Skip to main content

Learning Beam Search: Utilizing Machine Learning to Guide Beam Search for Solving Combinatorial Optimization Problems

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13164))

Abstract

Beam search (BS) is a well-known incomplete breadth-first-search variant frequently used to find heuristic solutions to hard combinatorial optimization problems. Its key ingredient is a guidance heuristic that estimates the expected length (cost) to complete a partial solution. While this function is usually developed manually for a specific problem, we propose a more general Learning Beam Search (LBS) that uses a machine learning model for guidance. Learning is performed by utilizing principles of reinforcement learning: LBS generates training data on its own by performing nested BS calls on many representative randomly created problem instances. The general approach is tested on two specific problems, the longest common subsequence problem and the constrained variant thereof. Results on established sets of benchmark instances indicate that the BS with models trained via LBS is highly competitive. On many instances new so far best solutions could be obtained, making the approach a new state-of-the-art method for these problems and documenting the high potential of this general framework.

This project is partially funded by the Doctoral Program “Vienna Graduate School on Computational Optimization”, Austrian Science Foundation (FWF), grant W1260-N35.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, K., Xu, Z., Sato, I., Sugiyama, M.: Solving NP-hard problems on graphs with extended AlphaGo Zero. arXiv:1905.11623 [cs, stat] (2020)

  2. Akeba, H., Hifib, M., Mhallah, R.: A beam search algorithm for the circular packing problem. Comput. Oper. Res. 36(5), 1513–1528 (2009)

    Article  MathSciNet  Google Scholar 

  3. Blum, C., Miralles, C.: On solving the assembly line worker assignment and balancing problem via beam search. Comput. Oper. Res. 38(1), 328–339 (2011)

    Article  MathSciNet  Google Scholar 

  4. Blum, C., Blesa, M.J.: Probabilistic beam search for the longest common subsequence problem. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) SLS 2007. LNCS, vol. 4638, pp. 150–161. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74446-7_11

    Chapter  Google Scholar 

  5. Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: Advances in Neural Information Processing Systems, vol. 31, pp. 6348–6358. Curran Associates, Inc. (2017)

    Google Scholar 

  6. Djukanovic, M., Berger, C., Raidl, G.R., Blum, C.: On Solving a generalized constrained longest common subsequence problem. In: Olenev, N., Evtushenko, Y., Khachay, M., Malkova, V. (eds.) OPTIMA 2020. LNCS, vol. 12422, pp. 55–70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62867-3_5

    Chapter  Google Scholar 

  7. Djukanovic, M., Raidl, G.R., Blum, C.: A beam search for the longest common subsequence problem guided by a novel approximate expected length calculation. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds.) LOD 2019. LNCS, vol. 11943, pp. 154–167. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37599-7_14

    Chapter  Google Scholar 

  8. Ghirardi, M., Potts, C.N.: Makespan minimization for scheduling unrelated parallel machines: a recovering beam search approach. Eur. J. Oper. Res. 165(2), 457–467 (2005)

    Article  Google Scholar 

  9. Gotthilf, Z., Hermelin, D., Lewenstein, M.: Constrained LCS: hardness and approximation. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 255–262. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69068-9_24

    Chapter  Google Scholar 

  10. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, New York (1997)

    Google Scholar 

  11. He, H., Daumé, H.C., Eisner, J.M.: Learning to search in branch-and-bound algorithms. In: Ghahramani, Z., et al. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)

    Google Scholar 

  12. Huang, J., Patwary, M., Diamos, G.: Coloring big graphs with AlphaGo Zero. arXiv:1902.10162 [cs] (2019)

  13. Huang, L., et al.: LinearFold: linear-time approximate RNA folding by 5’-to-3’ dynamic programming and beam search. Bioinformatics 35(14), i295–i304 (2019)

    Article  Google Scholar 

  14. Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M., Talbi, E.G.: Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: a state-of-the-art. Eur. J. Oper. Res. (2021). https://doi.org/10.1016/j.ejor.2021.04.032

    Article  MATH  Google Scholar 

  15. Khalil, E.B., Bodic, P.L., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch in mixed integer programming. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 724–731. AAAI Press (2016)

    Google Scholar 

  16. Khalil, E.B., Dilkina, B., Nemhauser, G.L., Ahmed, S., Shao, Y.: Learning to run heuristics in tree search. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 659–666. Melbourne, Australia (2017)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA (2015)

    Google Scholar 

  18. Laterre, A., et al.: Ranked reward: enabling self-play reinforcement learning for combinatorial optimization. In: AAAI 2019 Workshop on Reinforcement Learning on Games. AAAI Press (2018)

    Google Scholar 

  19. Lowerre, B.: The harpy speech recognition system. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA (1976)

    Google Scholar 

  20. Maier, D.: The complexity of some problems on subsequences and supersequences. J. ACM 25(2), 322–336 (1978)

    Article  MathSciNet  Google Scholar 

  21. Mittal, A., Dhawan, A., Manchanda, S., Medya, S., Ranu, S., Singh, A.: Learning heuristics over large graphs via deep reinforcement learning. arXiv:1903.03332 [cs, stat] (2019)

  22. Negrinho, R., Gormley, M., Gordon, G.J.: Learning beam search policies via imitation learning. In: Bengio, S., et al. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 10652–10661. Curran Associates, Inc. (2018)

    Google Scholar 

  23. Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. Int. J. Prod. Res. 26, 297–307 (1988)

    Article  Google Scholar 

  24. Shyu, S.J., Tsai, C.Y.: Finding the longest common subsequence for multiple biological sequences by ant colony optimization. Comput. Oper. Res. 36(1), 73–91 (2009)

    Article  MathSciNet  Google Scholar 

  25. Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018)

    Article  MathSciNet  Google Scholar 

  26. Song, J., Lanka, R., Zhao, A., Bhatnagar, A., Yue, Y., Ono, M.: Learning to search via retrospective imitation. arXiv:1804.00846 [cs, stat] (2019)

  27. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)

    Google Scholar 

  28. Tsai, Y.: The constrained longest common subsequence problem. Inf. Process. Lett. 88, 173–176 (2003)

    Article  MathSciNet  Google Scholar 

  29. Weiss, D., Alberti, C., Collins, M., Petrov, S.: Structured training for neural network transition-based parsing (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huber, M., Raidl, G.R. (2022). Learning Beam Search: Utilizing Machine Learning to Guide Beam Search for Solving Combinatorial Optimization Problems. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13164. Springer, Cham. https://doi.org/10.1007/978-3-030-95470-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95470-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95469-7

  • Online ISBN: 978-3-030-95470-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics