-time localization solutions in 3D.

? ‡ X. Zuo and M. Zhang contribute equally to this work. This work was supported by supported
by Alibaba-Zhejiang University Joint Institute of Frontier Technologies.
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(a) (b)
Fig. 1. The skid-steering robotic platform used in our test and the ICR based kinematics model. (a)
Clearpath Jackal Platform [1]. The equipped sensors include the ones for performing real-time
localization (i.e., camera, imu, and wheel odometers), and the ones for providing ground truth
poses in experiments (i.e.,RTK-GPS). (b) The odometer measurements and the instantaneous
center of rotation (ICR) of a skid-steering robot. ICRv, ICRl, ICRr denote the ICR positions
of the robot frame, left wheels and right wheels, respectively. Ov represents the robot velocity in
odometer frame, and Oωz is the angular velocity in the yaw direction.

Visual-inertial sensors are becoming ubiquitous and many general-purpose visual-
inertial navigation algorithms have been developed in recent years (e.g., see [2–6]),
which has motivated an increasing number of deployments of such sensor suite on real
robotic systems [7]. Due to their low cost and complementary sensing capabilities, we
have also employed them in our proposed skid-steering robotic system (see Fig. 1).
Note that, instead of having explicit mechanism of steering control, skid-steering robots
rely on adjusting the speed of left and right tracks to turn around. The simplicity of the
mechanical design and the ability to turn around with zero-radius have made such robots
popular in scientific research and development.

Due to the popularity of skid-steering robots, substantial research efforts have fo-
cused on the motion dynamics modeling, control, and planning [8–10]. In particular, Yi
et al. [11] introduced a simple dead-reckoning (DR) method for skid-steering robots,
while Wang et al. [12] relied on accurate GPS to provide localization (which clearly
is not applicable if GPS is not available or reliable). As the closest to this work, Wu
et al. [13] recently proposed a visual-inertial localization method for wheeled vehicles
by directly using an odometer’s 2D linear/angular velocity measurements. While this
approach [13] is perfectly suitable for a standard differential-drive robot, significant ef-
forts on kinematic modeling and fusion may be required to deploy it on skid-steering
robots; if blindly ignoring that, localization performance would be degraded.

To address these issues and promote visual-inertial localization for skid-steering
robots, in this paper, we, for the first time, design a tightly-coupled visual-inertial es-
timation algorithm that fully exploits the robot’s ICR-based kinematic [8] constraints
and efficiently offers 3D localization solutions. In particular, to compensate for the time-
varying ICR model parameters (e.g., due to slippage and terrain roughness), we explic-
itly model and estimate online the kinematic parameters of a skid-steering robot. To this
end, leveraging our significant prior work on visual-inertial odometry [2, 14], we de-
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velop an efficient sliding-window bundle adjustment (BA)-based estimator to optimally
fuse measurements from a camera, an IMU, and wheel encoders. Moreover, we have
performed observability analysis in detail, showing that the kinematic parameters are
all observable under general motions while the observability would not hold when the
IMU is not used, which is important for estimator design.

2 Related Work

As there is rich literature on mobile robot localization [15], by no means, we intend to
provide a comprehensive review on this topic and instead focus on wheeled robots here.
For example, Censi et al. [16] performed pose estimation with online wheel odometry
parameter (the radius of left and right wheels as well as the distance between them) cal-
ibration for a differential drive robot equipped with two wheels, while Scaramuzza [17]
introduced a camera based localization algorithm for Ackermann model-based wheeled
robots. As mentioned earlier, Wu et al. [13] developed a sliding-window EKF to prob-
abilistically fuse the measurements from wheel encoders, an IMU, and a monocular
camera to provide 6DOF motion. Yap et al. [18] solved the similar problem but with a
particle filter based method. However, in all of these methods, it is assumed that linear
and angular velocities of a robot can be directly computed from wheel encoder readings,
which is not the case for skid-steering robots.

A skid-steering robot often uses the ICR positions of treads to model its motion dy-
namics [8]. Since it was found empirically that the ICR parameters have small variations
under same terrain conditions [8], additional modeling parameters were introduced for
better modelling. For example, Huskic, Buck, and Zell [9] used additional scale vari-
ables for allowing accurate path following and Martínez et al. [19] modeled additional
sliding, eccentricity and steering efficiency. Note that ICR is not the only model for
skid-steering robots and there are many others. For instance, Reina and Galati [20]
modeled the distance between left and right tread and integrated it into terrain classifi-
cation. Sutoh et al. [21] modeled the ratio of the velocities between left and right wheels
as an exponential function of ratio of readings between left and right wheel encoders,
and these exponential parameters are estimated during terrain navigation.

Depending on sensors used and application scenarios, different localization algo-
rithms for skid-steering robots have been developed in recent literature. In particular,
Lv, Kang, and Qin [22] proposed a method for using images for correcting headings
for skid-steering robot, while requiring parallel and perpendicular lines which mainly
are suitable for human-made environments. which however did not provide detailed
description of how the wheel encoder’s measurements were integrated. IMU measure-
ments are typically used together with wheel encoder readings to provide motion track-
ing of skid-sterring robots. For example, Yi et al. [11] used an IMU on the skid-steering
robot to perform both trajectory tracking and slippery estimation, and Lv, Kang, and
Qin [23] fused measurements from wheel encoders, a gyroscope, and a magnetometer
to localize the skid-steering robot. GPS measurements, if available, are also leveraged
with EKF [24], in which the ICR locations were modeled as parts of the state vector
and estimated online. Specifically, the wheel encoder measurements were used for EKF
pose prediction and the GPS measurements were used for EKF update. Wang et al. [12]
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combined both GPS and IMU measurements, in which they used GPS to perform high-
precision navigation and rely on accelerometer measurements terrain classification. In
contrast, in this paper, we focus on skid-steering robot localization with low-cost multi-
modal sensors while integrating kinematic constraints.

3 ICR-based Kinematics of Skid-Steering Robots

In this work, we employ the ICR parameters [8] to approximately model the kinematics
of a skid-steering robot. Specifically, as shown in Fig. 1, we denote ICRv = (Xv, Yv)
the ICR position of the robot frame, and ICRl = (Xl, Yl) and ICRr = (Xr, Yr)
the ones of the left and right wheels, respectively. The relation between the readings of
wheel odometer measurements and the ICR parameters can be derived as follows:4

Yl = −ol −
Ovx

Oωz
, Yr = −or −

Ovx
Oωz

Yv =
Ovx
Oωz

, Xv = Xl = Xr = −
Ovy
Oωz

(1)

where ol and or are linear velocities of left and right wheels, Ovx and Ovy are robot’s
local linear velocity along x and y axes defined in Fig. 1, and Oωz denotes the local
rotational speed. Moreover, we introduce two additional scale factors, [αl, αr], to com-
pensate for the possible effects, e.g., due to tire inflation and interface roughness. With
the scale factors and Eq. 1, we can express the motion variables as:

Ovx
Ovy
Oωz

 = g(ξ, ol, or) =
1

∆Y

−Yr Yl
Xv −Xv

−1 1

[αl 0
0 αr

] [
ol
or

]
, ξ =


Xv

Yl
Yr
αl
αr

 (2)

where ∆Y = Yl − Yr, and ξ is the entire set of kinematic parameters.
Interestingly, as a special configuration when ξ = [0, b2 ,

−b
2 , 1, 1]T , with b being the

distance between left and right wheels, Eq. 2 can be simplified as:

Ovx =
ol + or

2
, Oωz =

or − ol
b

, Ovy = 0 (3)

This is the kinematic model for a wheeled robot moving without slippage (e.g., a differ-
ential drive robot), and used by most existing work for localizing wheeled robots [13,
25]. However, in the case of skid-steering robots under consideration, if directly apply-
ing Eq. 3, the localization accuracy would be significantly degraded (see Section 6).
It is important to point out that as ξ cannot remain constant due to different motions
and terrains [8, 9], we will perform online “calibration” to estimate these kinematic
parameters along with the navigation states as in [2, 14, 16] (see Section 4.2).

4 Throughout this paper, the robot is equipped with a camera, an IMU, and wheel odometers,
whose frames are denoted by {C}, {I}, and {O}, respectively, while {G} refers to the global
frame of reference. ApB and A

BR denote the 3DOF position and rotation of frame {B} with
respect to {A}. We use x̂ and δx to represent the estimate of random variable x and its error
state. The symbol z̆ is used to denote the inferred measurement mean value of z.
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4 Kinematics-Constrained Visual-Inertial Localization

We develop a window-BA estimator for the proposed kinematics-constrained visual-
inertial localization for a skid-steering robot equipped with a camera, an IMU, and
wheel encoders. For simplicity, although not necessary, we assume known extrinsic
transformations between sensors. At each time step, we optimize the following window
of states, whose typically oldest state will be marginalized out when moving to the next
window in order to bound computational cost:

x = {GOT ,GvIk ,ba,bω, ξ,F ,m} (4)

In the above expression, G
OT = {GOk−s

T, . . . ,GOk−1
T,GOk

T} denotes the cloned poses

in the sliding window at time {k − s, . . . , k}. G
Ok

T =
{
G
Ok

R,GpOk

}
represents the

6DOF pose of the robot at time k. We choose the odometry frame is the base sensor
frame and the system is initialized by the initial position of odometer while the direc-
tion of z is aligned with the gravity. F contains all the 3D global positions of visual fea-
tures. GvIk ,ba,bω are the IMU velocity in global frame, acceleration bias and angular
velocity bias, respectively. Note that we estimate online the ICR kinematic parameters
ξ and thus include them in the state as well. Lastly, m denotes the parameters related
to the motion manifold constraints enforcing local smooth ground planar motion. As il-
lustrated in Fig. 2, the sliding window BA is our estimation engine whose cost function
includes the following constraints:

C = Cprior + Cproj + CI + Codom + Cmanifold (5)

which includes the prior of the states remaining in the current sliding window after
marginalization [6], the projection error of visual features, the IMU integration con-
straints [2, 6], the odometer-induced kinematic constraints, and the motion manifold
constraints.

4.1 Visual-Inertial Constraints

In the sliding-window BA, only keyframes are optimized, which are selected based on
a simple heuristic: the odometer prediction has a translation or rotation over a certain
threshold (e.g., 0.2 meter and 3 degrees as in our experiments). In contrast, for com-
putational savings, non-keyframes will be discarded, unlike existing methods [4, 26]
which extract features firstly and analyses the distribution of the features for keyframe
selection. Among keyframes in the window, corner feature points are extracted [27]
and tacked by KLT optical flow algorithm [28]. The standard reprojection errors of the
tracked features comprise the visual cost Cproj in (5) as in [2, 6].

On the other hand, the IMU measurements between any two consecutive keyframes
are integrated and form the inertial constraints across the sliding window [2, 6]:

CI =
∣∣∣∣xIk � f

(
xIk−1

, Iam, Iωm
) ∣∣∣∣2

ΛIk

(6)

where xIk is the IMU state at time tk, and Iam, Iωm denote the IMU acceleration and
angular velocity measurements between tk−1 and tk, respectively. ΛIk represents the
inverse covariance (information) of the IMU prediction f

(
xIk−1

, Iam, Iωm
)
.
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Fig. 2. In the proposed kinematics-constrained visual-inertial localization for skid-steering robots,
five different constraints are used in the sliding-window BA: A prior encapsulates the information
about the current states due to marginalization of states and measurements (Prior factors are
related to all states related to marginalized measurements, we omit to plot them in this figure for
clarity); Visual feature measurements connect the feature points in the map and the robot pose
at the time when the image was recorded; IMU preintegration factors summarize the sequential
IMU raw measurements between the two images; Odometr-induced kinematic factor summaries
the sequential odometer measurements between the two images.

4.2 ICR-based Kinematic Constraints

We now derive the ICR-based kinematic constraints based on the wheel encoders’ mea-
surements of the skid-steering robot. Specifically, by assuming the supporting manifold
of the robot is locally planar between tk and tk+1, the local linear and angular veloc-
ities, O(t)v and O(t)ω, are a function of the wheel encoders’ measurements of the left
and right wheels olm(t) and orm(t) as well as the ICR kinematic parameters ξ [see (2)]:[

O(t)vT ,O(t)ω
T
]>

= Π g(ξ(t), ol(t), or(t))

= Π g(ξ(t), olm(t)− nl(t), orm(t)− nr(t)) (7)

whereΠ =
[
eT1 eT2 0 0 0 eT3

]T
is the selection matrix with ei being a 3×1 unit vector

with the ith element of 1, nl(t) and nr(t) are the odometry noise modeled as zero-mean
white Gaussian. Once the instantaneous local velocities of the robot are available, with
the initial conditions Ok−1

O(t) R
∣∣
t=tk−1

= I3×3 and Ok−1pO(t)

∣∣
t=tk−1

= 03×1, we can
integrate the following differential equations in the time interval t ∈ [tk−1, tk]:

Ok−1

O(t) Ṙ =
Ok−1

O(t) R · bO(t)ωc
Ok−1 ṗO(t) = Ok−1vO(t) =

Ok−1

O(t) R · O(t)v (8)

This integration will result in the relative pose {Ok−1pOk
,
Ok−1

Ok
R}, which is then used

to propagate the global pose from tk−1 to tk:
GpOk

= GpOk−1
+ G

Ok−1
R · Ok−1pOk

(9a)
G
Ok

R = G
Ok−1

R · Ok−1

Ok
R (9b)
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Additionally, we model the ICR kinematic parameter ξ as a random walk to capture its
time-varying characteristics:

ξ̇(t) = nξ(t) (10)

where nξ is zero-mean white Gaussian noise.
Based on the ICR-based kinematic model (9) and (10), we predict the pose and

kinematic parameter at the newest keyframe time tk, x̂odomk
=
[
G
Ok

R̂,Gp̂Ok
, ξ̂
]

=

f
(
xodomk−1

,Olm,Orm
)
, by integrating all the intermediate odometery measurements

Olm,Orm. As a result, the odometer-induced kinematic constraint can be generically
written in the following form:

Codom =
∣∣∣∣xodomk

� f
(
xodomk−1

,Olm,Orm
) ∣∣∣∣2

Λodomk

(11)

where Λodomk
represents the inverse covariance (information) obtained via covariance

propagation. Specifically, the discrete-time linearized kinematic model of the error state
at ti, δxi = [δpi, δθi, δξi], corresponding to (9) and (10) at time ti can be found as
follows:

δxi = Φi−1δxi−1 + Gi−1ni−1 (12)

where ni−1 =
[
nl(ti−1), nr(ti−1), nξ(ti−1)

]> ∼ N (0,Qi−1), and Φi−1 is the error-
state transition matrix which is given by:

Φi−1 =


I3×3 −G

Oi−1
R̂bOi−1 p̂Oic ΦA ΦB

03×3
Oi−1

Oi
R̂> ΦC ΦD

03×3 03×3 I3×3 03×2

02×3 02×3 02×3 I2×2

 (13)

whereΦA,ΦB ,ΦC ,ΦD are non-zero blocks, corresponding to positional and rotational
elements with respect to ICR =

[
Xv, Yl, Yr

]>
and scale factor

[
αl αr

]>
, and Gi−1

is the noise Jacobian matrix. Due to space limitations, the detailed derivations of these
matrices can be found in our companion technical report [29].

Additionally, as the skid-steer robot navigates on ground surface, its positions within
a short period of time should be well modeled by a quadratic polynomial [30]:

Mp(
GpO) =

∣∣∣∣1
2

[
GpOx
GpOy

]>
A

[
GpOx
GpOy

]
+ B>

[
GpOx
GpOy

]
+ GpOz + c

∣∣∣∣
Λmp

(14)

with A =

[
a1 a2

a2 a3

]
, B =

[
b1
b2

]
(15)

where m = [a1, a2, a3, b1, b2, c]
> are the manifold parameters. Note also that the roll

and pitch of the ground robot should be consistent with the normal of the motion mani-
fold (ground surface), which can be expressed as follows:

Mr(
G
OR,GpO) =

∣∣∣∣bGORe3c12 ∗
∂Mp

∂GpO

∣∣∣∣2
Λmr

(16)
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where bvc12 denotes the first and second rows of the symmetric matrix of the 3D vector
v. At this point, the motion manifold constraint for all the poses in the current sliding
window i ∈ {k − s, . . . , k − 1, k} can be written as:

Cmanifold(GOi
R,GpOi

,m) = Mp(
GpOi

) +Mr(
G
Oi

R,GpOi
) (17)

5 Observability Analysis

An important prerequisite condition for the proposed localization algorithm to work
properly is that the skid-steering kinematic parameter vector, ξ, is locally observable (or
identifiable5) [31]. Therefore, in this section, we provide detailed observability analysis.
We note that, it is also interesting to investigate the observability properties by applying
the proposed method with monocular camera and odometer only (without having IMU).
This will examine whether skid-steering robots can be localized with reduced number
of sensors, and emphasize the importance of our choice of adding the IMU.

5.1 Observability of ξ with a monocular camera and odometer

To conduct our analysis, we follow the idea of [14], in which information provided by
each sensor is firstly investigated and subsequently combined together for deriving the
final results. By doing this, ‘abstract’ measurements instead of the ‘raw’ measurements
are used for analysis, which greatly simplifies our derivation. A moving monocular
camera is able to provide information on rotation and up-to-scale position with respect
to the initial camera frame [32] [14]. Equivalently, we can say that a moving camera is
able to provide the following two types of measurements: (i) camera’s angular velocity
and (ii) its up-to-scale linear velocity:

C(t)ωm = C(t)ω + nω(t) (18a)
C(t)vm = s−1 · C(t)v + nv(t) (18b)

where nω(t) and nv(t) are the white noises, and C(t)ω and C(t)v are true angular and
linear velocities of camera with respect to global frame expressed in camera frame re-
spectively. Finally, s is an unknown scale factor. We also note that, since the camera
to odometer extrinsic parameters are precisely known in advance, the camera measure-
ments can be further denoted as:

ω̆(t) = O
CRC(t)ωm, v̆(t) = O

CRC(t)vm (19)

We will later show that this will simplify the analysis.
On the other hand, as mentioned in Sec. 3, odometer provides observations for the

speed of left and right wheels, i.e., ol and or respectively. By linking ol, or, ω̆(t), v̆(t),
and kinematic parameter vector ξ together, the observability properties can be analyzed
in details. We also note that, during the observability analysis, the zero-mean noise
terms are ignored, since they will not change our conclusions.

5 Since derivative of ξ is modeled by zero-mean Gaussian, we here use observability and iden-
tifiability interchangeably.
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By ignoring the noise terms, the following equation holds:

Ov = −bω̆cOpC + s · v̆ (20)

where OpC is the known extrinsic parameter and Ov is velocity of the odometer frame
with respect to the global frame expressed in the odometer frame. Substituting Eq. 19
and 20 into Eq. 2 leads to :[ ω̆OyC

−ω̆OxC

]
+ s

[
v̆x
v̆y

]
ω̆

 =
1

∆Y

−Yr Yl
Xv −Xv

−1 1

[αl 0
0 αr

] [
ol
or

]

=


ω̆Yl
−ω̆Xv

1
∆Y

[
−1 1

] [αl 0
0 αr

] [
ol
or

]
+

αlol0
0

 (21)

where OxC,
OyC are the first and second element of OpC, and v̆x, v̆y are the first and

second element of v̆. For brevity, we use ω̆ to denote the third element of ω̆. By defining
βr = ∆Y −1αr, and βl = ∆Y −1αl, we can write[ ω̆OyC

−ω̆OxC

]
+ s

[
v̆x
v̆y

]
ω̆

 =

 ω̆Yl
−ω̆Xv

−βlol + βror

+

βl∆Y ol0
0

 (22)

Note that, this equation only contains 1) sensor measurements, and 2) a combination of
vision scale factors and skid-steering kinematics:

ε =
[
Xv Yl Yr αl αr s

]>
The identifiability of ε can be described as follows:

Lemma 1. By using measurements from a monocular camera and wheel odometers, ε
is not locally identifiable.

Proof. ε is locally identifiable if and only if ε̄ is locally identifiable:

ε̄ =
[
Yl ∆Y Xv βl βr s

]>
By expanding Eq. 22, we can write the following constraints:

cx(ε̄, t) = ω̆(t)OyC + sv̆x(t)− ω̆(t)Yl − βl∆Y ol(t) = 0 (23a)

cy(ε̄, t) = −ω̆(t)OxC + sv̆y(t) + ω̆(t)Xv = 0 (23b)
cω(ε̄, t) = ω̆(t) + βlol(t)− βror(t) = 0 (23c)

A necessary and sufficient condition of ε̄ to be locally identifiable is the following
observability matrix has full column rank [33]:

Oc =
[
D(t0)> D(t1)> . . . D(ts)

>
]>

(24)
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where

D(t) =
[
∂cx(ε̄,t)
∂ε̄

∂cy(ε̄,t)
∂ε̄

∂cω(ε̄,t)
∂ε̄

]>
=

[
−ω̆(t) −βlol(t) 0 −∆Y ol(t) 0 v̆x(t)

0 0 ω̆(t) 0 0 v̆y(t)
0 0 0 ol(t) −or(t) 0

]
(25)

Putting Eq. 25 back into Eq. 24 leads to:

Oc =


−ω̆(t0) −βlol(t0) 0 −∆Y ol(t0) 0 v̆x(t0)

0 0 ω̆(t0) 0 0 v̆y(t0)
0 0 0 ol(t0) −or(t0) 0

...
...

...
...

...
...

−ω̆(ts) −βlol(ts) 0 −∆Y ol(ts) 0 v̆x(ts)
0 0 ω̆(ts) 0 0 v̆y(ts)
0 0 0 ol(ts) −or(ts) 0

 (26)

By defining Oc(:, 1) the ith block columns of Oc, the following equation holds:

(−OyC+Yl) · Oc(:, 1)+∆Y · Oc(:, 2)+(Xv − OxC) · Oc(:, 3)+s · Oc(:, 6) = 0

which demonstrates that Oc is not of full column rank. This completes the proof.

5.2 Observability of ξ with a monocular camera, an IMU, and odometer

When an IMU is added, the ‘abstract’ measurement of visual-inertial estimation can be
also derived. Visual-inertial estimation provides: camera’s local (i) angular velocity and
(ii) linear velocity, similar to vision only case (Eq. 19) without having scale effect [14].
Similarly to Eq. 23a, to simplify the analysis, we prove identifiability of ξ̄ instead of ξ:

ξ̄ =
[
Yl ∆Y Xv βl βr

]>
Lemma 2. By using measurements from a monocular camera, an IMU, and wheel
odometer, ξ̄ is locally identifiable, except for following degenerate cases: (i) velocity of
one of the wheels, ol(t) or or(t), keeps zero; (ii) ω̆(t) keeps zero; (iii) or(t), ol(t), and
ω̆(t) are all constants; (iv) ol(t) is always proportional to or(t).

Proof. Similarly to Eq. 23, by removing the scale factor, the constraints become:

cx(ξ̄, t) = ω̆(t)OyC + v̆x(t)− ω̆(t)Yl − βl∆Y ol(t) = 0 (27a)

cy(ξ̄, t) = −ω̆(t)OxC + v̆y(t) + ω̆(t)Xv = 0 (27b)

cω(ξ̄, t) = ω̆(t) + βlol(t)− βror(t) = 0 (27c)

The observability matrix for ξ̄ then becomes:

Oc =


−ω̆(t0) −βlol(t0) 0 −∆Y ol(t0) 0

0 0 ω̆(t0) 0 0
0 0 0 ol(t0) −or(t0)

...
...

...
...

...
−ω̆(ts) −βlol(ts) 0 −∆Y ol(ts) 0

0 0 ω̆(ts) 0 0
0 0 0 ol(ts) −or(ts)

 (28)
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 3. Skid-Steering robot traverses variable terrains: (a) lawn, (b) cement brick, (c) wooden
bridge, (d) muddy road, (e) asphalt road, (f) ceramic tiles, (g) carpet, and (h) wooden floor.

which can be simplified by linear operations:

Oc =


−ω̆(t0) ol(t0) 0 0 0

0 0 ω̆(t0) 0 0
0 0 0 ol(t0) −or(t0)

...
...

...
...

...
−ω̆(ts) ol(ts) 0 0 0

0 0 ω̆(ts) 0 0
0 0 0 ol(ts) −or(ts)

 (29)

There are four special cases to make Oc not of full column rank: (i) velocity of one of
the wheels, ol(t) or or(t), keeps zero; (ii) ω̆(t) keeps zero; (iii) or(t), ol(t), and ω̆(t)
are all constants; (iv) ol(t) is always proportional to or(t). If none of those conditions
is met, Oc is of full column rank. This reveals that, under general motion, ξ is locally
identifiable. This completes the proof.
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Table 1. Estimating ξ or not: Final drift test.

W/ ξ W/O ξ

Sequence Length(m) Terrain Norm(m) x(m) y(m) z(m) Norm(m) x(m) y(m) z(m)

CP02-2019-04-03-16-24-35 232.30 (b) 4.3617 0.399317 4.31398 0.504615 6.2460 0.73324 4.84088 3.87821

CP01-2019-04-24-17-17-35 193.63 (f) 0.4497 -0.0717224 0.0935681 0.434018 3.7052 2.77887 -1.15464 2.1617

CP01-2019-04-19-15-42-40 632.64 (b,f) 1.9297 0.793459 1.27422 1.21264 28.9106 -27.5063 -6.27234 6.31525

CP01-2019-04-19-15-56-09 629.96 (b,f) 5.9323 -5.77259 -0.738212 1.15102 35.9580 -33.9281 -10.1135 6.29139

CP01-2019-04-19-16-09-53 626.83 (b,f) 1.5361 0.505865 0.777903 1.22411 31.0437 -29.3167 -7.9511 6.4049

CP01-2019-04-25-11-16-06 212.59 (g) 8.5111 5.89016 -6.12049 0.532888 10.0050 8.17044 -5.28882 2.31773

CP01-2019-05-08-18-06-43 51.44 (a) 0.3207 -0.211653 -0.232218 -0.064136 0.8351 -0.30158 -0.155709 0.762975

CP01-2019-05-08-17-50-51 204.81 (e) 0.7255 -0.218743 0.0247195 0.691284 2.2180 -0.439685 0.0659946 2.17303

CP01-2019-05-09-10-59-53 77.63 (c) 0.3402 -0.00968671 0.339343 -0.0217497 1.0127 0.245799 0.239745 0.95274

CP01-2019-05-09-11-09-51 27.09 (a) 0.2239 -0.125968 -0.0555045 0.176533 0.5191 -0.136975 -0.154332 0.476361

CP01-2019-05-09-11-24-39 270.41 (e,b) 0.6447 0.263564 -0.252776 0.531292, 3.1481 0.261559 -0.326145 3.1202

CP01-2019-05-08-17-42-01 436.19 (e) 0.7474 0.184071 0.1038 0.716877 7.0835 0.24108 5.48359 4.47751

CP01-2019-05-08-18-13-21 28.64 (d) 0.0697 0.0325226 -0.0173858 0.0590985 0.3496 0.0587353 0.100583 0.329623

CP01-2019-04-19-14-57-38 372.15 (b) 8.7967 8.65849 1.16737 1.02493 13.2613 12.7065 1.60303 3.44035

CP02-2019-04-25-20-49-04 81.03 (h) 2.2940 -2.2311 0.459289 -0.271489, 2.5641 -2.26811 0.200971 1.17896

CP02-2019-04-25-21-07-46 53.49 (h) 0.6084 -0.515633 0.30291 -0.111944 1.0931 -0.757592 0.111233 0.780112

CP01-2019-05-27-14-32-36 110.55 (b) 0.7769 -0.26637 -0.723188 0.098119 1.3461 -0.286492 -0.82653 1.0231

CP01-2019-05-27-14-41-33 104.63 (h) 0.3790 0.327562 -0.0804229 0.172905 1.3777 0.422314 -0.769413 1.06189

CP01-2019-05-27-14-46-21 214.66 (b,h) 1.5367 -1.09328 -0.927257 0.553504 2.4919 -0.319398 -1.39199 2.04208

CP01-2019-05-27-14-50-49 254.30 (b,h) 0.8219 0.307967 -0.0732949 0.75849 3.1792 -0.615917 -2.03648 2.36239

6 Experimental Results

a

b

c

d

a
d

b
c

Fig. 4. Skid-steering robots traversed outdoors and indoors. The left part shows the representative
images with visual features recorded at positions marked by green circles respectively. The right
part shows the estimated trajectory red curve, and estimated 3D landmarks by black dots.

As shown in Fig. 1, our experiments were conducted by two skid-steering robots with
both ‘localization’ sensors and ‘ground-truth sensors’ equipped. For ‘localization’ sen-
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Fig. 5. The estimated trajectory with and without ξ. The trajectories of RTK-GPS (ground truth)
are denoted by red firm lines, the ones with modeling ξ by black dash dotted lines, and the ones
without ξ by blue dotted lines.

sors, we used a 10Hz monocular global shutter camera at resolution of 640 × 400, a
200Hz Bosch BMI160 IMU, and 100Hz wheel odometers. The ‘ground truth’ sensor
mainly relies on RTK-GPS, who reports 1Hz data when the signal is reliable. The ac-
curacy of RTK-GPS is at centimeter level.

The first experiment is to demonstrate the improvement of localization accuracy
by estimating ξ (Eq. 2) online. As shown in Fig 3, we conducted experiments under
different environments, i.e., (a) lawn, (b) cement brick, (c) wooden bridge, (d) muddy
road, (e) asphalt road, (f) ceramic tiles, (g) carpet, and (h) wooden floor. Fig. 4 shows the
trajectory and visual features estimated by the proposed method on sequence "CP01-
2019-05-27-14-50-49", in which the robot traversed outdoors and indoors. Since GPS
signal is not available in all tests (e.g., indoor tests), we here used final drift as the first
error metric. To make this possible, we started and terminated each experiment at the
same position. Two algorithms were implemented in this test: 1) the proposed one by
explicitly estimating ξ, and 2) using Eq. 3 without modeling ξ6.

In Table. 1, we show the final drift values on 20 representative sequences. Since
we used the two robots, we used the notation “CP01, CP02" to denote the names of
the robots. Table. 1 clearly demonstrates that when skid-steering kinematic parameters
are estimated online, the localization accuracy can be significantly improved. In fact, in
almost half of the tests, the errors are reduced by approximately a order of magnitude.
This validates our claim that to use odometer measurements of skid-steering robots,
the complicated mechanism must be explicitly modeled to avoid accuracy loss. In some
sequences where GPS signals were available, we also evaluated the positional root mean
square errors (RMSE)[31]. To compute that, we interpolated the estimated poses to
get the ones corresponding to the timestamp of GPS measurements. The RMSE errors
are shown in Table. 2, which demonstrate that estimating ξ is beneficial for trajectory
tracking. Trajectory estimates on representative sequences are shown in Fig. 5.

6 In fact, Eq. 3 can be considered as one-parameter approximation of skid-steering kinematics,
if b is probabilistically estimated.
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Table 2. Estimating ξ or not: RMSE Test

W/ ξ W/O ξ

Sequence Length(m) Terrain Norm(m) x(m) y(m) Norm(m) x(m) y(m)

CP01-2019-04-19-15-42-40 632.64 (b,f) 0.82 0.74 0.37 9.41 6.14 7.12

CP01-2019-04-19-15-56-09 629.96 (b,f) 1.87 1.06 1.54 9.94 6.16 7.80

CP01-2019-04-19-16-09-53 626.83 (b,f) 1.56 1.28 0.89 8.35 5.70 6.10

CP01-2019-05-08-18-06-43 51.44 (a) 0.09 0.07 0.06 0.22 0.14 0.17

CP01-2019-05-08-17-50-51 204.81 (e) 0.23 0.17 0.15 0.44 0.25 0.36

CP01-2019-05-08-17-42-01 436.19 (e) 0.57 0.46 0.33 1.81 0.99 1.51

CP01-2019-04-19-14-57-38 372.15 (b) 1.62 1.18 1.12 4.93 3.69 3.26

CP01-2019-05-27-14-32-36 110.55 (b) 0.37 0.30 0.22 0.39 0.16 0.36

6.1 Convergence of Kinematic Parameters

In this section, we show tests to demonstrate the convergence of ξ under general mo-
tion. Unlike the experiments in the previous section where relatively good initial values
of kinematic parameters were used, we manually set ‘bad’ initial value to kinematic pa-
rameters. Specifically, we added following error terms to initial kinematic parameters
used in the previous section (good values): δXv = 0.08(m), δYl = 0.14(m), δYr =
−0.1(m), δαl = 0.2, δαr = 0.2. We carried out tests on outdoor sequence "CP01-
2019-05-08-17-50-51" and indoor sequence "CP01-2019-05-27-14-41-33", which did
not involve changes of terrain types on the fly. In Fig. 6, the estimates of kinematic
parameters are shown, along with the corresponding uncertainty envelopes.The results
demonstrate that the kinematic parameters quickly converge to their correct values, and
remains slow change rates for the rest of the trajectory. The uncertainty envelopes also
shrink quickly. The results exactly meet our theoretical expectations that ξ is locally
identifiable under general motion.
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Fig. 6. The estimated kinematic parameters and the associated ±3σ envelopes in two tests.
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7 Conclusions

In this paper, we have developed a novel kinematics-constrained visual-inertial local-
ization method specialized for skid-steering robots, where a tightly-coupled sliding-
window BA serves as the estimation engine for fusing multi-modal measurements. In
particular, we have explicitly modeled the kinematics of skid-steering robots using both
track ICRs and scale factors, in order to compensate for complex track-to-terrain in-
teractions, imperfectness of mechanical design and terrain smoothness. Moreover, we
have carefully examined the observability analysis, showing that the kinematic parame-
ters are observable under general motion. Extensive real-world validations confirm that
online kinematic estimation significantly improves localization.
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