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Abstract. TSX Asynchronous Abort (TAA) vulnerability is a class of
Side-Channel Attack (SCA) that allows an application to leak data from
internal CPU buffers through asynchronous Transactional Synchroniza-
tion Extension (TSX) aborts that are exploited by the recent Microar-
chitectural Data Sampling (MDS) attacks. Cross-core TAA attacks can
be prevented through microcode updates where CPU buffers are flushed
during Operating System (OS) context switching, but there is no so-
lution to our knowledge that exists for hyper-threaded TAA attacks in
which the attacker leaks data from sibling hardware threads through
asynchronous abort. In this work, we have proposed Diminisher, a Linux
kernel-based detection and mitigation solution for both hyper-threaded
and cross-core TAA attacks. Diminisher can be logically divided into
three phases, i.e., scheduling, detection, and mitigation. Diminisher is a
lightweight tool to prevent TAA vulnerability. The novelty lies in the
methodology that we propose enabling easy extensions to cover other
hyper-threaded attacks for which no satisfactory solutions exist yet. Di-
minisher detects and mitigates the TAA attacks around 99% of the time
at a low-performance overhead of 2.5%.

Keywords: Side-Channel Attacks · Intel’s x86 Architecture · Linux Ker-
nel · Intel TSX, · Hyper-threading · Caches

1 Introduction

Side-Channel Attacks (SCA) have gained a lot of popularity in the last decade,
and there are a variety of threatening attacks [6–9, 20–22] that are proposed in
the recent past. One of the most recent developments in the SCA domain is
the advent of transient execution attacks [20–22] in which the attacker leaks the
data by exploiting speculative and out-of-order execution. The Microarchitec-
tural Data Sampling (MDS) vulnerability [4–8] is derived from the same class
of transient execution attacks where data is leaked speculatively from internal
CPU buffers. Data leakage through SCA is also widespread in virtualized en-
vironments [37–39] where many users are bound to share the same physical
hardware in the form of Virtual Machines (VMs). SCA can be prevented at
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various levels including hardware layer, kernel layer, and the application layer.
Kernel-based/OS-based mitigation for SCA is more convenient due to additional
privileges and the kernel ability to access all hardware resources. One of the draw-
backs of hardware-based mitigation is that it requires modifications in hardware,
which makes it inconvenient to implement. Moreover, userspace based mitiga-
tion techniques suffer from lack of privileges and the lack of access to the system
resources.
Recent MDS attacks like Zombieload [7], RIDL [8] and CacheOut [6] exploit the
TAA vulnerability [2] that allows unprivileged speculative access to leak data
from internal CPU buffers by using asynchronous aborts within an Intel TSX
transaction. This vulnerability is present on all Intel CPUs that ship with Intel
TSX extension [31], which is added to aid hardware-based locking. The TAA
vulnerability, when initially proposed, allows applications to leak data from ei-
ther cross-core or hyper-threaded core scenarios. Moreover, leaking data from
a sibling hardware thread is easier to exploit due to the same physical socket
sharing between logical cores.
Intel proposed a microcode update where they used the legacy VERW instruc-
tion to overwrite the internal CPU buffers, which Linux uses during context
switching to mitigate cross-core TAA attacks [11, 12]. However, this mitigation
is not viable for hyper-threaded TAA attacks, where data can be leaked well
before context switching [12]. The only workaround that Intel has suggested for
this is to either turn off hyper-threading or disable Intel TSX extensions. How-
ever, both of these options serve a considerable performance penalty, i.e., Intel
hyper-threading provides a performance boost up to 30% [32] and similarly, the
Intel TSX provides a performance boost up to 40% [36].
In this work, we propose Diminisher, a Linux kernel-based detection and mit-
igation solution for the TAA vulnerability. To our best knowledge, there is no
prior work published on TAA mitigation. This paper represents the first step
towards full TAA mitigation. Our proposed model is divided into three phases,
i.e., scheduling, detection, and mitigation. Scheduling utilizes the Intel hyper-
threading feature to schedule Linux kernel threads on all available cores in the
system to detect the TAA vulnerability on the sibling hardware threads. De-
tection is performed by monitoring the features that cause TSX abort, which
is followed by the mitigation phase. We have proposed two different techniques
for mitigation, in the first technique, we terminate execution of the attacker’s
process. Alternatively, in the second technique, we replace the vulnerable in-
structions in the attacker’s address space. Since the kernel is the most privileged
software in the system, it is advantageous to handle runtime detection and mit-
igation in the kernel space. Diminisher is loaded as a Linux kernel module and
covers the scope of the TAA vulnerability [6–8]. In this paper, we make three
main contributions:

1. We present Diminisher, a Linux kernel-based countermeasure for hyper-
threaded and cross-core TAA vulnerability.
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2. We demonstrate the capability of Diminisher to detect and mitigate the TAA
vulnerability with high accuracy, low-performance overhead, low latency, and
high scalability.

3. We demonstrate that the Diminisher is resilient to the noise generated by
the system under various loads.

Diminisher successfully mitigates the TAA vulnerability around 99% of the time
at a performance overhead of 2.5%. We have tested our solution under various
system load scenarios. In Diminisher, the scheduling and mitigation phases are
generic, but the detection phase is specific to the TAA vulnerability. We have
designed a scalable solution to enhance it for other hyper-threaded attacks as fu-
ture work. To add support for a new side-channel attack in Diminisher, only the
detection part needs to be updated by analyzing the features according to the
nature of the attack. For instance, to add support for Flush+Reload attack [9]
in Diminisher, kernel threads can be facilitated to monitor the number of cache
flushes by reading the hardware performance counters [24–30], considering the
attacker is leaking the data from a sibling hyper-threaded core.
The rest of the paper is organized as follows: Section 2 provides the neces-
sary background to demonstrate the TAA vulnerability. Section 3 discusses the
related work. Section 4 describes the methodology for Diminisher. Section 5
demonstrates the experimental results. Section 6 elaborates the discussion and
finally, we conclude our paper in Section 7.

2 Background

2.1 Intel TSX

To support transactional memory for speeding up multithreaded applications, In-
tel introduced Transaction Synchronization Extensions (TSX) as part of the x86
instruction set for hardware transactional memory [13], which is introduced in
the Haswell Architecture. TSX allows memory transactions to be set up through
XBEGIN and XEND instructions and the code is placed between these instruc-
tions to execute transactionally. Transactions are either committed or aborted,
committed to the CPU only when all instructions within a transaction are com-
pleted successfully. When a transaction is aborted, the microarchitecture state
is rolled back to the previous point, i.e., before the transaction, and all executed
operations within the transaction are reverted. Transaction aborts can be caused
due to various reasons; most commonly, due to memory address conflicts with
the sibling hardware thread, where the other sibling hardware thread tries to
read or modify the same address used in the transaction. Some instructions and
system events like SMIs also abort the transaction [13]. Moreover, the amount
of data accessed within a transaction should not exceed L1 and last level cache,
respectively [14].
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2.2 LFB

Line Fill Buffers (LFBs) are internal CPU buffers along with load and store
buffers to keep track of L1 cache misses at the cache line level. LFB entry is
allocated for each L1 data cache miss to retrieve data from higher-level cache.
This is implemented to avoid cache line stall when multiple load and store misses
happen on the same cache line. Instead, waiting happens within the LFB entry
until data is retrieved [10, 15]. Despite fetching data from L1 data cache, there
also exists an undocumented path, where data evicted from the L1 data cache
occasionally ends up inside the Line Fill Buffers (LFBs) [6].

2.3 TAA Vulnerability

A cache line conflict during a clflush operation is one of the reasons for the TSX
transaction to abort [1]. Reading the same address that is recently flushed by the
clflush instruction causes a TSX abort. In TSX Asynchronous Aborts (TAA) [2,
6–8], the attacker first flushes the address and then attempts to read the data
from the flushed cache line, which causes the transaction to abort. However, the
processor already allocates an LFB entry for the load instruction just before the
faulting load. When the transaction aborts, the load instruction is allowed to
proceed speculatively with data from LFB. Since the load is never completed,
the load proceeds with the stale value from LFB, which might be the previous
memory address loaded by the victim, allowing the attacker to sample LFB
data [2, 3]. The processor state reverts back to a point before the transaction,
but this leaves a footprint in the cache that can be retrieved by a timing attack
such as Flush + Reload [9]. Fig. 1 depicts the TAA vulnerability where the
attacker process is continuously leaking the secret data that is accessed by the
victim process through the faulting load.

The TAA vulnerability is exploited by multiple MDS attacks [6–8]. RIDL [8]
leaks the data from LFBs and mainly focuses on hyper-threaded attacks where
the attacker leaks the data from sibling hardware threads as the victim ac-
cesses it. RIDL implemented a TAA attack to recover passwords from Linux
/etc/shadow file by passively listening to all LFB entries and matching the
data with previous observations. By this approach, RIDL was able to recover 26
characters from the shadow file after 24 hours. Zombieload [7] extends the RIDL
findings to show leakage even without faulting loads. Zombieload also demon-
strates LFB leakage from the Cascade architecture, which Intel claimed to be
the first MDS-resistant architecture. Zombieload argued that the leakage from
TAA is negligible and limited to 0.1 bytes per second. CacheOut [6] also leaks
data from LFB but provides an attacker the additional control over LFB entries
by selecting the cache line with leakage rate peeks out at 2.85 KiB/s. CacheOut
claimed itself to be the first attack to mount the TAA on Whiskey Lake that
Intel shipped with MDS mitigation at the hardware layer. In the TAA vulner-
ability [6–8], the data is leaked from the internal CPU buffers. To address the
buffer leakage issue in existing CPUs, Intel released a microcode update that
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Fig. 1. TAA Vulnerability

reused the legacy VERW instruction to clear the CPU buffers. Operating Sys-
tems (OS) like Linux, issue the VERW instruction on each context switch to
flush entries in CPU buffers [11, 12]. According to Intel, Whiskey Lake architec-
ture contains the hardware mitigation for MDS attacks, but CacheOut claims
to mount a TAA attack due to its ability to select the entry in LFB [6].
However, for hyper-threaded TAA attacks, the buffer overwrite countermea-
sure is not sufficient as hyper-threading provides the attacker an opportunity
to mount the TAA attack well before context switching. Intel suggested that
TAA can be mitigated by ensuring only trusted code is ever executed in the
sibling threads [8]. However, this strategy introduces nontrivial complexity, as it
requires scheduler modifications as well as synchronization at system call entry
points. It is also insufficient to protect sandbox applications and SGX enclaves.
As a last resort for TAA mitigation in hyper-threaded environments, Intel pro-
posed to disable either the hyper-threading or the TSX component, but both of
these options come at the cost of substantial performance overhead [32, 36].
OS-based solutions for side-channel attacks are widespread. Hardware perfor-
mance counters keep track of all system-level activities like cache hits, cache
misses, branch misprediction, etc., which is the reason that they are widely used
for SCA detection [24–30, 40, 41]. SmokeBomb [18] protects the sensitive code by
manipulating the cache lines in such a way that the attacker is not able to leak
the sensitive data. StealthMem [19] is a solution to mitigate cache-based SCA in
a cloud environment by locking the cache lines. However, none of the OS-based
solutions are proposed for the TAA vulnerability. There are some inspirations
from SOA which can be opted for mitigation in OS-based solutions [16, 17].
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Thus, the available solutions for these recent attacks (2020-2021) are not sat-
isfactory. Accordingly, in this paper, we propose Diminisher, which is the first
OS-based solution that resolves the TAA vulnerability through a novel approach.
Diminisher is a lightweight solution that efficiently works for both cross-core and
hyper-threaded attack scenarios. The novelty lies in the methodology that we
propose for hyper-threaded TAA attacks, where our solution is scalable enough
to be expanded for various other side-channel attacks in hyper-threaded envi-
ronments. Moreover, the proposed mitigation can be separately used to mitigate
most of side-channel attacks from the Linux kernel.

3 Methodology

Fig. 2. System Methodology

Our proposed methodology is illustrated in Fig. 2. The upper part of Fig. 2
shows the hyper-threaded core architecture, where the same color cores represent
sibling cores, i.e., Core-0 shares the same physical socket with Core-4, Core-1
with Core-5, and so on. The middle part of Fig. 2 represents the architecture
of Diminisher, which is logically separated into three phases, i.e., scheduling,
detection, and mitigation. Scheduling relies on Intel hyper-threading in which
the kernel threads schedule on all available cores in the system. Once scheduled,
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the next phase is detection which is performed by monitoring the TAA aborts.
After the successful detection, the final phase is the mitigation. For mitigation,
we have proposed two approaches, i.e., SIGKILL to the attacker’s process, and
the vulnerable instructions replacement. The lower part of Fig. 2 represents
the userspace layer, where the attacker mounts a TAA attack by running on the
victim’s sibling hardware thread. However, as soon as the Diminisher is scheduled
on Core-4, it detects the TAA attack mounted on Core-0 and instantly applies
the mitigation, which prevents the attacker to leak any further data.

3.1 Scheduling

Diminisher loads as a Linux kernel module and relies on Intel hyper-threading
for scheduling. Hyper-threading is a hardware innovation that allows more than
one hardware thread to run on the same physical socket to aid parallel processing
through multi-threaded applications [32]. Since hyper-threaded cores share the
same physical socket, if an attacker’s process is scheduled on one logical core, and
one of the kernel threads is scheduled on its sibling hardware thread, that kernel
thread can detect the vulnerable process by analyzing the attacker’s execution
patterns.

Fig. 3. OS-Based Scheduling

As shown on the left-hand side of Fig. 3, we have affined separate kernel
threads (T0 to T7) to all available logical cores (C0 to C7) in the system. C0
and C4 belong to the same physical socket, and so on. Hence, a kernel thread
running on C0 may analyze the application’s execution patterns running on C4.
Since we have four physical cores and eight logical cores in our test machine,
we have spawned eight kernel threads (T0 to T7) that are associated with the
logical cores (C0 to C8). We have divided the kernel threads into two groups,
i.e., thread-group-0 (TG0) and thread-group-1 (TG1). T0 to T3 are assigned to
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TG0, whereas T4 to T7 are assigned to TG1.
The scheduling algorithm is based on a Boolean flag which makes two thread
groups (TG0 and TG1) to toggle. We schedule TG0 on C0-C3 and detect the
attacker’s processes on the sibling cores (C4-C7) for a time quantum. Once
the time quantum is expired, we toggle the boolean flag which lets TG1 to
execute, and TG0 has to wait. This alternate switching is maintained as long
as the kernel module is loaded, as shown on the right-hand side of Fig. 3. The
scheduling algorithm that we have proposed monitors all cores efficiently with
the condition that the processor must support Intel hyper-threading technology.

3.2 Detection

After scheduling, the second phase is a TAA attack detection. Detection is per-
formed by monitoring the number of cache conflicts observed by a kernel thread
that is caused due to the sibling hyperthreaded core. In the kernel thread, we
continuously mount the TSX transactions to check for cache conflicts, consid-
ering that the attacker is running on its sibling hyperthreaded core to leak the
data through a TAA attack. If the kernel thread observes a large number of
cache conflicts that exceed our calculated threshold, which will be discussed in
Section-5.2, then the detection module decides that the TAA attack is mounted
on its sibling hardware thread.
We are using three features that are provided as the input to the detection
module for efficient detection. We are relying on cache conflicts for TAA-based
detection, which are monitored through TSX aborts. Let us suppose that the at-
tacker’s process is running on Core-0, the kernel thread instantly detects a TAA
attack when it is scheduled on Core-4 by taking into account the thresholds for
all three features. Following are the details of the three features:

1. Feature-1 provides the total number of cache conflicts on all the cache sets.
This feature provides an overall count of cache conflicts that always exceeds
a certain threshold whenever an attack is mounted.

2. Feature-2 provides the aborts count for a particular cache set that observes
the maximum number of cache conflicts. When a TAA attack is mounted,
few cache sets observe a considerably larger number of aborts than the rest
of the cache sets, which are exploited in this feature.

3. Feature-3 provides the aborts count for a cache set that observes minimum
cache conflicts. This feature provides a measurement for the cache set that
is least affected by a TAA attack, as some cache sets observe a lesser number
of conflicts than the rest of the cache sets when the TAA attack is mounted.

The proposed detection framework is reliable because it takes all three features
into account, and then it also takes at least 3 consecutive detection decisions
to conclude that the system is under attack, thus reducing the chances of false
positives. We have calculated separate thresholds for each of the features which
will be discussed in Section-5.2.
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Detection Implementation Algorithm 1 presents the abstract pseudocode
for the TAA detection.

Algorithm 1: TAA Attack Detection

abrt← 0, no abrt← 0, abrt per set[SETS]← 0, samples← 0
while samples ≤ 50000 do

for set← 0 to 64 by 1 do
Begin TSX Transaction();
Access All Ways(set);
End TSX Transaction();
if ABORT REASON CACHE CONFLICT then

abrt← abrt + 1;
abrt per set[set]← abrt per set[set] + 1;

else if NO ABORT then
no abrt← no abrt + 1;

samples← samples + 1;
Sleep Detection();

if ((abrt / noabrt) ∗ 50000 ≥F1 THRESHOLD &&
Get Max(abrt per set) ≥F2 THRESHOLD &&
Get Min(abrt per set) ≥F3 THRESHOLD) then

/* Attack Detected */
return 1;

/* No-Attack Detected */
return 0;

We are collecting 50,000 samples for each detection, which is a hypothetical
limit that is decided after performing the bulk of experimentation. If we go
below this limit, we must compromise on accuracy. Similarly, going above this
limit increases the latency. Hence, 50 thousand samples are suitable for the TAA
detection. For every detection sample, we check for cache conflicts in each of the
cache sets. For this, we start the TSX Transaction, access all ways of a particular
cache set, and end the transaction. If we get a TSX abort due to cache conflict,
the abort count and per set abort count are incremented, otherwise we increment
no abort count. After each sample, we suspend the kernel thread to avoid CPU
starvation. After collecting all samples, the detection framework makes a valid
detection decision by taking into account the measurements of all three features
as a mandatory requirement.

3.3 Mitigation

Mitigation is the final phase of our proposed solution. We have proposed two
approaches for mitigation that are specific to the Linux kernel and rely on the
Linux process descriptor. Our proposed mitigations are not dependent on any
hardware resource or a TAA vulnerability, thus, can be used as an independent
solution to mitigate most of the side-channel attacks from the Linux kernel.
Following are details of the proposed mitigations:
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3.4 Mitigation-1 (SIGKILL to the attacker’s process)

Linux kernel has control over all userspace processes running in the system in-
cluding their execution state. After the successful detection, we post a SIGKILL
signal from the kernel thread to terminate the execution of the attacker’s pro-
cess.
Algorithm 2 shows the pseudocode for mitigation-1. After getting the task list
of the attacker’s processes, we lock the task structure and send the SIGKILL
signal to the userspace attacker’s process. As soon as the attacker application
gets the SIGKILL signal, it has no choice but to terminate its execution. Finally,
we unlock the task structure and conclude the mitigation. The termination of
vulnerable applications avoids any further leakage.

Algorithm 2: Mitigation-1 (SIGKILL to Vulnerable Process)

if Is TAA Detected() then
task struct← Get Task Struct();
Task Lock(task struct);
ret← Send SIG KILL Signal(task struct);
Task Unlock(task struct);
if ret == SUCCESS then

/* Killed vulnerable process */
return 1;

/* Unable to kill vulnerable process */
return 0;

3.5 Mitigation-2 (Instruction Replacement)

In Linux, each of the instructions that a userspace process executes reside in the
code section of the process descriptor. In this mitigation technique, we parse the
code section of the attacker’s process and check for the vulnerable instructions
that cause the attack. As discussed in Section-2.1, XBEGIN and XEND instruc-
tions are used to mount the transaction in the case of a TAA attack, i.e., both
these instructions are vulnerable in our scenario. Thus, we replace XBEGIN and
XEND instructions with the NOP instructions. A NOP instruction in Intel ISA
is a harmless instruction that does not update the program flow, which makes
it the best choice for the replacement.
Algorithm 3 presents the pseudocode for mitigation-2. We first iterate through
the process list to get the task structure of the vulnerable process for the detected
core. Afterwards, we acquire the task lock to avoid any race condition and get
the userspace pages for the text section of the detected process. Subsequently,
we map the user pages to the kernel space, followed by the examination of vul-
nerable instructions by parsing the code section. For the TAA case, we look for
XBEGIN and XEND instructions. We replace all vulnerable instructions with
NOP instructions to mitigate the attack. Finally, we unmap the kernel mapping
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and release the task lock and return.

Algorithm 3: Mitigation-2 (Vulnerable Instruction Replacement)

if Is TAA Detected() then
task struct← Get Task Struct();
Task Lock(task struct);
user pages← Read Text Section(task struct);
text ptr ←Map Kernel Space(user pages);
for i← 0 to code size by 1 do

if text ptr[i] == VULNERABLE INSTRUCTION then
Replace To NOP(text ptr[i]);
ret← SUCCESS;

Unmap And Release Pages(user pages);
Task Unlock(task struct);
if ret == SUCCESS then

/* Replaced Vulnerable Instruction */
return 1;

/* Unable to find Vulnerable Instruction */
return 0;

The overall mitigation framework deals with two key challenges; firstly, the
possibility of innocent processes being killed due to false positives, and secondly,
the possibility that the attacker figures out the presence of mitigation. The first
issue is dealt with by a high accuracy detection framework that yields minimum
false positives, while for the second challenge, we further improve the mitigation
process using the instruction replacement feature as discussed in this section.

4 Experimental Results

4.1 System Model

We have tested the proposed solution on Intel’s Core i7-6700 CPU running on
Linux Ubuntu 18.04.5 LTS with kernel version 5.4.0-74 at 3.40-GHz. Our threat
model is an open-source TAA attack code that leaks the data from sibling hard-
ware threads. The attack is mounted with all the latest mitigation in place for
both BIOS and the Linux kernel. The results are obtained by running the TAA
attack 25,000 times on different hardware cores and relying on the Diminisher
to detect and mitigate the TAA attack.
We observed some variation in the readings for the loaded system compared
to the idle system. We call the system loaded when there are 100+ userspace
processes running, although we could not reproduce the loaded system scenario
with standard stress tester tools. For the loaded system, we executed 40+ Google
Chrome tabs, each running YouTube videos, video players, Skype call with video
and screen sharing, and various other applications. For the idle system, no ad-
ditional userspace applications were running except the Diminisher module, at-
tacker process, and the victim process.
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4.2 Detection Threshold

As a first step, we calculated the detection thresholds for each of the features.
Fig. 4, 5 and 6 show detection thresholds for all three features. The right-hand
side of each graph shows the stable readings for the idle system scenario. We
hardly get any abort when no TAA attack is mounted for the idle system scenario
and in the case of the TAA attack, we mostly get constant readings. In the case
of a TAA attack mounted on an idle system, Fig. 4 shows a constant reading
line at around 150 value, Fig. 5 shows some variation around 700 value, and the
Fig. 6 shows some variations at around 280 value.
In the left-hand graph of Fig. 4, the variations in the readings can be seen for
the loaded system. There are quite a few aborts in the case of no TAA attack
scenario as cache conflicts are higher when a lot of applications are running in
parallel, which causes transactions to abort. If we specifically talk about Fig. 4,
after analyzing both loaded and idle graphs, we chose a lower bound of 90 from
the loaded scenario, when no attack is mounted, and chose the upper bound of
150 from the idle scenario, where the TAA attack is mounted. Between the lower
bound and upper bound, it is safe to detect the attack, so we choose a mid-value
of 120 for the feature-1 detection threshold. Similarly, for feature-2 and feature-
3, we have calculated the detection thresholds as 500 and 200, respectively, by
analyzing Fig. 5 and Fig. 6. Since the behaviors of attack and no attack are quite
discernible, a simple threshold determination is very helpful to detect the attack
even in load conditions. We have calculated the offline thresholds for all system
loads and used the calculated thresholds for the run-time detection.

Fig. 4. Feature-1 Threshold Detection



Diminisher: A Linux Kernel based Countermeasure for TAA Vulnerability 13

Fig. 5. Feature-2 Threshold Detection

Fig. 6. Feature-3 Threshold Detection
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4.3 Results

We have evaluated the proposed solution for both detection and mitigation as
shown in table 1. The readings are taken for the loaded system and idle sys-
tem separately. Diminisher takes three consecutive detections before reporting
an attack and extensive experimentation elaborated that on average, 3-times
detection results are sufficient to report the attack with reduced inaccuracies in
the results. The performance metrics as depicted in Table 1, which shows that
the detection proved to be fast and efficient in terms of latency, FPs, and FNs.

Table 1. Experimental Results

System
State

Type
Accuracy

(%)
FP
(%)

FN
(%)

Overhead
(%)

Latency
(us)

IDLE Detection 97.31 2.64 0.03 2.5 5264232
Mitigation-2 99.94 0.03 0 306
Mitigation-1 99.85 0.03 0.18 86

LOADED Detection 98.26 1.73 0.03 2.5 6916110
Mitigation-2 99.91 0.03 0.06 452
Mitigation-1 99.82 0.03 0.21 106

Accuracy Accuracy is the most convenient way to measure the effectiveness
of any runtime detection tool. We have used percentages to demonstrate the
accuracy results. We have used the same number of samples for loaded-system,
idle-system, attack-mounted, and no attack-mounted scenarios. We have calcu-
lated the accuracy in terms of False Positives (FP) and False Negatives (FN).
FP is the condition that shows the presence of an attack when there is no attack
mounted. On the other hand, FN shows no attack even though when there is
an attack mounted. FNs are more critical than FPs as in the case of FNs, the
attacker can continue to mount the attack without being detected or mitigated.
Table 1 shows the experimental results for both detection and mitigation. We
are getting an overall accuracy of around 99% with very few false positives and
false negatives for both detection and mitigation scenarios. To reduce the false
positives for detection, the detector module detects three consecutive times in a
row before making a decision.

Latency Latency is also an essential parameter for the detection and mitiga-
tion of any Side-Channel Attack. Latency should be good enough to detect and
mitigate the attack before its completion. Latency is also directly related to the
performance overhead, i.e., a faster solution would generally cause some per-
formance overhead. This is because the CPU is utilized the most for the faster
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solutions, which depletes the CPU resources for general-purpose tasks.
The TAA attack is slower by nature as it takes around 24 hours to leak the root
password for the RIDL attack as discussed in Section 2.3. Therefore, latency is
not a very big concern for us. Detection takes around 5 seconds in idle condi-
tions and around 7 seconds when the system is loaded. Moreover, our proposed
mitigation techniques are significantly faster, i.e., mitigation-2 takes around 500
uS on average as we have to parse the code section, whereas mitigation-1 is even
quicker as we just have to post a SIGKILL signal to the vulnerable process.

Overhead Another important design parameter for scheduling and mitigation
tools is the performance overhead. The runtime detection tools should keep the
overhead minimum, i.e., there should be no significant effect on general-purpose
applications running in the system. Furthermore, the adaptability and scalability
of the scheduling and mitigation solution are highly dependent on the perfor-
mance overhead. As discussed earlier, going more fine-grained would result in a
faster response but that comes at the cost of higher performance overhead.
We measure the performance overhead based on the CPU utilization after load-
ing the kernel module. The performance overhead of Diminisher is very low, i.e.,
2.5% on average. The low system overhead is because we do not let kernel threads
to run continuously for all the samples, instead we unschedule the threads after
we do a single round of detection on the whole L1 cache. We also did not find
performance degradation for any user-space application while Diminisher was
loaded.

5 Discussion

Experimental results show that the Diminisher efficiently detects and mitigates
the TAA vulnerability with 99% accuracy at 2.5% of performance overhead.
Moreover, 2.5% overhead is acceptable as it does not cause any performance
degradation in the overall system and Diminisher has a very low count of false
positives and false negatives. Threshold-based detection proves to be useful to
counter the noise under system load as we perform offline analysis for both the
loaded system and the idle system cases to select the appropriate threshold.
Since we already know the thresholds for both the load/noise case and idle case,
detecting in between the two limits helps us to mitigate the noise. Diminisher is
equally effective for both cross-core and hyperthreaded core scenarios.
As discussed in Section 3, there is no prior mitigation proposed for the TAA vul-
nerability except for the Intel microcode update, however, the microcode update
is not effective for hyper-threaded TAA attacks. There are some proposed miti-
gations for SCAs, e.g., Jonathan Behrens [33] proposed a mitigation for transient
attacks and proposed a novel kernel design that is safe for the process to expose.
SmokeBomb [18] and StealthMem [19] proposed the mitigations for cache-based
Side Channel attacks, but no mitigation is proposed for hyper-threaded TAA
attacks or MDS attacks. Hyper-threaded attacks are hard to mitigate because
of the sibling core architecture, due to which there is no satisfactory solution for



16 Authors Suppressed Due to Excessive Length

such attacks until now. Therefore, it is usually suggested to disable the hyper-
threading feature to promote secure computing [34].
Diminisher successfully accomplishes all three objectives that were discussed in
Section-2 with the following novelties:

– Diminisher resolves the TAA vulnerability with very promising results of
over 99% accuracy at 2.5% latency.

– Diminisher can efficiently mitigate hyper-threaded TAA attacks and it is
scalable enough to be expanded for other hyper-threaded attacks.

– Proposed mitigation techniques can be used independently to mitigate most
of the SCAs from the Linux kernel.

– The mitigation-2 technique helps to reduce DOS attacks as the attacker is
unable to figure out the presence of the mitigation framework in the case of
this technique.

– Since kernel-based solutions are more autonomous than userspace due to
higher privileges, Diminisher effectively detects and mitigates the userspace
applications from kernel space.

– We provide simplicity, i.e., Diminisher is simply loaded as a kernel module
and does not require any change in kernel code.

Although the proposed solution efficiently resolves the TAA vulnerability, there
are some possible improvements that we would like to discuss. Firstly, the TAA
detection phase is slower and takes between three and five seconds on average
due to the collection of a large number of samples and the detection functionality,
which utilizes an iteration of three consecutive detections. Secondly, the CPU
buffer monitoring can be added to make TAA detection more robust, which can
also help to detect other MDS attacks. Lastly, Diminisher is limited to kernel
space only, i.e., it cannot mitigate cross VM SCAs, which can be opted as an
extension to this work.
As a future work, we are planning to extend Diminisher to cover other side-
channel attacks. The proposed module is efficient in terms of scalability, i.e.,
more Side-Channel Attacks like Flush+Reload, Prime+Probe, etc., can be added
to our module, and for that, only the detection phase needs to be updated
according to the type of attack. We were able to successfully run recent transient
execution attacks including Spectre [20], Meltdown [21], and Foreshadow [22] in
our environment, and Diminisher can be expanded for such attacks as a future
work. Diminisher can also be expanded to the hypervisor layer to mitigate cross
VM SCAs. There can also be some work done to make the current solution more
efficient, i.e., detection latency improvement, feature addition, and performance
improvement.

6 Conclusion

In this paper, we have proposed a solution for the TAA vulnerability that works
very efficiently at a low-performance overhead of around 2.5% and the accuracy
of over 99%. Furthermore, the experimental results depict that there are very few
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false positives and false negatives in the case of both detection and mitigation.
Generally, hyper-threaded attacks are hard to mitigate since multiple logical
cores share the same physical socket, and an attacker using one hyper-threaded
core can leak data from its sibling hardware thread without being noticed by the
OS. With the proposed solution, we can efficiently mitigate hyper-threaded and
cross-core TAA attacks, and the solution is scalable enough to mitigate other
attacks with some modification in the detection phase. The proposed mitigations
can also be used as standalone mitigation techniques for future research.
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