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Abstract. The process of industrial design engineering is often involved
with the simultaneous optimization of multiple expensive objectives. The
surrogate assisted multi-objective S-Metric Selection – Efficient Global
Optimization (SMS-EGO) algorithm is one of the most popular algo-
rithms to solve these kind of problems. We propose an extension of the
SMS-EGO algorithm with optimally weighted, linearly combined ensem-
bles of regression models to improve its objective modelling capabilities.
Multiple (different) surrogates are combined into one optimally weighted
ensemble per objective using a model agnostic uncertainty quantification
method to balance between exploration and exploitation. The perfor-
mance of the proposed algorithm is evaluated on a diverse set of bench-
mark problems with a small initial sample and an additional budget of
25 evaluations of the real objective functions. The results show that the
proposed Ensemble-based – S-Metric Selection – Efficient Global Opti-
mization (E-SMS-EGO) algorithm outperforms the state-of-the-art algo-
rithms in terms of efficiency, robustness and spread across the objective
space.

Keywords: Multi-objective optimization · Efficient global
optimization · Surrogate models · Ensemble models · Uncertainty
quantification · S-metric selection · Industrial design

1 Introduction

The process of industrial design engineering is often involved with the optimiza-
tion of multiple very costly objective functions [17], which can be formulated as
a Multi-objective Optimization Problem (MOP):

min
�x

�f(�x) , where �f(�x) = [f1(�x), . . . , fm(�x)] (1)

in which �f is a collection of m objective functions, where �x = [x1, . . . , xn] is a
solution on n independent variables in the feasible region Ω ⊆ R

n. In a multi-
objective optimization setting, different objectives are commonly conflicting with
each other, where one objective cannot be improved without deteriorating on
another objective function. Consequently, instead of finding one single solution,
the goal is to find a collection of Pareto-optimal solutions P [13]:
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P := {�x ∈ Ω | ��x′ ∈ Ω : �f(�x′) � �f(�x)} (2)

where � indicates Pareto-dominance. A solution �x dominates another solution
�x′ if and only if

∀i(fi(�x) ≤ fi(�x′)) and ∃fi(�x) < fi(�x′), i = 1, . . . ,m (3)

The set of solutions P together form a Pareto-front in the m-dimensional objec-
tive landscape. Objective functions in industrial design are often unknown,
requiring an iterative evaluation process of proposed design configurations by
running simulations [14,32] or by building prototypes [19]. Such evaluations are
often extremely costly and time-consuming, even though more and more com-
putational power becomes available [17].

To avoid spending an excessive amount of time and resources at design eval-
uation, a widely used method is to approximate real objective functions using
surrogate models [19]. In particular, ensembles of multiple surrogate models have
been successfully applied to approximate costly objective functions and they were
shown to yield great performance in optimization tasks [19,30].

Unfortunately, existing techniques for multi-objective optimization often still
depend on domain-specific prior knowledge about the given optimization tasks
[18]. To eliminate this need for prior understanding of MOP landscapes, we
propose the Ensemble-based S-Metric Selection Efficient Global Optimization (E-
SMS-EGO) algorithm, which combines surrogate models into adaptive ensembles
to solve computationally very expensive multi-objective optimization problems
in an efficient manner.

2 Related Work

A large body of academic work has already been dedicated to study ensembles
of surrogates, as well as multi-objective optimization problems. In the following,
we cover the most relevant approaches that lie at the foundation of the proposed
algorithm.

2.1 Ensembles of Surrogate Models

Combining the output of multiple surrogate models into an ensemble has repeat-
edly been shown to be beneficial to optimization processes in both practical
applications and artificial test settings. For instance, ensembles of surrogate
models have improved the optimization of wind turbine allocation [38], the min-
imization of car crash impact in car designs [2] and more [19,36].

Aside from classical ensemble techniques, e.g., Ranking, Bagging and Boost-
ing [19], a well-proven method to generate ensembles is by computing the
weighted average of multiple surrogate models [16]. Multiple frameworks to find
optimal weights have been proposed so far, for which the performance depends
heavily on the nature of the given optimization tasks [19].
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When generating such weighted ensembles, weights are mainly assigned based
on the contributions of individual models [15]. In general, surrogate models that
perform better are given higher weights, and the weights for the worst performing
models are reduced to zero. As the weights are based on the individual model
performance, the composition of the found ensembles strongly depends on the
choice of performance metric [15,34].

In the literature, weighted ensemble methods are roughly divided into two cate-
gories: Globally weighted averaging, and locally weighted averaging of models [19].

In globally weighted averaging methods, the complete design space is con-
sidered altogether in the calculation of individual model performances, and the
outputs of the models are combined using the same weight across the whole
input space. As a first attempt at weighted model combination, Goel et al. [16]
combined several regression models into ensembles by globally weighting the
models based on their performances to approximate expensive objective func-
tions. Since then, the main framework from this study has been improved upon
in multiple ways, e.g., improving efficiency by clustering the design space [37],
introducing an optimization procedure for finding optimal weights [2], and by
using a covariance matrix of prediction errors to efficiently find weights [30,34].

Friese et al. [15] showed that a convex, linearly weighted ensemble with pos-
itive weights, in terms of measured error cannot perform worse than its worst
performing base model and has a chance to perform better than any of the
individual base models due to the convex nature of the weight combination.
Moreover, they proposed to perform an evolutionary search over model weights
to scale up the number of included base models.

In addition, more sophisticated approaches have been studied to generate
ensembles based on local accuracy measures. For example, Acar [1] used the
cross-validated prediction variance as a local accuracy measure to indicate indi-
vidual model performance, while still providing fixed weights over the entire
input space. Other approaches also assign model weights differently across the
input space [19]. By doing so, ensembles are better capable of capturing local
trends in specified regions of the design space [38].

2.2 Efficient Global Optimization

In general, a small number of initial evaluated data points is not sufficient to
obtain a good representation of the overall objective landscape. Therefore, new
points have to be sampled to increase the predictive accuracy of the surrogate
models.

A widely used algorithm for the sequential optimization of expensive black-
box functions is the Efficient Global Optimization (EGO) algorithm as intro-
duced by Jones et al. [20]. The EGO algorithm heavily exploits the proposed
surrogate model by sequentially choosing new candidate points for evaluation.
These points are chosen based on the prediction of the model, as well as the
uncertainty about the prediction at that point by introducing an infill-criterion.
By addressing both the prediction as well as the uncertainty, the EGO algorithm
autonomously balances between exploration and exploitation of the search space.
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2.3 Uncertainty Quantification

In the EGO framework, the uncertainty of point predictions has to be taken into
account when predicting objective functions, e.g. in terms of variances, standard
deviations, or confidence intervals. In such cases, an infill criterion is used as a
combined metric of the predicted value and the uncertainty of the prediction,
e.g., Expected Improvement [20], Lower Confidence Bound [8], and Probability
of Improvement [33].

Some regression models automatically address the confidence of predictions
as they also provide an estimation of the prediction variance [19,22].

However, the majority of regression models is not equipped with such built-in
variance estimation properties, which calls for an external uncertainty quantifi-
cation (UQ) measure in order to be adopted to the EGO framework. Van Stein
et al. [31] provide a fine UQ measure as such that is independent of surro-
gate modeling assumptions by addressing the empirical prediction error at a
given point, as well as the variability of the k nearest neighbours based on the
euclidean distance to these neighbouring points. This allows for combining dif-
ferent surrogate models in the EGO framework.

2.4 Model-Based Multi-objective Optimization

In the multi-objective optimization setting, surrogate models have been used
for a wide variety of tasks [3]. For example, Loshchilov et al. [25], Bandara
et al. [5] trained surrogate models to distinguish dominated solutions from non-
dominated solutions. Additionaly, surrogate models have been used to approxi-
mate the increase in hypervolume of new proposed individuals [4]. However, as
described earlier, the focus of the present study is to apply surrogate models for
the approximation of multiple objective functions. Methods that do so are gen-
erally scalarization-based [21,27,39], Pareto-based [9,10,24] or Direct Indicator-
based [29,35]. A very well known Direct Indicator-based method is the model-
assisted S-Metric selection approach by Ponweiser et al. [29], which accurately
identifies promising data points by optimizing the amount of added hypervol-
ume. Even though the literature about surrogate ensembles and model-based
multi-objective optimization is quite extensive, the question on how to combine
the two topics in a knowledgeable manner has, to the best of our knowledge,
rarely been addressed so far.

3 E-SMS-EGO

In this paper, we propose the E-SMS-EGO algorithm, extending the SMS-EGO
algorithm [29] with optimally weighted ensembles, combined with uncertainty
quantification in order to efficiently solve MOPs.

3.1 Initial Sampling

An initial set of data points is obtained with the Latin Hypercube Sampling
(LHS) method [26], which provides an equally distributed sample of data points
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across the search domain. LHS ensures that the amount of information that the
surrogate models can derive from the sample is maximized. The initial data
points are evaluated on the objective functions to obtain the corresponding
objective values for the initial data set.

3.2 Finding Optimal Ensemble Weights

Subsequently, a well-performing and robust ensemble is generated for every
objective function by finding the optimal linear combination of weights per
objective function. Currently, ensembles are created by calculating the weighted
average of five base models, i.e. a kriging model, radial basis function, decision
tree, support vector machine and a multivariate adaptive regression spline. In
our experiments, we used these five base models with default parameters as
implemented in the scikit-learn Python package [28]. However, as the method
is model-agnostic, note that it can be used with varying a number of regression
models.

In E-SMS-EGO, the optimal weights are found per objective by means of 10-
fold cross validation, largely based on the linear combination method proposed
by Friese et al. [15]. First, all possible weight combinations are obtained by
calculating p possible integer partitions with size k (the amount of base models)
out of the integer 10. Dividing these partitions by 10 results in weight matrix W:

Wp,k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 01,k

0.9 0.1 0 · · · 0 02,k

0.8 0.1 0.1 · · · 0 03,k

...
...

...
. . .

...
...

0 0 0 · · · 0.1 0.9p−1,k

0p,1 0p,2 0p,3 · · · 0p,k−1 1p,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where: p: number of possible weight combinations. k: amount of base models.
Out of this collection of possible weight combinations, the optimal weights

are found separately for all of the objective functions by executing the following
steps according to the 10-fold cross validation procedure:

1. First, the base models are trained on the training partition of the cross-
validation fold.

2. Subsequently, the trained models are fitted separately to predict the objective
value of the configurations in the test partition, resulting in a prediction
matrix of size k times the amount of test points in the fold.

3. Next, an ensemble prediction is determined by calculating the weighted aver-
age using every possible weight combination, i.e., the rows in matrix W , as
in Eq. 5.

4. Finally, the prediction errors of the ensemble predictions are calculated.
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This results in ten MSE scores for all of the possible weight combinations, which
are averaged to get the cross-validated MSE score per weight vector. As a result,
the combination of weights with the minimal corresponding cross-validated MSE
value is selected as optimal weight vector �w∗

obj to create the ensemble for approx-
imating the objective function in question.

3.3 Minimizing Ensemble Predictions

Subsequently, a set of potential solutions is found by optimizing the k-NN
Ensemble Prediction (KPV) infill criterion per objective:

KPV = EPV (�x) − Ûk−NN (4)

consisting of the Ensemble Predicted Value (EPV ):

EPV (�x) =
N∑

i=0

�wi · f̂i(�x)T ,with (5)

f̂i: an individual base model.
�wi: the vector of best weights of the corresponding objective function.
N : the number of objective functions.

and the Uk−NN measure for the uncertainty about the prediction as introduced
by van Stein et al. [31]:

Ûk−NN =

∑
i∈N(�x)

wk
i

∣∣EPV (�x) − yi

∣∣
∑

i∈N(�x)

wk
i

+
min

i∈N(�x)
d(�xi, �x)

max
�xi,�xj∈χ

d(�xi, �x)
σ̂,with (6)

wi = 1 − d(�xi,�x)∑

i∈N(�x)
d(�xi,�x)

, σ̂ =
√

Var
[{yi}i∈N(�x) ∪ {f̂(�x)}]

.

Here, N(�x) holds the indices of k nearest neighbours to �x and d(·, ·) denotes
the Euclidean distance metric. σ̂ denotes the standard deviation of the observa-
tions in the neighbourhood with the prediction f̂(�x).

Multiple experiments were conducted to investigate the efficacy of using opti-
mally weighted ensembles in combination with uncertainty quantification, which
led to the implementation of the k − NN infill criterion, for which the supple-
mentary material can be found on Github1.

3.4 S-Metric Selection

The minimization process in step 3.3 is repeated multiple times, such that a col-
lection of potential points in the search domain is obtained for all of the objectives

1 https://github.com/Gitdeon/E-SMS-EGO.

https://github.com/Gitdeon/E-SMS-EGO
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in parallel. These points are evaluated on all of the composed ensembles, resulting
in multiple predictions which can be used to estimate a Hypervolume score for all
potential points. The greatest contributor is then found and selected for evalua-
tion with the S-Metric selection approach as described in Sect. 2.4. After evalua-
tion, the optimal point is included in the collection of evaluated data points, such
that it is also used for ensemble generation in subsequent iterations. This ensures
improvement of the predictions as more iterations have passed.

4 Experiments and Results

The E-SMS-EGO algorithm is compared to state-of-the-art algorithms in terms
of Hypervolume and spread of generated solutions. Source code of the proposed
solution and experiments can be found on GitHub2.

The competing algorithms are NSGA-II [10], MOEA/D [39] and C-TAEA
[24], as implemented in the Python Multi-Objective Optimization package [6].
To ensure a fair comparison, we used LHS to obtain the same initial sample for
all of the algorithms, with a size of 5×n, with n : number of input variables. As
the goal is to acquire a well-spread Pareto-front in as little function evaluations
as possible, the iteration budget on top of the initial sample was limited to 25
evaluations. Since the competing algorithms make use of populations instead
of a single point per iteration, the population sizes and number of generations
were both set to 5, also resulting in a budget of 25 evaluations. The shown
results for the different algorithms are averages over ten runs with different
initial samples and random seeds, guaranteeing reliability of the results. Apart
from these parameters, default settings without any further tuning were used for
all of the algorithms, including the proposed method.

In order to compare the algorithms, a diverse collection of multi-objective
optimization problems was composed, including some artificially designed two-
objective problems and real-world like problems. An overview of the test prob-
lems is provided in Table 1, showing input dimension (n), Lower Bounds (LB)
and Upper Bounds (UB) of the input variables, number of objectives (m) and
hypervolume reference point (ref). Problems are artificially designed (AD) or
real-world like (RWL). The testbed was limited to these functions as they were
implemented in the pymoo package, thus being compatible with the competing
algorithm implementations.

4.1 Results

As becomes clear in Table 2, E-SMS-EGO significantly outperforms NSGA-II,
MOEA/D and C-TAEA in terms of the Hypervolume scores of the obtained
Pareto-fronts. Also, in most cases, the standard deviation in Hypervolume score
is lower for E-SMS-EGO, suggesting that the proposed method is more robust
and stable than the competing algorithms. On some functions, e.g. TNK, WB,

2 https://github.com/Gitdeon/E-SMS-EGO.

https://github.com/Gitdeon/E-SMS-EGO


Solving Expensive MOP’s with Optimally Weighted Ensembles 151

Table 1. Artificially designed and real world Like multi-objective optimization prob-
lems as implemented in the pymoo package [6].

Problem Type m n LB UB Ref

BNH [7] AD 2 2 [0, 0] [5, 3] [140, 50]

TNK [12] AD 2 2 [0, 0] [π, π] [2, 2]

CTP1 [11] AD 2 2 [0, 0] [1, 1] [1, 2]

ZDT4 [12] AD 2 10 [0,−5, . . . ,−5]n [1, 5, . . . , 5]n [1,260]

KSW [23] AD 2 3 [−5, −5, −5] [5, 5, 5] [−10, 2]

WB [17] RWL 2 4 [0.125, 0.1, 0.1, 0.125] [5, 10, 10, 5] [350,1]

CSI [9] RWL 3 7 [0.5, 0.45, 0.5, 0.5,

0.875, 0.4, 0.4]

[1.5, 1.35, 1.5, 1.5,

2.625, 1.2, 1.2]

[42, 4.5, 13]

some of the competing algorithms show very poor results in terms of Hypervol-
ume, with abnormally high standard deviations. In these cases, the algorithms
did not succeed to find enough feasible, Pareto-optimal solutions below the ref-
erence point, therefore receiving a Hypervolume score of 0 in some of the runs.
On some problems, especially MOEA/D seemed to perform poorly with a small
evaluation budget. However, E-SMS-EGO did not seem to suffer from this issue
and was well able to find a Pareto-front in all of the runs.

Table 2. Mean hypervolume score with respect to the reference point for each test
function. The best result per test function is shown in boldface if they were significantly
higher according to Welch’s t-test with α : 0.05.

Problem Measure NSGA-II MOAE/D C-TAEA E-SMS-EGO

BNH HV 4760 4617 4723 5035

Std. 134.4 209.8 157.7 35.85

TNK HV 1.849 0.000 1.015 3.926

Std. 0.597 0.000 1.134 0.116

CTP1 HV 1.115 1.136 1.103 1.261

Std. 0.088 0.061 0.085 0.016

ZDT4 HV 162.1 116.5 161.0 176.0

Std. 18.90 43.16 17.71 14.62

KSW HV 41.47 43.04 42.01 56.09

Std. 15.05 19.35 12.97 9.923

WB HV 32.90 1.217 32.49 33.63

Std. 1.298 5.969 4.690 1.797

CSI HV 11.14 10.56 16.67 19.41

Std. 3.205 2.092 1.101 0.260
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In addition, Figs. 1 and 2 show the Pareto-frontiers obtained by the four
algorithms on five of the test functions. Here, it is observed that E-SMS-EGO
in general succeeds to find the best Pareto-fronts compared to the competing
algorithms, as the solutions are located more towards the minimal values on
all objectives. In addition to finding more Pareto-optimal solutions, the solu-
tions found by E-SMS-EGO are well-spread across the objective space, which is
demonstrated nicely, especially for the BNH, CTP1, KSW and CSI problems.

Furthermore, it is shown that, for some problems, only a small number
of Pareto-optimal solutions could be found, which is most likely explained by
the limited number of allowed function evaluations. Especially for NSGA-II
and MOEA/D, which were only allowed small population sizes, this explains
why so little Pareto-optimal solutions were found. However, the vast major-
ity of solutions that were found by the competing algorithms are still inferior
to the solutions found by E-SMS-EGO, verifying that the proposed method
beats the competing algorithms altogether in terms of efficacy in multi-objective
optimization.

(a) Pareto-fronts BNH (b) Pareto-fronts CTP1

(c) Pareto-fronts KSW (d) Pareto-fronts ZDT4

Fig. 1. Pareto frontiers obtained by the four algorithms on four of the test functions.
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Fig. 2. Pareto frontiers obtained by the four algorithms on the three-objective CSI
problem.

5 Conclusions and Future Work

In this paper, the novel Ensemble-based Efficient Global Optimization S−Metric
Selection (E-SMS-EGO) algorithm is proposed, and has been shown to be suc-
cessful in finding well-performing, Pareto-optimal solutions to multi-objective
optimization problems with a limited evaluation budget. By heavily exploiting
already known data points, E-SMS-EGO has been shown to outperform com-
parable state-of-the art multi-objective optimization algorithms, i.e., NSGA-II,
MOEA/D and C-TAEA on a diverse collection of artificially designed and real
world like test problems. Multiple experiments were performed with different
techniques to compose the proposed algorithm. This resulted in an algorithm
that improves upon the SMS-EGO algorithm by using optimally weighted ensem-
bles of regression models as surrogates. By further extending the algorithm with
the k-NN variance measure as a method of uncertainty quantification, E-SMS-
EGO was able to find minimal solutions that were nicely spread across the objec-
tive space, with just a small number of function evaluations. The algorithm can
be adapted in several ways which might boost the performance in the future.
Local ensemble weighting methods might improve performance, more than five
base models could be incorporated into the ensembles and hyper-parameter opti-
mization of the base models can still be performed. Other multi-objective infill
criteria can be considered for comparison and finally a constraint handling mech-
anism could be incorporated to make the algorithm more widely applicable.
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