

TinyML Platforms Benchmarking

Anas Osman, Usman Abid, Luca Gemma, Matteo Perotto, and Davide Brunelli

Dept. of Industrial Engineering, University of Trento, I-38123 Povo, Italy
{name.surname}@unitn.it

Abstract. Recent advances in state-of-the-art ultra-low power embed-
ded devices for machine learning (ML) have permitted a new class of
products whose key features enable ML capabilities on microcontrollers
with less than 1 mW power consumption (TinyML). TinyML provides a
unique solution by aggregating and analyzing data at the edge on low-
power embedded devices. However, we have only recently been able to
run ML on microcontrollers, and the field is still in its infancy, which
means that hardware, software, and research are changing extremely
rapidly. Consequently, many TinyML frameworks have been developed
for different platforms to facilitate the deployment of ML models and
standardize the process. Therefore, in this paper, we focus on bench-
marking two popular frameworks: Tensorflow Lite Micro (TFLM) on
the Arduino Nano BLE and CUBE AI on the STM32-NucleoF401RE to
provide a standardized framework selection criterion for specific applica-
tions.

Keywords: TinyML, microcontrollers, Tensorflow Lite Micro, CUBE
AI, IoT.

1 Introduction

Machine Learning (ML) is at the forefront of innovation in technical and scien-
tific applications, creating new insights on new and existing applications. Typi-
cally, running and analyzing large amounts of data on a complex ML algorithm
requires a significant amount of resources and capabilities, which have been ex-
isting as barriers to the mainstreaming of ML in industry. However, with the
improvement of powerful and energy-efficient embedded devices, ML inference is
possible at the edge, and enables data analysis on the device as an alternative to
the data exchange between servers and devices for decision making [1]. Initially,
the field of edge ML focused on mobile inference, which ultimately led to several
improvements for machine learning models such as quantization, sparsity, and
pruning [2]. Recently, as IoT systems became mainstream, industry interest in
extending Edge ML to microcontrollers grew to create a whole new potential
for Edge ML as TinyML. The main goal of TinyML is to deploy ML models
on ultra-low power devices to perform inference and achieve robust performance
while breaking the power consumption barrier that has previously hindered such
systems. TinyML eliminates the need for cloud server connectivity and improves
responsiveness and privacy measures while running using a coin size battery.

Furthermore, the field is emerging and still in its infancy, with potential
for innovative and state of the art applications to unlock its full potential [3].
Nonetheless, TinyML is already being implemented in many applications to pro-
vide smarter sensor technology that enables advanced monitoring to improve
productivity and safety in many sectors. For example, predictive maintenance
and monitoring of wind turbines is normally a cumbersome task as in most cases
these turbines are located in remote areas and failures result in a long downtime.
However, when predictive maintenance is implemented, downtime is significantly
reduced, resulting in noticeable cost savings and an overall increase in quality
and reliability. In [4], an Australian start-up company has developed a novel IoT
device that can autonomously and simultaneously monitor the turbine during
operation. The device is able to detect and report potential problems before
they occur in the turbine’s system. TinyML is also widely used in smart agri-
culture,as it is done for example by the Plant Village team, which developed an
app that helps farms detect and treat potential diseases that affect crops [5].
In the health field, Solar Scare Mosquito focused on developing an IoT robotic
platform that uses low-power, low-speed communication protocols to detect and
warn of a potential mass breeding of mosquitoes [6].

The contribution of this paper is driven by the need to provide a standard
framework and platform for TinyML use cases to build a foundation that drives
the development of ML on edge devices. In particular, a comparison is made
between two popular frameworks: Tensorflow Lite Micro (tested on an Arduino
Nano BLE) and CUBE AI (tested on an STM32 NucleoF401RE) based on two
TinyML applications.

This paper is structured as follows: Section II presents a summary overview of
TinyML frameworks. In Section III, we provide a complete breakdown of bench-
marking setting and tools implemented. Finally, the benchmarking is applied
by comparing the two frameworks in Section IV and conclusions are drawn in
Section V.

2 TinyML Frameworks

Due to the unlimited potential and great interest in TinyML to revolutionize
various industries, many libraries and tools are constantly being developed and
deployed to facilitate the implementation of ML algorithms on constrained plat-
forms. TinyML frameworks can be divided into three different categories.

The most trivial approach refers to converting existing trained models to
overcome MCU limitations. Thus, these tools typically use inference tools de-
rived from well-known ML libraries such as TensorFlow [11], Scikit-Learn [12]
or PyTorch [13], and port their code to run on devices with scarce resources.

The second category is based on the implementation of ML libraries specif-
ically designed for MCUs to provide them with offline training and inference
capabilities. It allows models to generate from data retrieved on the go from
their device, which can immensely improve the model’s accuracy and enables
the implementation of unsupervised learning algorithms.

Finally, the last technique relies on the possibility of integrating a fully ded-
icated co-processor to support the main computing unit in ML-specific tasks.
This strategy allows for an increase in computing power, although it is the least
common approach because it significantly increases the price and complexity
of processing platforms. Big tech companies are helping expand the TinyML
ecosystem by contributing to open source development libraries [14]. Google has
launched TensorFlow Lite for microcontrollers [15], which includes a set of tools
to optimize TensorFlow models to make them run on mobile and embedded
devices. The key to reducing the size and complexity of the framework is that
it keeps only important features on the platform and eliminates less important
ones. For instance, it fails to perform a full training of a model, but capable of
making inferences on models that have already been trained on a cloud com-
puting platform. This framework is based on two elements: the model converter,
which converts TensorFlow models into optimized binary code that can be used
on low-power MCUs, and the model interpreter, which executes the code gener-
ated by the converter.

The optimized models, which support a range of algorithms from the NN
class, can run on several platforms, including smartphones, embedded Linux sys-
tems, and MCUs. In the case of MCUs, the optimized code is written in C++
and requires 32-bit processors. It has been successfully deployed on devices, such
as the Arduino Nano, and other architectures, such as the ESP32 with ARM
Cortex-M series processors. Given the prominence of Arduino, a special library
for this platform is available through their IDE. STMicroelectronics is among
the well-known electronics manufacturer that has developed specific libraries for
its devices. Specifically, the STM32Cube.AI Toolkit [16] allows the integration of
pre-trained NNs into STM32 ARM CortexM-based microcontrollers. It generates
from the NN models provided by Tensorflow and Keras [17] STM32-compatible
C code or from models in the standard ONNX format. As an interesting fea-
ture, STM32Cube.AI allows the execution of large NNs by storing weights and
activation buffers in external flash memory or RAM. In addition, Microsoft has
also contributed to the TinyML scene with the release of its open-source library
Embedded Learning (ELL) [18].

This framework enables the design and deployment of pre-trained ML models
on constrained platforms, such as ARM Cortex-A and Cortex-M based archi-
tectures like Arduino, Raspberry Pi and micro:bit. ELL acts as an optimizing
cross-compiler that runs on a regular desktop computer and outputs C++ code
that can be executed on the targeted single-board computer. The API of ELL
can be used for both C++ and Python and uses pre-trained NN models provided
by the Microsoft Cognition Toolkit (CNTK). The toolkit ARM-NN was intro-
duced by ARM for integrating ML into their devices [19]. In addition to open
source offerings, some institutions and companies have also launched privately
licensed products. The Fraunhofer Institute for Microelectronic Circuits and Sys-
tems (IMS) has developed Artificial Intelligence Library for Embedded Systems
(AIfES) running on even the smallest microcontrollers [20]. However, despite the
variety of frameworks presented, they focus on only one type of ML algorithm,

namely NN. Researchers and industry leaders have recently considered other
ML techniques, such as decision trees, Naive Bayes classifier, k-Nearest Neigh-
bors (k-NN), and others. For example, MicroML [21] is a novel technique that
allows porting Support Vector Machine (SVM) and Relevance Vector Machine
(RVM) algorithms to C code that can be used on a variety of MCUs, e.g. Ar-
duino, ESP8266, ESP32 and others with C support. It supports the widely used
scikit-learn toolkit and converts models generated by this library for use on 8-bit
microcontrollers with 2 KB of RAM. A similar tool is m2cgen [22], which can
transform the data from models formed with scikit-learn into native code, e.g.
Python, C, Java. In this case, both the number of compatible algorithms and
target programming languages is even larger than in m2cgen. Table I summarizes
the main features of the frameworks considered in this section.

Table 1. Framework Comparison

Framework Algorithms Compatible
Platforms

Output
Languages

External
Libraries

Availability

TFLM Neural networks ARM Cortex-M C++ 11 Tensor Flow Open Source

STM Cube AI

Neural networks

STM32

C

Keras
TensorFlow
Lite Caffe
ConvNetJs

Lasagne

STM32 Devices

only

ELL

Neural networks ARM Cortex-M

ARM Cortex-A

C/C++

CNTK
ARMDarknet

ONNX

Open Source

ARM-NN AI

Neural networks

ARM Cortex-A
ARM Mali

ARM Ethos

C

TensorFlow
Caffe

ONNX

Open Source

AIfES

Neural networks

Raspberry Pi
Windows (DLL)
ARM Cortex-M4

C TensorFlow

Keras

Private License

MicroMLGen SVM
RVM

Arduino ESP32
Arduino ESP8266 C Scikit-learn Private License

m2cgen

Linear regression
Logistic regression
Neural networks

SVM
Decision tree

Multiple constrained

nonconstrained
platforms

Python
C

C #
Java

Scikit-learn

Private License

3 Benchmarking Setting

Machine learning benchmarks fall somewhere on the continuous sequence be-
tween low-level and application-level evaluation. Low-level benchmarks attempt
target kernels at the core of many ML performance analysis, such as matrix mul-
tiplication, but hide critical elements such as memory bandwidth or model-level

optimizations. Conversely, application-level benchmarks can hide the bench-
mark’s goal behind other stages of the application pipeline. Our TinyML bench-
mark targets model inference and memory occupation. This section outlines the
benchmarking setting for our two use cases. Each benchmark targets a specific
use case with a different dataset, modelled on two separate targets. To perform
this comparison with due diligence, we ensured that all parameters, device spec-
ifications, data used to train the model and model architecture were identical
for both platforms.

3.1 Gesture Recognition Use Case

Motivation Gestures are expressive, meaningful body movements that involve
physical movements of the fingers, hands, arms, or body to communicate and
interact with the environment. New technology trends are driving the need to
integrate such applications as part of smart systems to establish gesture recog-
nition applications on tiny embedded devices.

Dataset As for the dataset, there are a number of open-source datasets rele-
vant to TinyML use cases. However, we build a distinct dataset similar to the
technique used by authors in [23], using the inertial measurement unit (IMU) via
the LSM9DS1 sensor on the Arduino Nano 33 BLE. Figure 1 shows the spectral
features extracted from the dataset of characters O, H, G, and C for acceler-
ation data in the X, Y, and Z planes. From Figure 1 we can also identify the
significant difference between the acquired data, which confirms the robustness
of the dataset [23]. For each character of the 26 alphabet letters, 100 samples
were acquired with a sampling frequency of 100 Hz, and each sample had an
acquisition duration of 4000 ms, as shown in Figure 2.

Network Architecture For our application, we opted for a Convolutional
Neural Network (CNN) to train our model compatible with TinyML deployment,
as illustrated in Figure 3. The model is trained using Keras and Tensorflow Lite
(TFL) libraries, which are compatible with both devices. In the case of the
Arduino Nano, the model is converted to TFL using the Python API of the TFL
converter. Then, our Keras model is written to disk in the form of a FlatBuffer,
a special file format designed to save space [24-25].

Model Optimization There are two methods to choose from when optimizing
a model: quantization and pruning. For the purpose of our application, we chose
quantization. Quantization is still an active research topic, and there are many
different options [26-27]. With dynamic quantization from float32 to int8, we
were able to achieve promising results, as the model size was significantly reduced
compared to the original version. In doing so, we managed to maintain reasonable
accuracy when testing from 346KB to 275KB for TFLM and to 192KB for CUBE
AI, while maintaining 85% accuracy.

Fig. 1. Spectral Features of the dataset.

Fig. 2. N Character data representation.

Fig. 3. Network Architecture

3.2 Wake Word Spotting Use Case

Motivation Wake Word Spotting (WWS), also known as Key Word Spotting,
is a highlighted application and early use of TinyML, because voice command is
an important aspect of human-machine interaction. The WWS application aims
to run fully trained ML models on low-power devices to continuously monitor
the environment for the wake-up word that triggers a particular functionality or
service.

Dataset Dataset acquired from an open-source voice commands dataset fea-
turing 500 speech samples with a duration of 1000 ms for 10 different wake-up
words (UP, DOWN, YES, NO, GO, STOP, LEFT, RIGHT, ON, OFF) [28].

Network Architecture Similar to the Gesture Recognition application, we
select a Convolutional Neural Network (CNN) to train our model compatible
for TinyML deployment. The model is trained using Keras and Tensorflow Lite
(TFL) libraries compatible with both devices.

Model Optimization Using the dynamic quantization feature from float32 to
int8, we were able to achieve promising results as the model size was significantly
decreased in comparison to the unoptimized size. The post training model was
reduced from 650KB to 288KB for TLM and 247KB for X-Cube-AI.

3.3 Inference

After the model is converted, it is used on the two selected microcontrollers. For
the Arduino platform, the C++ library for microcontrollers compatible with
TFL is used to load the model and make predictions. The model is integrated
as part of our applications shown in Figure 4 for the Gesture Recognition ap-
plication to infer input data and display the output through the serial port. For

the STM32 platform, the X-Cube AI supports both TFL and Keras model for-
mats, allowing great flexibility in deploying the model on the microcontroller.
We also generate C code using the platform-tools to represent and allocate all
the resources of the model. Then, inference is performed based on given test data
representing the characters and predictions are made based on the recognised
character with the highest probability, which then indicates the accuracy of the
model.

Fig. 4. Application Structure

4 TFLite-Micro vs X-CUBE-AI

For the comparison between the two frameworks, we chose two different micro-
controllers that support the frameworks. The Arduino Nano 33 BLE and the
STM NUCLEO F401RE were selected, as indicated in Table II. After success-
fully running and releasing our models on both platforms using the respective
supported frameworks, as can be seen in Table III, the flash memory required by
the application deployed on the X-CUBE-AI framework is significantly smaller
than the same application deployed on the Arduino platform using the TFLM

framework. Moreover, the inference time on the X-CUBE-AI framework is also
significantly less in the first application but almost the same as TFLM for the
second application.

Table 2. Comparison between the Two Devices

Device MCU CPU Clock Memory Framework
Arduino
Nano BLE 33 nRF52840 32-bit ARM

Cortex M4 64MHz 1MB TFLM

STM32
NUCLEO-F401RE LQFP64 32-bit ARM

Cortex M4 84MHz 512KB X-CUBE-AI

Table 3. Comparison between the Two Frameworks for The Two Use Cases

Gesture Recognition Application
Framework Memory DSP Inference Time

TFLM 275KB 28ms 30ms
X-CUBE-AI 192KB 5ms 9ms

Wake Word Spotting Application
Framework Memory DSP Inference Time

TFLM 288KB 187ms 193ms
X-CUBE-AI 247KB 162ms 211ms

5 Conclusion

Overall, the CUBE AI has a fairly straightforward system with a powerful in-
terface that provides many tools for optimizing and handling the model and
even generating code. On the other hand, the TFLM is more complex and re-
quires many compromises to use the model successfully. Nevertheless, the TFLM
outperforms the CUBE AI platform in terms of wide availability, because it is
open-source and supports many devices. After running our two trained models
on the two devices, the results show that CUBE AI performs better than the
Tensorflow Lite Micro models, from the size differences to the more robust per-
formance. However, it has the disadvantage of being supported only for STM
devices and being software-oriented.

Finally, through the two discussed and compared applications in this paper,
we conclude that the CUBE AI framework is better suited for memory-limited
and performance-intensive TinyML applications. Future work would include fur-
ther implementation of the two frameworks on more platforms through different
performance demanding applications.

References

1. Merenda, Massimo, Carlo Porcaro, and Demetrio Iero. ”Edge Machine Learning
for AI-enabled IoT devices: a review.” Sensors 20.9 (2020): 2533.

2. Han, Song, Huizi Mao, and William J. Dally. ”Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.”
arXiv preprint arXiv:1510.00149 (2015).

3. Banbury, Colby R., et al. ”Benchmarking TinyML systems: Challenges and direc-
tion.” arXiv preprint arXiv:2003.04821 (2020).

4. [Online]. Available: ”Iot Device Detects Wind Turbine Faults In The Field By
Tomlombardo”. Engineering.Com, 2021, https://www.engineering.com/story/iot-
device-detects-wind-turbine-faults-in-the-field.

5. [Online].Available:https://grow.google/intl/europe/story/transforming-
farmers%E2%80%99-lives-with-just-a-mobile-phone.

6. [Online]. Available: ”Solar Scare Mosquito 2.0”. Hackaday.Io, 2021,
https://hackaday.io/project/174575-solar-scare-mosquito-20.

7. Mitra, Sushmita, and Tinku Acharya. ”Gesture recognition: A survey.” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-
views) 37.3 (2007): 311-324.

8. Rishikanth, C., et al. ”Low-cost intelligent gesture recognition engine for audio-
vocally impaired individuals.” IEEE Global Humanitarian Technology Conference
(GHTC 2014). IEEE, 2014.

9. Scherer, Moritz, et al. ”TinyRadarNN: Combining spatial and temporal convolu-
tional neural networks for embedded gesture recognition with short range radars.”
IEEE Internet of Things Journal (2021).

10. Coffen, Brian, and Md Shaad Mahmud. ”TinyDL: Edge Computing and Deep
Learning Based Real-time Hand Gesture Recognition Using Wearable Sensor.”
2020 IEEE International Conference on E-health Networking, Application & Ser-
vices (HEALTHCOM). IEEE, 2021.

11. Abadi, Mart´ın, et al. ”Tensorflow: A system for large-scale machine learning.” 12th
USENIX symposium on operating systems design and implementation (OSDI 16).
2016.

12. Pedregosa, Fabian, et al. ”Scikit-learn: Machine learning in Python.” the Journal
of machine Learning research 12 (2011): 2825-2830.

13. Paszke, Adam, et al. ”Pytorch: An imperative style, high-performance deep learn-
ing library.” arXiv preprint arXiv:1912.01703 (2019).

14. Sanchez-Iborra, Ramon, and Antonio F. Skarmeta. ”TinyML-Enabled Frugal
Smart Objects: Challenges and Opportunities.” IEEE Circuits and Systems Mag-
azine 20.3 (2020): 4-18.

15. David, Robert, et al. ”Tensorflow lite micro: Embedded machine learning on tinyml
systems.” arXiv preprint arXiv:2010.08678 (2020).

16. STM32Cube.AI 2020, [Online]. Available:https://www.st.com/en/embedded-
software/x-cube-ai.html

17. Gulli, Antonio, and Sujit Pal. Deep learning with Keras. Packt Publishing Ltd,
2017.

18. Embedded Learning Library. 2020. [Online]. Available: ”The Embedded Learn-
ing Library - Embedded Learning Library (ELL)”. Microsoft.Github.Io, 2021,
https://microsoft.github.io/ELL/.

19. ARM-NN. 2020. [Online]. Available: ”ARM-Software/Armnn”. Github, 2021,
https://github.com/ARM-software/armnn.

20. AIfES. 2020. [Online]. Available: ”Artificial Intelligence For Em-
bedded Systems - Aifes - Fraunhofer IMS”. Fraunhofer-Institut
F ü r Mikroelektronische Schaltungen Und Systeme IMS, 2021,
https://www.ims.fraunhofer.de/de/Geschaeftsfelder/Electronic-Assistance-
Systems/Technologien/Artificial-Intelligence-for-Embedded-Systems-AIfES.html.

21. MicroML. 2020. [Online]. Available: ”Eloquentarduino/Micromlgen”. Github,
2021, https://github.com/eloquentarduino/micromlgen.

22. m2cgen. 2020. [Online]. Available: ”Bayeswitnesses/M2cgen”. Github, 2021,
https://github.com/BayesWitnesses/m2cgen.

23. Perotto, Matteo, Luca Gemma, and Davide Brunelli. ”Non-Invasive Air-Writing
Using Deep Neural Network.” 2021 IEEE International Workshop on Metrology
for Industry 4.0 & IoT (MetroInd 4. 0 & IoT). IEEE, 2021.

24. Murshed, M. G., et al. ”Machine learning at the network edge: A survey.” arXiv
preprint arXiv:1908.00080 (2019).

25. Soro, Stanislava. ”TinyML for Ubiquitous Edge AI.” arXiv preprint
arXiv:2102.01255 (2021).

26. Heim, Lennart, et al. ”Measuring what Really Matters: Optimizing Neural Net-
works for TinyML.” arXiv preprint arXiv:2104.10645 (2021).

27. Krishnamoorthi, Raghuraman. ”Quantizing deep convolutional networks for effi-
cient inference: A whitepaper.” arXiv preprint arXiv:1806.08342 (2018).

28. Warden, Pete. ”Speech commands: A dataset for limited-vocabulary speech recog-
nition.” arXiv preprint arXiv:1804.03209 (2018).

