1912.05604v1 [cs.RO] 11 Dec 2019

arXiv

A Billion Ways to Grasp:
An Evaluation of Grasp Sampling Schemes
on a Dense, Physics-based Grasp Data Set

Clemens Eppner, Arsalan Mousavian, and Dieter Fox

NVIDIA USA,
ceppner@nvidia.com

Abstract. Robot grasping is often formulated as a learning problem.
With the increasing speed and quality of physics simulations, generating
large-scale grasping data sets that feed learning algorithms is becoming
more and more popular. An often overlooked question is how to gener-
ate the grasps that make up these data sets. In this paper, we review,
classify, and compare different grasp sampling strategies. Our evaluation
is based on a fine-grained discretization of SE(3) and uses physics-based
simulation to evaluate the quality and robustness of the corresponding
parallel-jaw grasps. Specifically, we consider more than 1 billion grasps
for each of the 21 objects from the YCB data set. This dense data set lets
us evaluate existing sampling schemes w.r.t. their bias and efficiency. Our
experiments show that some popular sampling schemes contain signifi-
cant bias and do not cover all possible ways an object can be grasped. The
data is available at https://sites.google.com/view/abillionwaystograsp/\
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1 Introduction

Grasping is a fundamental skill for any robotic manipulation system. Most com-
monly it is solved in a data-driven fashion (Bohg et al, 2013), either through
supervision (Mahler et al, 2017) or reinforcement (Levine et al, 2016; Kalash-|
mikov et all [2018). To satisfy the data hunger of these learning methods, grasps
are often labeled in simulation.

The advantages of evaluating grasps in simulation are manifold: data collec-
tion can be scaled easily, grasp conditions can be controlled, robots won’t break,
resetting is trivial, and the supervision signal benefits from a fully observable
environment. Although the gap between simulation and reality needs to be ad-
dressed, it has been shown that models trained exclusively with synthetic grasp
data can perform successfully in the real world (Mahler et al, [2017).

Generating synthetic grasp data is usually based on heuristics that select a
gripper pose relative to the object. Oftentimes these heuristics don’t get much
attention in grasp learning publications and occupy only a minor paragraph. In
this paper, we thoroughly analyze and compare these different sampling schemes.
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We focus our evaluation on quantifying the grasp coverage for each heuristic. Do
some sampling schemes cover the space of all possible grasps of an object better
than others?

To answer this question empirically we need a ground truth grasp density for a
given object. We acquire this ground truth by discretizing the space of all possible
grasps with high resolution and evaluate them in a physics simulation (Macklin
et al, [2014). This reference data set contains dense grasp sets for 21 objects of
the YCB object set (Calli et al, [2017). To the best of our knowledge there has
been no prior attempt to exhaustively describe all possible grasps for an object.

Note, that our analysis is not limited by the realism of the results produced
in the physics simulation. However, we show that the simulated grasps can be
successfully executed on a real robotic system (Sec. . Furthermore, due to
the denseness of the data we can generate robust versions of the original grasp
sets and use those for evaluation.

Contribution Our contribution is two-fold:

1. We present a set of all possible parallel-jaw grasps for 21 objects. It is gen-
erated by discretizing SE(3) with a resolution of (5mm, 7.5°) and executing
more than a billion grasps in a physics simulator.

2. We use this data set to study and compare different sampling schemes for
grasping. Our comparison shows how grasp coverage is affected by using
different samplers. Based on these results we recommend sampling strategies
for generating large-scale grasp data sets.

Organization The paper is structured as follows. First, we review existing grasp
sampling schemes that are used for generating data sets. We then categorize
those methods into a coherent taxonomy, and present our evaluation criteria.
Finally, we compare a number of sampling schemes and discuss their pros and
cons.

2 Related Work

To the best of our knowledge, there has been no prior evaluation of different sam-
pling strategies for generating grasp data sets. In contrast, the field of sampling-
based motion planning (LaValle] 2006) is rife with sampling strategies based on
heuristics. However, it has been show that no sampling strategy outperforms
all others in all scenarios (Lindemann and LaValle, 2005; |[Elbanhawi and Simic,
2014]).

In the following we briefly review grasp sampling strategies, clustered accord-
ing to their use case. Since our evaluation uses a physics simulator, we also give
a brief overview about the usage of physics simulation for robot grasping.

Grasp Sampling for Planning/Inference Sampling-based techniques are
often used to find optimal grasps given an analytical or learned model of grasp
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quality. Examples are simulated annealing (Ciocarlie et al, 2007; [Hang et al,
or the cross-entropy method (Mahler et al, [2017; [Yan et al, 2017). We do
not include these black-box optimization methods in our analysis for two reasons.
First, these methods are used for finding an optimum, while we are interested
in discovering the entire grasp distribution. Second, since these sampling ap-
proaches require models that can be evaluated quickly, their performance also
depends on the quality of the model approximation.

Grasp Sampling for Generating Real-World Data Sets The Cornell
grasping dataset [Jiang et all (2011) contains ~ 5K human-labelled grasps for
280 objects which are represented as rectangles in the image plane. Since the
data is relatively sparse (= 18 grasps per object), human-sampled, and view-
points correlate with the object’s equilibrium poses, bias is inevitable. |Pinto and
collect 50K top-down grasps autonomously by sampling random
grasp points and orientations in SF(2). Again, the sampling method is biased
since sampling only happens in planes parallel to the object’s equilibrium poses.

Grasp Sampling for Generating Synthetic Datasets Our main focus is
on sampling methods that are used to generate large-scale synthetic datasets via
physics simulation. The Columbia grasp database (Goldfeder et al, [2008) gener-
ated grasps using the simulated anncaling-based Eigengrasp planner
2007) described above.

|Zhou and Hauser| (2017)) learn from grasping data generated in a physics sim-
ulation. Their sampling scheme samples random lines that intersect the object’s
center of mass. The hand pose is then determined by shifting along this line in
an arbitrary orientation. This scheme ensures that the space near the object’s
COM is more densily sampled than poses that are further away.

Kappler et al| (2015]) present a large dataset of grasps generated by the sam-
pling scheme of [Diankov]| (2010)). It samples hand approach vectors close to the
object’s surface normals and chooses random roll angles and standoff distances.
In a similar vein, the grasp dataset by Kleinhans et al (2015]) uses surface nor-
mals to sample the hand position while the orientation is chosen randomly.
sample grasp poses around the object such that the hand’s approach
vector intersects the object’s bounding box. In the following section (Sec. [3)) we
will group all these sampling methods as approach-based schemes.

In contrast to approach-based samplers are antipodal-based sampling schemes.
They sample directly the potential contact points with the object. Examples are
the data sets used in (Mahler et al, 2017} [ten Pas and Platt| [2018; [Liang et al,

2018).

Physics Simulation for Grasping Our analysis relies on the evaluation of
grasp candidates in a physics simulation (Macklin et all 2014)). Simulating stable
grasps is challenging (Erez et al, [2015) and the results never fully transfer to the
real world (Collins et al, [2018). However, it has been shown that simulation pro-
vides significantly more information about grasp success than traditional grasp
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Guided by
Grasp| Object |Category
Result|Geometry

Publications generating
Grasp Data Sets

X Uniform
Non-uniform Zhou and Hauser| (2017)
: Kappler et al (2015); |[Kleinhans
X v Approach-based et all (2015); |Veres et al| (2017)

Mabhler et al (2017); [ten Pas and
Platt| (2018)
v v Adaptive Goldfeder et all (2008)

Table 1. A taxonomy of grasp samplers. See text for detailed explanation.

Antipodal-based

quality metrics, such as force-closure analysis [Kim et al| (2013). This is due to
focusing on the entire grasp process including object dynamics, instead of only
measuring the quality of the established contacts.

3 A Taxonomy of Sampling Strategies for Grasping

We define a grasp as a combination of a pre-grasp and a closing motion. The pre-
grasp g € SE(3) x R™ describes the pose and configuration of the hand (n is the
number of internal DoF) prior to the execution of a controller that represents the
closing motion. In the remainder we assume that the closing controller position-
controls the hand pose and uses a force-based control law to close the fingers.
Given a fixed closing controller, we we will focus our evaluation on parallel-jaw
grippers (n = 1), i.e., the space of all possible grasps is SE(3) x R. We assume
the fingers to be maximally opened during the pre-grasp which further reduces
the grasp space to SE(3).

We compare different sampling methods of this grasp space regarding to how
well they cover all successful grasps. In the previous section we reviewed those
samplers according to their application scenario, i.e. whether they where used to
generate data or for planning. Now, we want to subdivide them in more detail
into categories based on what information they use and how they parameterize
the grasp space. The taxonomy shown in Tab. [1] classifies grasp sampling along
the following criteria:

Guided by Grasp Result Our fist broad distinction is whether a grasp sam-
pler evaluates the grasp quality function and uses this outcome when drawing
subsequent samples. This is independent of the actual realization of the grasp
quality function. It could be any classical grasp metric (Roa and Suarez, [2015)), a
physics simulation, or even the physical execution of the grasp on a real platform.

We focus our empirical evaluation on sampling methods that are not guided
by this information. Since most grasp quality functions depend on contact and
are noncontinuous, grasp information is very local which is of limited value when
generating datasets that contain diverse grasps that should fully cover an object.
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The large majority of existing grasp datasets is generated by this methods that
are not guided by the grasp outcome.

Guided by Object Geometry Most grasp sampling methods are guided by
surface information of the object. This is often done by parameterizing the grasp
using surface normals, either by aligning the hand’s approach vector (or the
palm’s surface normal) with the object’s surface normal or by aligning the ex-
pected finger contact normals with object’s surface. We will show in our empirical
analysis that although these methods are effective at generating grasps, they are
biased, i.e., the resulting grasps do not fully cover all possible grasps of an object.

Uniform Samplers Without using any geometric information about the ob-
ject or the outcome of a grasp sample the best thing we can do is sampling the
bounded SE(3) space uniformly. The uniformity of samples can be expressed by
measures like discrepancy and dispersion (LaValle, 2006). As a result multiple
sequences have been proposed that result in better uniformity than those pro-
duced by pseudo-random number generators. Among low-discrepancy sampling
there are three categories: Halton (Halton| [1960) /Hammersley sequences, (t,)-
sequences and (t,m,s)-nets, and lattices such as the Sukharev grid (Sukharev,
1971)). Lattices are finite point sets which limits their applicability. But incre-
mental grids for SO(3) (Yershova et al, 2010 and SE(3) (Lindemann et al, 2004)
have been proposed.

Note, that low-discrepancy sampling techniques are not limited to uniform
sampling schemes. All of the following sampling methods can benefit from ap-
plying low-discrepancy sampling for their parameters or subsets of them. But
care needs to be taken, given that low discrepancy in parameter space not neces-
sarily leads to low discrepancy in SE(3). In our evaluation we include a uniform
sampling scheme based on a pseudo-random number generator.

Non-uniform Samplers There are only few sampling methods that do not
exploit information about the object’s geometry but still sample non-uniformly.
One example is the approach taken by [Zhou and Hauser| (2017). They sam-
ple random lines that go through the origin (i.e. center-of-mass) of the object,
with the directions being distributed uniformly. Evenly spaced points are chosen
along a line that form the translation of the grasp. The orientation is sampled
randomly. This scheme results in a higher density of grasp samples closer to the
COM of the object.

Approach-based Samplers The majority of grasp data sets are generated via
approach-based sampling methods. The approach vector of a gripper is the di-
rection in which the grasp pose is approached and usually aligns with the palm’s
surface normal. The sampling scheme most commonly aligns the approach vector
with the surface normal of a randomly sampled point on the object. But there are
a number of variants among those techniques. Points on the object surface are
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Fig. 1. Parameterization of the approach-based grasp sampling schemes (left) and the
antipodal-based schemes (right). See text for details.

either sampled uniformly or selected by casting rays from a bounding box (Di-
ankov], |2010; Kappler et all |2015)). Another approach uses the surface points and
normals of a fitted primitive (box, sphere, cylinder) to sample grasps (Miller
et al, 2003)). [Veres et all (2017) also sample the approach vector of the gripper.

For evaluation, we parameterize the most important subgroup of approach-
based sampling methods as follows: Given a point on the object’s surface and
its corresponding normal, a direction is chosen whose angular difference with
the normal is below «, a standoff is chosen between zero and the length of
the fingers, and an approach vector is chosen whose angular difference with the
chosen direction is below S (see Fig. . The hand’s roll around the approach
vector is finally chosen to be between 0 and 27. Our evaluation contains strategies
for the following (v, 3): (0,0), (0,7), , and (F,0).

Antipodal-based Samplers In contrast to the approach-based heuristics, an-
other popular group of methods tries to sample directly in the space of possible
contact points between object and hand. In addition, these methods exploit the
conditions under which antipodal grasps create force-closure (Mahler et al, [2017;
ten Pas and Platt, [2018)).

In contrast to approach-based samplers, it is non-trivial to scale antipodal-
based samplers to multi-fingered hands and beyond antipodal grasps. This is
due to the fact that there is no bijective mapping between hand configuration
and contact locations.

For evaluation, we parameterize the antipodal-based sampling strategies as
follows: Given a point on the object’s surface surface and its corresponding nor-
mal, an antipodal point is chosen by finding the farthest location of intersection
with the object along a ray whose angular difference with the normal is below «.
Given the two antipodal contact points, the gripper pose is defined by choosing
the center point along the ray, a rotation around the ray between 0 and 27, and
a standoff in the interval [$yin, 0] (see Fig. . Our evaluation contains strategies
for the following (o, Smin): (§,0) and (F,0).
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Adaptive Samplers We group all strategies that select new samples based on
the outcome of previous grasp samples into the category of adaptive samplers. All
planning approaches described in the related work are adaptive samplers (Sec. .
This includes methods like simulated annealing (Ciocarlie et al, [2007)), cross-
entropy method, importance sampling, or Bayesian optimization. We do not
include any of those methods in our evaluation.

4 Evaluation

4.1 Grasp Evaluation Metrics

Our evaluation metrics are based on distances between grasps. Similar to|Mahler
et al (2016 we use a weighted metric. Let g,h € SE(3) be two grasps, with
dp, hy € R being their positions and g4, h, € S* their orientations represented
as unit quaternions. The distance between g and h is defined as:

p(g,h) = wllgr — he||2 + arccos(|{gq, hq)l),

where w € R is a weight that relates rotation and translation. Unlike Mahler
et al (2016) we do not select it depending on the size of the object. Instead we
keep it constant, such that a pure translation of 1 mm equals a pure rotation
of 1°. Given the distance metric p, we now show which performance metrics we
use to compare the different sampling mechanisms.

Grasp Coverage Our main objective is to find sampling methods that capture
the reference grasp distribution of an object. We define different measures of
grasp coverage that capture different properties as follows. The set X contains
all grasps sampled by a particular method, while R is the reference set of all
successful grasps found in simulation. Our first metric is defined as:

covi (X, R)., = HglgeRNIw€X:plg,w) < e}
R

where € € R defines the maximum distance that two grasps are considered equal.
Although cov; is intuitive it is sensitive to the choice of €. It can even happen
that the ordering of sampling methods according to covy changes with different
choices of e.

To circumvent this problem we also report a grasp coverage measure based
on dispersion. This metric was used in (Mahler et al, |2016) and is defined as
follows:

X, R)= - i
cova (X, R) exp( r;gggggﬂ(ﬂﬁﬂ))

Since covs is the longest of all shortest paths between X and R, it can be
dominated by outliers in R. This is possible because the reference set is generated
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in a physics simulation. To get a more representative coverage measure we also
report the average over all shortest paths:

covz(X,R) = exp —% Z iréi;(lp(x,g)
geER
Note, that the computational bottleneck of all coverage calculations is the
nearest-neighbor search, especially since we are dealing with large sets of up to
millions of elements. In our implementation we use the SE(3) k-d tree by [Ich-
nowski and Alterovitz| (2015).

Precision Oftentimes learning approaches for grasping are based on a critic or
discriminative model that predicts the quality of a given grasp. Training data
for such models needs to be balanced, i.e., it should roughly contain as much
positive as negative grasps. Since this is not captured by the coverage metrics,
we also evaluate the different sampling schemes w.r.t. their precision. Precision
is defined by the ratio of successful grasps among all sampled ones.

4.2 Grasp Robustness

Grasp success is very sensitive to the accurate reproduction of the contact config-
uration between hand and object. Slight variations in the positioning of the hand
can lead to vastly different outcomes. Grasp planning approaches have addressed
this by incorporating noise models for computing grasp quality metrics (Weisz
and Allen| |2012) or in physics simulations (Kim et al, [2013)).

Similarly, we define the robustness of a grasp as the portion of successful
grasps in its e-neighborhood. Given a grasp g € R, a grasp set R with a constant
grasp density, and an indicator function 1,.. denoting a successful grasp, we

define:
Hg € R:p(g,2) <€ Lsucc(g) =1}
{9 €R:plg,x) <¢

Consequently, the robust version of a grasp set R is defined as:

robuste(g) =

robust, ,(R) = {g | g € R, robust.(g) > 7},

where v € [0,1] is the robustness threshold. In our evaluation we will also re-
port the performance of the different grasp samplers w.r.t. the robust coverage
metrics:

covi (X, R) = cov;(X, robuste ,(R)).

4.3 Evaluation in Simulation

We evaluate grasps in a physics simulation. This allows us to scale our evaluation
to extremely large quantities of grasp attempts (billions, in contrast to hundreds
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Fig. 2. Objects from the YCB dataset (left) were grasped in simulation by a parallel-
jaw gripper (right).

of thousands in real-world setups (Levine et al,[2016))). It also allows us to control
all aspects of the data collection process, generating dense grasp distributions for
single objects. We use the physics simulator FleX (Macklin et al, 2014) and 21
object meshes of the YCB dataset , shown in Fig. 2| We assume
a constant friction coefficient of 1.0 between the rubber pads of the Franka Panda
gripper and all objects. All objects are assumed to have a constant density.
The grasps are simulated in free space, without any gravity applied (similar
to |Zhou and Hauser (2017)). Given an initial hand position, the gripper closes
its fingers (using a force-based control scheme) and executes a pre-defined motion
trajectory that involves linear shaking along the approach vector and angular
shaking around the finger closing direction. We record the amount of motion the
object undergoes during finger closing and shaking. We also record whether the
objects stays between the fingers until the end of the simulation.

Note, that our analysis is not limited to the evaluation in a physics simula-
tor. The sampling schemes could also be evaluated against a number of classical
grasp quality metrics (Roa and Sudrez, 2015). But given the evidence that clas-
sical metrics are very sensitive w.r.t. contact point locations and do not capture
stability, we think simulation is a more realistic way to evaluate grasps. The
experimental sections provides supporting evidence that the data generated in
simulation is transferable to the real world.

5 Experimental Results

5.1 Physics-based Reference Data

We simulated the grasp outcomes for 21 different objects from the YCB dataset @alli
. Grasps are evenly spaced on a grid in SE(3) with 5mm between
hand positions, and 7.5° between neighboring orientations. Evenly distributed
orientations were ensured by applying the method of [Yershova et al (2010). The
simulation was done in FleX (Macklin et al, 2014) using a model of the 1-DOF
Franka Panda gripper.

For each object, we simulated only those grasps that passed a collision test
and which had a nonempty object volume between the fingers. All other grasps
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Fig. 3. Four example objects (left to right: sugar box, mug, tuna fish can, bleach
cleanser) and the resulting successfully simulated grasps. Each colored point indicates
a successful grasp pose. The bottom row shows robust versions of the grasp sets.

were marked as failures. In total, ~ 317 billion grasps were sampled, of which ~
1 billion passed (0.32 %) the tests and were simulated in FleX. Simulations were
run on 100 GPUs for one and a half months. We simulated 225 grasps in parallel
on a single GPU, which lasted 90s on average. Out of all grasps ~ 156 million
were successful (15.57%). Fig. [3| shows successful grasps for a few objects.

5.2 Real-World Robot Experiments

To verify the simulated reference grasps, we conducted experiments in the real
world with a 7-DOF Franka Panda manipulator equipped with a 1-DOF parallel-
jaw gripper. Since the grasps are defined in object coordinates, we need to esti-
mate the object poses. We use state-of-the-art object pose detectors PoseCNN —

and DeepIM to get an initial estimate and further
refine it with DART (Schmidt et al, 2014) using depth.

Since it is impossible to evaluate all the reference grasps with the real robot,
we verified a subset of grasps on five objects that are shown in Fig. [4] For each
object, five diverse grasps are chosen and executed. Success of each grasp in these
experiments depends on the accuracy of the estimated object pose, control error,
and also the quality of reference grasp. For each object, 100 grasps are sampled
from the robust set of grasps for each object using farthest point sampling. The
grasps that lead to collisions with the support surface are removed. From the
remaining grasps, five diverse grasps are chosen to be executed. Out of the 25
grasps only three failed. This is due to the discrepancy between real-world physics
and simulation. For example, objects have uniform density in the simulator, they
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Fig. 4. Example grasps from the simulated data set executed on the real robot.

are completely rigid and also exhibit different friction coeflicients. For a video of
the experiments, see https://bit.ly/2HWEI2r.

5.3 Comparison of Different Sampling Methods

We compared the different grasp sampling methods presented in Sec. [3] We
ran each sampling method on all objects and calculated the different evaluation
metrics presented in Sec. [d] We assume that a grasp pose that is in collision with
the object is invalid as well as a grasp pose whose volume between the gripper’s
fingers does not intersect with any part of the object. For all evaluated methods,
we reject samples that do not pass these two tests.

Grasp Coverage Fig. [5| shows a comparison of all grasp samplers averaged
over all objects. We show curves for two coverage metrics (covy and covs) for
the first 3 million samples and a zoom-in on the first 100,000 sampled grasps.

The uniform sampling scheme is the least biased one, attaining full cover-
age covy within the first 3 million samples over all objects. The approach-based
sampling strategies have a wide performance range depending on their parame-
terization. The surface(0, 0) strategy is the worst, it only samples grasps along
the surface normals of objects. This leads to uncovered holes in the resulting
grasp set, especially close to discontinuous structures such as edges. As a re-
sult e.g. the blades of the scissors cannot be grasped from all sides equally.
The surface(%,0) strategy does not suffer from this problem since it samples
approach directions from a cone centered around the surface normals. Conse-
quently, it is the second best sampling strategy in terms of coverage. Including
the same amount of variation when choosing the gripper’s approach vector does
not lead to high coverage, as shown by the curve of surface(0, 5 ).

The antipodal-based strategies perform not as good as the best approach-
based strategy. Both of them saturate at around 68 %/75 % coverage. Their bias
is visualized in Fig. [6] where the reference grasps are shown that are farthest
away from the ones sampled by antipodal(%). It can be seen, that grasping the
lip of the meat can is not covered.

The lower plots in Fig. [f]show a magnifying view of the coverage performance
during the first 100,000 samples. This is important if only a limited sampling bud-
get is available. In this case the antipodal schemes, especially the antipodal(§)
scheme is the best one. Its exploitative behavior finds suitable grasps quicker
than any other sampling strategy.
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Fig. 5. Mean coverage and standard deviation over all objects for different sampling
strategies. The lower plots magnify the curves during the first 100,000 samples.

Qualitative Grasp Differences The previous experiment showed that sam-
pling heuristics that are more exploitative suffer from a high bias, i.e., they do
not cover all possible grasps. But what kind of grasps are missed? To answer this
question we computed the shortest distance for each successful reference grasp
to the sampled grasps. Fig. [6] shows the most distant reference grasps for the
antipodal(%) scheme for various objects. It can be seen that the antipodal sam-
pler misses small-scale features such as the rim of the potted meat can. It also
ignores approaches directed towards edges that result in successful grasps like
shown with the gelatin box, bowl, and scissor blade. See https://bit.ly/2HWEI2r
for more examples.

Robust Grasp Coverage We evaluated the grasp samplers also w.r.t. the set
of robust grasps for each object as defined in Sec. [.2] The results shown Fig. [7]
reveal that the ranking of the different heuristics does not change. Still some
samplers focus more on robust grasps than others. While with fewer samples
the antipodal(%) scheme seems to gain the most coverage, asymptotically the
approach(0, 7r) scheme benefits the most by only considering robust grasps.
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Fig. 6. Successful grasps of the potted meat can, bowl, gelatin box, and scissors that
are missed by the antipodal-based sampling strategy.
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Fig. 7. Coverage for robust grasps for each sampling scheme. The dashed lines show
the coverage on the original set (Fig. [5).

Precision In a final experiment we compare the precision of different sampling
schemes, i.e., the probability of a sampled grasp to be successful. The results in
Table[2]show that a larger bias not necessarily leads to higher precision. The uni-
form and approach(0, ) strategy exhibit the lowest precision. The antipodal(%)
scheme has the highest precision. For learning approaches having a balanced set
might be advantageous.

6 Discussion

Our comparison of different grasp sampling schemes exposes a kind of bias-
variance dilemma. Less constrained samplers such as the uniform one will cover
all successful grasps for all objects but do so at the expense of poor sample effi-
ciency. On the other hand more constrained heuristics can be efficient but might
not capture the entire subspace of possible grasps. The empirical evaluation re-
vealed that the antipodal scheme is initially much more effective at capturing
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Approach Antipodal
(0,m) | (0,0) | (5.0 | (§) | (5)
0.26 0.29 0.49 0.36 0.75 0.42
(£0.15) [ (£0.17) | (0.28) | (£0.23)| (£0.26) | (£0.24)
Table 2. Average precision (STD) of the different grasp sampling schemes.

Uniform

large parts of the grasp subspace compared to the approach-based schemes. But
one needs to be aware of the imposed bias. Note that for a given fixed sampling
budget it is advantageous to chose a set rather than a sequence since it will lead
to lower dispersion.

Our analysis focuses on the behavior of sampling heuristics as a function
of the number of samples. It assumes that the computational complexity of
drawing a valid sample is comparable between different heuristics. Although it
is significantly more difficult, a more faithful comparison should look at the value
of different heuristics per unit of computation.

Limitations Note that the simulation data has a few limitations: Due to the dis-
cretization there are aliasing effects shown by asymmetric grasp sets for symmet-
ric objects. Additionally, we do not simulate gravity or any contact constraints
with the environment. We also did not vary the internal DOF of the gripper.
Adding all these dimensions would impede us from simulating all possible grasps
in a reasonable amount of time.

7 Conclusions

We presented a dense data set of parallel-jaw grasps for 21 objects from the
YCB data set. The data set is annotated with the results from running a physics
simulation for more than a billion grasps. We showed that the quality of the
simulation is reasonable, by using a model-based robotic system and transferring
the successful grasps to the real world.

The data allowed us to quantify empirically for the first time the bias exposed
by existing grasp sampling schemes. This will improve the understanding of data
generation for 6-DOF grasp learning algorithms. Fully capturing the entire grasp
distribution is important in order to plan grasps that are conditioned on task or
environmental constraints and go beyond simple pick-and-place scenarios.
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