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Abstract. Unmanned aerial vehicles (UAVs) are widely deployed in air
navigation, where numerous applications use them for safety-of-life and
positioning, navigation, and timing tasks. Consequently, GPS spoofing
attacks are more and more frequent. The aim of this work is to enhance
GPS systems of UAVs, by providing the ability of detecting and pre-
venting spoofing attacks. The proposed solution is based on a multilayer
perceptron neural network, which processes the flight parameters and the
GPS signals to generate alarms signalling GPS spoofing attacks. The ob-
tained accuracy lies between 83.23% for TEXBAT dataset and 99.93%
for MAVLINK dataset.

Keywords: Deep Learning · Intrusion Detection Model · Unmanned
Aerial Vehicles · Spoofing · Global Navigation Satellite System.

1 Introduction

Smart devices, such as unmanned aerial vehicles (UAVs), are widely deployed
in our society. For every mission, these devices strongly rely on their commu-
nications system [11], which is typically based on the Internet of Things (IoT)
networks and GPS channels.

In the UAV world, GPS-based systems face two main threats: jamming and
spoofing attacks [11]. In a jamming attack, the attacker goal is a denial-of-service
(DoS), so that the UAV is unable to receive the GPS signal. In a spoofing attack,
the attacker creates a replica of the GPS signal and boosts its power, for it
to become the positioning reference of the UAV. The increased power affects
the correlation between the signals from the GPS and the navigation system.
Consequently, once the spoofed signal is sent to the UAV, the latter ignores the
real GPS signal [18] and starts drifting from the original path.

During a spoofing attack, the target UAV is unable to immediately detect
the drift because, if the attack is executed well, there are no abrupt changes
in the received GPS signal strength. Additionally, there is no knowledge of the
correct position to help the UAV notice the drift. For these reasons, the spoofing
attacks are hard to detect.

Research studies on the detection and prevention of spoofing attacks are
suggesting that deep neural networks (DNNs) have great potential. However,
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their suitability is not fully understood nor comprehensively verified on publicly-
available spoofing-attack datasets.

The main contributions of this work are:

– design and software implementation of a multilayer perceptron (MLP) and
a long short-term memory (LSTM) DNN for the spoofing-attack detection,

– comparison of their accuracies on MAVLINK and TEXBAT datasets,
– selection of the best DNN for the intrusion detection (ID) framework,
– retraining of the designed models for an additional function—prevention

of spoofing attacks (by generating an early alarm for the UAV before the
spoofing attack starts), and

– comparison to other machine-learning/deep-learning solutions proposed in
the literature.

In the remainder of this paper, Section 2 describes the spoofing attacks.
Section 3 presents the approaches proposed. Section 4 describes the related work.
Section 5 presents the intrusion detection framework. Section 6 discusses the
DNN model design and training. Then, Section 7 gives the experimental results.
Finally, the conclusions are given in Section 8.

2 GPS Spoofing Attacks

Communication between the GPS satellites and the UAVs is needed to obtain the
flight path of a UAV and for navigation. UAVs use at least four satellites to nav-
igate. Moreover, GPS satellites provide the position reference to the UAVs [20].
Sensors such as inertial measurement units, magnetometers, and gyroscopes are
often deployed, for increased precision and security [20].

During navigation, a malicious signal can become the reference for the UAV,
even though it is not generated by a GPS satellite. The presence of such a signal
defines a spoofing attack. Merwe et al. [9] presented a classification of spoofing
attacks considering various aspects, such as synchronization between the original
and the spoofed signal, the number of antennas required to attack the vehicle,
or the spoofed signal generation.

In an asynchronous attack, the attacker does not monitor the reference GPS
signal of the target. Creating a spoofed signal without the knowledge of the
reference entails differences in signal characteristics and, simply, a different po-
sition being sent to the UAV. Thus, in an asynchronous attack, abrupt position
changes are communicated to the UAV, making these attacks easier to detect
than synchronous attacks [8].

In a synchronous spoofing attack [8], the attacker tracks the target UAV.
Therefore, it knows the target’s exact location, which allows the attacker to re-
ceive the corresponding reference GPS signal. The attacker creates a spoofed
signal by replicating the reference and slightly increasing the power of this new
signal. The spoofed signal, once sent back to the target, becomes the new refer-
ence, precisely because of its higher power. Additionally, the attacker becomes
able to relocate the target by changing the reference signal characteristics.
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Fig. 1. Synchronous versus asynchronous spoofing attacks.

Figure 1 illustrates the differences between an asynchronous and a syn-
chronous spoofing attack. In this figure, the synchronous spoofing signal is
aligned with the reference signal, which is why the target can start drifting
without being aware of the attack. On the other hand, in an asynchronous at-
tack, the spoofing signal is not synchronized, which causes an abrupt change in
the target’s position and makes the attack easier to detect.

For the above mentioned and other limitations of asynchronous spoofing
attacks (e.g., listed by Merwe et al. [9]), this work focuses on detection and
prevention of the more serious threats: synchronous spoofing attacks [8].

3 Proposed Approaches

After presenting the threat of spoofing attacks and understanding their impact
on the UAVs, we present here our strategies for the detection and prevention of
synchronous spoofing attacks (illustrated in Figure 2).

3.1 Intrusion Detection Framework for Spoofing Attack Detection

First, we propose to design an intrusion detection (ID) software framework for
detecting GPS spoofing attacks. The detection will be done using only the flight
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Fig. 2. Illustration of our proposed solution for synchronous spoofing attack detection
and prevention; it involves a flight controller, a communication channel between the
target and the controller, and a software intrusion detection framework (DNN-based).

parameters collected during one measurement cycle (e.g., one clock cycle). Com-
munication between the flight controller and the target UAV device serves to
offload the flight parameters and the GPS signal characteristics from the device.
The flight controller then analyzes the received data and, with the help of the
ID framework, detects the attack and signals an alarm.

3.2 Early-Warning Alarm for Spoofing Attack Prevention

In the same line of research, another approach is considered here: The ID frame-
work described previously should also be able to generate an alarm for warning
that a spoofing attack may be taking place. To that purpose, the flight parame-
ters collected during several subsequent measurement cycles need to be processed
(e.g., GPS signal power, GPS signal amplitude, changes in the UAV orientation,
system status changes, etc.).

4 Related Work

4.1 Techniques for GPS Spoofing Attack Detection

In the last decade, a number of research studies focused on aircraft and nav-
igation security problems. In the recent couple of years, UAVs have become
increasingly popular and, consequently, their security vulnerabilities. Most com-
mon threats to UAVs rely on the IoT protocols or on the GPS communication.

M. P. Arthur [1] categorizes the UAV threats in three types: navigation at-
tacks (hijacking), routing attacks (based on the IoT network), and data attacks
(where data is stolen from hijacked drones). Related to navigation attacks, jam-
ming and spoofing attacks are identified as the main threats.

Several works address detection of the spoofing attacks. Morales-Ferre et
al. [10] use the Monte Carlo approach to compare two detectors: the sum of
squares detector and the D3 detector. E. Shafie et al. [18] take a more tradi-
tional approach: They test models such as a Bayesian classifier and the K-Nearest
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Neighbour (K-NN) classifier, achieving accuracies of 62.31% and 77.29%, respec-
tively, when detecting a synchronous spoofing attack.

Ranganathan et al. [16] develop SPREE, an approach for synchronous spoof-
ing attacks detection. SPREE is a software-radio solution based on tracking
the reference as well as the auxiliary GPS signals, by allocating more than one
channel to the same satellite.

In the next section, we survey the use of deep learning (DL) techniques and
identify the most promising candidates for our intrusion detection framework.

4.2 Deep Learning for GPS Spoofing Attack Detection

S. Semanjski et al. [17] used support vector machines (SVMs) to detect spoofed
signals while lifeguard systems are flying. Despite the improvement in accuracy
compared to non-ML-based techniques, in the same research [17] the authors
conclude that the ML methods (in particular, SVM) are not sufficient. The
reason lies in the nonlinear characteristics of the attacks. To deal with nonlinear
data, the authors use kernels SVM (to transform nonlinear attack characteristics
to linear ones through mathematical algorithms)—they attach many kernels to
an SVM detector, achieving 94.41% accuracy.

Unsupervised DL techniques are also used to create datasets from the UAV
sensor readings. It is the case of the work of M.P. Arthur et al.[1], where self-
taught learning was used to develop a new dataset. An SVM model is used in
the previous dataset with an accuracy of 94% with a framework installed in the
UAV.

E. Shafie et al. applied an MLP model to detect spoofing attacks with a 99.3%
accuracy [18]. Another DL approach [12] used convolutional neural networks
(CNNs), achieving 94% to 99% accuracy.

In the research of G. Bae et al. [2], a distributed DL framework is pre-
sented, which reduces the training time per epoch from 30 to 5 seconds using
an autoencoder-based LSTM model. In the work by K. H. Park et al. [14], an
autoencoder (AE) is used to predict spoofing attacks during a flight.

In Table 1, we summarize the results of the previous studies on synchronous
spoofing attack detection using deep learning techniques. The table compares
MLP, C-SVM, LSTM-AE, self-taught learning, and AE-based approaches. Their
accuracies range between 93.4% and 99%. An important drawback of these stud-
ies is the use of synthetic datasets and the lack of comparison to other DL mod-
els. Only one general dataset (based on simulated flight parameters) was used
to test spoofing attacks detection [14], but no common metrics for comparing
to other studies were considered. Hence, a comprehensive comparison of various
DL techniques for detecting GPS spoofing attacks using a common dataset is
still missing. In this work, we address the above issue by comparing our DNN
models to SVM and random forest models, using the same datasets (Section 7).

The lack of a general dataset for spoofing attacks makes it difficult to choose
the most suitable framework for spoofing attack detection. However, after com-
paring the ML and DL approaches presented in previous studies [1][15][18], we
can conclude that the DL techniques are most promising. Moreover, they are
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Table 1. Survey of synchronous attack detectors based on deep learning models.

Model Metrics Dataset

MLP [18] ACC (99.3%) Synthetic

C-SVM [17] ACC (94.41%) Synthetic

LSTM-AE [2] ROC/ACC(93.4%) Sensors data

Self-taught learning [1] ACC (94%) Sensors data

AE [14] Error attack (0.25)/F1-score (94.81%) MAVLINK

proven suitable not only for detection but also for prediction (and thus preven-
tion) of an attack [14].

5 DL Models In Our Intrusion Detection Framework

5.1 MLP for GPS Spoofing Attack Detection

One of the objectives of this work is the comparison between MLP and LSTM
deep-learning models, as an integral step of the design of an ID framework for
spoofing attacks detection. The choice of MLP is motivated by the excellent
accuracies reported in previous works, reaching 99% in the Meaconer attacks
(i.e., denial-of-service attacks).

An MLP model is composed of a number of layers (some of which are hidden),
in which the training flow follows one direction only (from the input towards the
output layer). Additionally, MLP is a fully-connected neural network, in which
the units in subsequent layers are fully interconnected, and each connection is
weighted. All the weights are combined together to compute the output of a
unit using activation functions. Figure 3 shows an MLP model composed by
four hidden layers. The exact details of the MLP model used in this work are
given in Section 6.3.

5.2 LSTM for GPS Spoofing Attack Detection

Besides the MLP model, we develop an LSTM model. We use flight parameters
and GPS signal characteristics as time-sequential data.

As the result of the overcoming of the recurrent neural network (RNN) gra-
dient vanishing, LSTM generates the output of a unit using recurrently the
connections among hidden units. Three gates take the control of the informa-
tion flow: the input, the forget, and the output gate. These three gates allow the
unit to calculate its state (using the input provided by the input gate). They also
allow considering previous information from other units (decided by the forget
gate). Finally, in an LSTM model, after the output of the unit is computed, the
output gate decides whether or not to consider the previous information and
transmits its decision to the unit through the forget gate. Figure 4 illustrates an
LSTM model with three hidden layers. The exact details of the LSTM model
used in this work are given in Section 6.3.
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Fig. 4. An LSTM model for GPS spoofing attack detection.

6 Model Design and Training

To train and test the two DNN models presented in Section 5, we choose two
datasets: Texas Spoofing Test Battery (i.e., TEXBAT [5]) and MAVLINK [19].
The comparison results will guide us in choosing better of the two models for
the ID framework.
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6.1 Datasets Description

MAVLINK Dataset. This dataset is composed of flight system parameters
(also called flight logs) collected using PX4 autopilot and Gazebo robotics simu-
lator [19]. PX4 is an open-source autopilot firmware used in many UAVs. There-
fore, MAVLINK dataset contains general data—data corresponding to a large
number of UAVs [19]. The dataset contains two groups of data samples: The
first type corresponds to the parameters of a routine flight (in the absence of
the attack). The second type corresponds to the parameters of a flight under a
spoofing attack (also called a spoofed flight). It should be noted that the spoof-
ing attack lasts 30 seconds, while the flight takes 10–30 minutes; in other words,
this dataset is imbalanced.

A large number of features with little variance are present in the dataset.
This lack of variance can make the model focus on features with no relevance
for the problem at hand (even when applying the principal component analysis
technique). To avoid this scenario, we consider only the flight parameters with
high variance:
– GPS coordinates: latitude, longitude, military grid reference system, and the

course over the ground.
– Position and orientation logs: relative altitude, roll, pitch, heading, roll rate,

pitch rate, yaw rate, and ground speed.
– System and control status: air speed, climb rate, distance to home, next GPS

signal transmitter to visit, throttle, and battery measurements.
Many MAVLINK features relate to the position and the location, which is

convenient for the spoofing attack detection—due to the drift caused by the
spoofing attack, orientation, system, and control status features are affected.
Additionally, GPS signal characteristics contain information, as power and phase
changes in the reference GPS signal.

TEXBAT Dataset. TEXBAT [5] is a publicly available dataset commonly
used for testing the resilience of GPS receivers. It contains digital recordings
of live static and dynamic GPS L1 C/A spoofing tests. The characteristics of
TEXBAT allow the dataset to represent a generalisation of the spoofing attacks
detection problem, where not only UAVs are considered but any vehicle with a
GPS.

Among all the spoofing attacks covered by TEXBAT dataset [4][5], DS3
and DS7 scenarios have the characteristics of a synchronous spoofing attack.
The DS3 scenario is based on static matched-power time push attacks. The DS7
scenario explores the same spoofing attack as DS3, while employing carrier phase
alignment. Since DS7 is based on the DS3 scenario and, by introducing a new
alignment the complexity of intrusion detection is increased, we focus on the
DS7 scenario.

The TEXBAT dataset contains binary data. Using GRID code [6], we convert
the binary into the navigation data, which we then use to train the DNN models
in this work. In future work, we consider using the navigation data for real-time
processing (by a digital signal processor or a field-programmable gate array).
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It should be noted that, given that all the data in TEXBAT dataset corre-
sponds to spoofed flights (i.e., the data describing regular flights is not provided),
we use TEXBAT to train for and test the attack detection only (Section 3).

6.2 Datasets Preprocessing

This section focuses on the preprocessing of the chosen datasets. MAVLINK
dataset is a set of flight parameters (i.e., flight logs) extracted from an autopilot
simulator. The difference between TEXBAT and MAVLINK dataset is that the
data in the TEBXAT dataset can be given to the controller without any mod-
ification, because they represent physical features of the GPS signals. On the
contrary, MAVLINK data (flight logs) contain very many features (some highly
correlated) and thus require preprocessing.

Dataset balancing. The DNN models in this work will be designed with two
scenarios in mind: first, for spoofing attack detection and, second, for spoofing
attack prevention (early-warning alarm). In the first case, the training dataset
composed of samples of a spoofed flight only is used; this dataset is imbal-
anced, as the attack duration is considerably shorter than the duration of the
entire flight. The exact number of attack data samples in both TEXBAT and
MAVLINK dataset is shown in Table 2 (80% for training and 20% for testing).
In the second case, the training dataset is composed of equal number of flight
logs (data samples) from a regular flight and logs from a spoofed flight. There-
fore, the training dataset is balanced (because both the regular and the spoofed
flights last equal time). The DNN model is built using the latter dataset, while
evaluated on both.

Table 2. Dataset (im)balance.

MAVLINK TEXBAT
Train Test Train Test

Attack samples 187 7 39 6
Normal flight samples 5728 1433 26149 6542

To balance the data, oversampling techniques can be used. We choose syn-
thetic minority oversampling technique (SMOTE), which uses interpolation to
create new samples. Thus, after oversampling spoofing attacks samples, we ob-
tain the same number of attack samples and the normal flight samples and,
consequently, ensure abstraction and prevent overfitting.

MAVLINK dataset preprocessing. Different techniques are required before
training the models, to prevent overfitting problems. First, all the MAVLINK
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spoofing datasets originating from various UAVs are joined, to have as many sam-
ples as possible. Then, one-hot encoding is applied to treat categorical values.
Finally, principal component analysis (PCA), a technique based on the correla-
tion between the features, is used to reduce the number of input features [3]. We
chose ten input features.

6.3 Models Structure

Hyperband [7] is used to tune the DNN models for both scenarios (detection and
prevention) and for both datasets (MAVLINK and TEXBAT).

MAVLINK Dataset Models. The MLP model is set up and trained with four
hidden layers (the first with 96 units and Sigmoid function and the remaining
layers with 76, 118, and 36 units, respectively, using rectified linear unit (ReLU)
activation function). A dropout rate of 0.75 is used at the end, to avoid over-
fitting. The output layer is a single perceptron layer with a Sigmoid activation
function, which enables the output to be limited between 0 and 1. We use bi-
nary cross-entropy loss function and the Adam optimizer, with a learning rate
of 0.001, running for at most 30 epochs. The batch size has 1,900 samples.

On the other hand, the LSTM model has three hidden layers with 130, 132,
and 164 units, respectively. The batch size is 1,000 samples and there are at
most 10 epochs. The LSTM DNN uses the same optimizer, loss function, and
the learning rate as the MLP model. To improve the accuracy, when training the
model in the early-warning alarm prediction, the number of epochs is increased
empirically to 76 for the MLP model and to 100 for the LSTM model.

TEXBAT Dataset Models.
The MLP model for spoofing attack detection based on the TEXBAT dataset is
trained with three hidden layers (with 102, 78, and 70 units, respectively, using
ReLU activation function). The output layer is a single perceptron unit with a
Sigmoid activation function. We use binary cross-entropy loss function and the
Adam optimizer, with a learning rate of 0.001, running for at most 12 epochs.
The batch size has 100 samples.

The LSTM model has two hidden layers with 132 and 164 units, respectively.
The batch size has 1,000 samples, running for a maximum of 12 epochs. The
LSTM model uses the same optimizer, loss function and learning rate as the
MLP model.

7 Results

For the intrusion detection framework design, two experiments using flight pa-
rameters (MAVLINK dataset) are considered: one for detecting the spoofing
attacks and one for predicting them (raising an early-warning alarm). Table 3
summarizes the results obtained for each experiment. Similarly, Table 4 shows
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Table 3. Results for attacks detection and prevention on the MAVLINK dataset.

Attack detection Attack prevention
Metrics MLP LSTM MLP LSTM

ACC 99.93% 99.93% 94.43% 85.93%
Precision 99.96% 100.0% 94.94% 77.84%

Recall 85.71% 85.71% 100.0% 100.0%
F1-Score 92.29% 92.31% 97.41% 87.54%

Table 4. Results for attack detection on the TEXBAT dataset.

DL Model ACC Precision Recall F1-Score
MLP 83.23% 87.07% 67.14% 82.79%

LSTM 82.1% 91.04% 75.58% 82.59%

the results of the spoofing attack detection on the TEXBAT dataset. In our ex-
periments, 80% of the data is used for training, while the remaining 20% is used
for validation. Clearly, DNNs provide excellent results, confirming the ability of
MLP and LSTM to detect spoofing attacks, even though the two models consider
the same scenarios in different ways: The LSTM model takes into account the
past model inferences while MLP considers only the current units’ inferences.

It can be observed that LSTM models have a slightly lower accuracy than
MLP. This difference is linked to the very definition of a spoofing attack: If the
target is considering previous flight records when a spoofing attack is taking
place, then a spoofing attack will be only detected once the target is drifting
to an undesired position (due to the similarities between the previous samples
and the actual attack samples). For LSTM models, the fact that the spoofing
attack signals are at first almost identical to the previous GPS signals has a
negative impact on the model. This impact is translated into a delay of attack
detection compared to MLP models.This negative impact is demonstrated in
Table 3, where MLP have better F1-Score than LSTM models. Also the same
behavior is observed when using MLP and LSTM models for general spoofing
attacks ID (Table 4), with a difference between MLP and LSTM F1-Score of
0.2%.

On the other hand, and diving into MALVINK dataset results, it is also
logical to think that raising an early alarm for spoofing attacks will be harder
than detecting the threats. The results reflect this logical statement, since the
accuracy reduces from 99.93% to 94.43% in MLP models and from 99.93% to
85.93% in LSTM models. Even with this difference, the same DNN has demon-
strated that it has a great ability (more than 85% of the cases for the MAVLINK
dataset) to not only detect spoofing attacks, but also warn if the UAV is under
threats (with accuracies of 94.43% for MLP models and 85.93% for LSTM mod-
els). We can therefore conclude that MLP is a better solution for our intrusion
detection framework.
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Table 5. ML/DL solutions for spoofing attacks ID

Detection model Metrics Dataset

AE [14] F1-score (94.81%) MAVLINK (detection)

Random forest F1-score (89.21%)/ACC (89.33%) MAVLINK (detection)

SVM F1-score (95.99%)/ACC (96%) MAVLINK (detection)

MLP F1-score (92.29%)/ACC (99.93%) MAVLINK (detection)

Random forest F1-score (66.68%)/ACC (68.04%) MAVLINK (warning)

SVM F1-score (86.18%)/ACC (86.22%) MAVLINK (warning)

MLP F1-score (97.41%)/ACC (94.43%) MAVLINK (warning)

Random forest F1-score (47.52%)/ACC (56.77%) TEXBAT (detection)

SVM F1-score (83.25%)/ACC (82.3%) TEXBAT (detection)

MLP F1-score (82.79%)/ACC (83.23%) TEXBAT (detection)

Finally, we provide a comparison between our MLP solution and the DL
techniques presented in previous studies. The comparison is performed using
the same MAVLINK and TEXBAT datasets. Obtained results are summarized
in Table 5. These results further confirm that the MLP solution developed in this
work is not only suitable for detecting GPS spoofing attacks but also superior
to a number of other approaches.

8 Conclusions

The number of applications of unmanned aerial vehicles is rapidly growing and,
with it, GPS spoofing attacks are becoming a serious threat. In this work, a
software-based intrusion detection framework capable of not only detecting but
also predicting the attack (early-warning system) was developed. The frame-
work is based on a DNN, trained and verified on two datasets: MAVLINK and
TEXBAT. Two DNN models were compared: MLP and LSTM, with the experi-
mental results showing that MLP is superior. On MAVLINK dataset, accuracies
between 99.43% and 99.93% were achieved, while on TEXBAT dataset the ac-
curacy reached 83.23%. Finally, the resulting MLP model was compared with
two other DL-based approaches presented in the literature—random forest and
SVM—and demonstrated to be better-performing.

The evolution of DNNs shows that they can significantly improve the classi-
fication accuracies in many applications [13]. However, a well-performing DNN
is often large: It requires a high number of units, hidden layers, or features.
This translates to a continuous increment in computational requirements, mem-
ory bandwidth, and storage needed to save the model and move the data. For
UAVs, these requirements are difficult to satisfy. Hence, UAVs require a trade-off
between the model complexity and the computational and storage resources. For
that reason, as part of the future work, we will focus on reducing the complexity
of the attack detection model and making it feasible for the model to reside and
execute on the UAV.
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cation of spoofing attack types. In: 2018 European Navigation Conference (ENC).
pp. 91–99 (2018). https://doi.org/10.1109/EURONAV.2018.8433227

10. Morales-Ferre, R., Richter, P., Falletti, E., de la Fuente, A., Lohan, E.S.: A survey
on coping with intentional interference in satellite navigation for manned and un-
manned aircraft. IEEE Communications Surveys Tutorials 22(1), 249–291 (2020).
https://doi.org/10.1109/COMST.2019.2949178

11. Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Unmanned aerial vehi-
cle with underlaid device-to-device communications: Performance and trade-
offs. IEEE Transactions on Wireless Communications 15(6), 3949–3963 (2016).
https://doi.org/10.1109/TWC.2016.2531652

12. Munin, E., Blais, A., Couellan, N.: Convolutional neural network for multipath
detection in gnss receivers. In: 2020 International Conference on Artificial Intel-
ligence and Data Analytics for Air Transportation (AIDA-AT). pp. 1–10 (2020).
https://doi.org/10.1109/AIDA-AT48540.2020.9049188

13. Nurvitadhi, E., Venkatesh, G., Sim, J., Marr, D., Huang, R., Ong Gee Hock,
J., Liew, Y.T., Srivatsan, K., Moss, D., Subhaschandra, S., Boudoukh, G.:
Can FPGAs beat GPUs in accelerating next-generation deep neural networks?



14 O. Jullian et al.

In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. p. 5–14. FPGA ’17, Association for Computing Ma-
chinery, New York, NY, USA (2017). https://doi.org/10.1145/3020078.3021740,
https://doi.org/10.1145/3020078.3021740

14. Park, K.H., Park, E., Kim, H.K.: Unsupervised intrusion detection system for
unmanned aerial vehicle with less labeling effort. In: You, I. (ed.) Informa-
tion Security Applications. pp. 45–58. Springer International Publishing (2020).
https://doi.org/10.1007/978-3-030-65299-9-4

15. Quan, Y., Lau, L., Roberts, G.W., Meng, X., Zhang, C.: Convolutional
neural network based multipath detection method for static and kine-
matic GPS high precision positioning. Remote Sensing 10(12) (2018).
https://doi.org/10.3390/rs10122052
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