Skip to main content

Introducing PIVOT: Predictive Incremental Variable Ordering Tactic for Efficient Belief Space Planning

  • Conference paper
  • First Online:
Book cover Robotics Research (ISRR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 20))

Included in the following conference series:

  • 1632 Accesses

Abstract

Belief Space Planning (BSP) is a fundamental technique in artificial intelligence and robotics, which is widely used in the solution of problems such as online autonomous navigation and manipulation. Unfortunately, BSP is computationally demanding, especially when dealing with high-dimensional state spaces. We thus introduce PIVOT: Predictive Incremental Variable Ordering Tactic, a novel approach to improve planning efficiency. Although variable ordering has been extensively used for the state inference problem, variable ordering specifically for planning has hardly been considered. Interestingly, this tactic can also lead to improved loop-closing efficiency during state inference. We use the approach in an active-SLAM scenario, and demonstrate a significant improvement in efficiency. This approach follows our previous work regarding efficient BSP via belief sparsification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P., Olson, E.: Variable reordering strategies for SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3844–3850. IEEE (2012)

    Google Scholar 

  2. Bonet, B., Geffner, H.: Planning with incomplete information as heuristic search in belief space. In: International Conference on Artificial Intelligence Planning Systems, pp. 52–61. AAAI Press (2000)

    Google Scholar 

  3. Chaves, S.M., Eustice, R.M.: Efficient planning with the Bayes tree for active SLAM. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4664–4671. IEEE (2016)

    Google Scholar 

  4. Davis, T.A., Gilbert, J.R., Larimore, S.I., Ng, E.G.: A column approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30(3), 353–376 (2004)

    Article  MathSciNet  Google Scholar 

  5. Dellaert, F.: Factor graphs and GTSAM: a hands-on introduction. Technical report GT-RIM-CP&R-2012-002, Georgia Institute of Technology, September 2012

    Google Scholar 

  6. Dellaert, F., Kaess, M.: Square Root SAM: simultaneous localization and mapping via square root information smoothing. Int. J. Robot. Res. 25(12), 1181–1203 (2006)

    Article  Google Scholar 

  7. Elimelech, K., Indelman, V.: Consistent sparsification for efficient decision making under uncertainty in high dimensional state spaces. In: IEEE International Conference on Robotics and Automation (ICRA), May 2017

    Google Scholar 

  8. Elimelech, K., Indelman, V.: Scalable sparsification for efficient decision making under uncertainty in high dimensional state spaces. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2017

    Google Scholar 

  9. Elimelech, K., Indelman, V.: Simplified decision making in the belief space using belief sparsification. Int. J. Rob. Res. (2022, to appear)

    Google Scholar 

  10. Hämmerlin, G., Hoffmann, K.-H.: Numerical Mathematics. Springer, New York (2012)

    MATH  Google Scholar 

  11. Ila, V., Polok, L., Solony, M., Svoboda, P.: SLAM++ - a highly efficient and temporally scalable incremental slam framework. Int. J. Robot. Res. 36(2), 210–230 (2017)

    Article  Google Scholar 

  12. Indelman, V., Carlone, L., Dellaert, F.: Planning in the continuous domain: a generalized belief space approach for autonomous navigation in unknown environments. Int. J. Robot. Res. 34(7), 849–882 (2015)

    Article  Google Scholar 

  13. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., Dellaert, F.: iSAM2: incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 31, 217–236 (2012)

    Article  Google Scholar 

  14. Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: incremental smoothing and mapping. IEEE Trans. Robot. 24(6), 1365–1378 (2008)

    Article  Google Scholar 

  15. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  16. Patil, S., Kahn, G., Laskey, M., Schulman, J., Goldberg, K., Abbeel, P.: Scaling up Gaussian belief space planning through covariance-free trajectory optimization and automatic differentiation. In: Akin, H.L., Amato, N.M., Isler, V., van der Stappen, A.F. (eds.) Algorithmic Foundations of Robotics XI. STAR, vol. 107, pp. 515–533. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16595-0_30

    Chapter  Google Scholar 

  17. Platt, R., Tedrake, R., Kaelbling, L.P., Lozano-Pérez, T.: Belief space planning assuming maximum likelihood observations. In: Robotics: Science and Systems (RSS), Zaragoza, Spain, pp. 587–593 (2010)

    Google Scholar 

  18. Porta, J.M., Vlassis, N., Spaan, M.T., Poupart, P.: Point-based value iteration for continuous POMDPs. J. Mach. Learn. Res. 7, 2329–2367 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Prentice, S., Roy, N.: The belief roadmap: efficient planning in belief space by factoring the covariance. Int. J. Robot. Res. 28(11–12), 1448–1465 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khen Elimelech .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ppt 329 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elimelech, K., Indelman, V. (2022). Introducing PIVOT: Predictive Incremental Variable Ordering Tactic for Efficient Belief Space Planning. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_6

Download citation

Publish with us

Policies and ethics