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Abstract. Recent advances in state-of-the-art ultra-low power embed- 
ded devices for machine learning (ML) have permitted a new class of 
products whose key features enable ML capabilities on microcontrollers 
with less than 1 mW power consumption (TinyML). TinyML provides a 
unique solution by aggregating and analyzing data at the edge on low- 
power embedded devices. However, we have only recently been able to 
run ML on microcontrollers, and the field is still in its infancy, which 
means that hardware, software, and research are changing extremely 
rapidly. Consequently, many TinyML frameworks have been developed 
for different platforms to facilitate the deployment of ML models and 
standardize the process. Therefore, in this paper, we focus on bench- 
marking two popular frameworks: Tensorflow Lite Micro (TFLM) on 
the Arduino Nano BLE and CUBE AI on the STM32-NucleoF401RE to 
provide a standardized framework selection criterion for specific applica- 
tions. 
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1 Introduction 
 

Machine Learning (ML) is at the forefront of innovation in technical and scien- 
tific applications, creating new insights on new and existing applications. Typi- 
cally, running and analyzing large amounts of data on a complex ML algorithm 
requires a significant amount of resources and capabilities, which have been ex- 
isting as barriers to the mainstreaming of ML in industry. However, with the 
improvement of powerful and energy-efficient embedded devices, ML inference is 
possible at the edge, and enables data analysis on the device as an alternative to 
the data exchange between servers and devices for decision making [1]. Initially, 
the field of edge ML focused on mobile inference, which ultimately led to several 
improvements for machine learning models such as quantization, sparsity, and 
pruning [2]. Recently, as IoT systems became mainstream, industry interest in 
extending Edge ML to microcontrollers grew to create a whole new potential 
for Edge ML as TinyML. The main goal of TinyML is to deploy ML models 
on ultra-low power devices to perform inference and achieve robust performance 
while breaking the power consumption barrier that has previously hindered such 
systems. TinyML eliminates the need for cloud server connectivity and improves 
responsiveness and privacy measures while running using a coin size battery. 



 

 
 

Furthermore, the field is emerging and still in its infancy, with potential 
for innovative and state of the art applications to unlock its full potential [3]. 
Nonetheless, TinyML is already being implemented in many applications to pro- 
vide smarter sensor technology that enables advanced monitoring to improve 
productivity and safety in many sectors. For example, predictive maintenance 
and monitoring of wind turbines is normally a cumbersome task as in most cases 
these turbines are located in remote areas and failures result in a long downtime. 
However, when predictive maintenance is implemented, downtime is significantly 
reduced, resulting in noticeable cost savings and an overall increase in quality 
and reliability. In [4], an Australian start-up company has developed a novel IoT 
device that can autonomously and simultaneously monitor the turbine during 
operation. The device is able to detect and report potential problems before 
they occur in the turbine’s system. TinyML is also widely used in smart agri- 
culture,as it is done for example by the Plant Village team, which developed an 
app that helps farms detect and treat potential diseases that affect crops [5]. 
In the health field, Solar Scare Mosquito focused on developing an IoT robotic 
platform that uses low-power, low-speed communication protocols to detect and 
warn of a potential mass breeding of mosquitoes [6]. 

The contribution of this paper is driven by the need to provide a standard 
framework and platform for TinyML use cases to build a foundation that drives 
the development of ML on edge devices. In particular, a comparison is made 
between two popular frameworks: Tensorflow Lite Micro (tested on an Arduino 
Nano BLE) and CUBE AI (tested on an STM32 NucleoF401RE) based on two 
TinyML applications. 

This paper is structured as follows: Section II presents a summary overview of 
TinyML frameworks. In Section III, we provide a complete breakdown of bench- 
marking setting and tools implemented. Finally, the benchmarking is applied 
by comparing the two frameworks in Section IV and conclusions are drawn in 
Section V. 

 
2 TinyML Frameworks 

 
Due to the unlimited potential and great interest in TinyML to revolutionize 
various industries, many libraries and tools are constantly being developed and 
deployed to facilitate the implementation of ML algorithms on constrained plat- 
forms. TinyML frameworks can be divided into three different categories. 

The most trivial approach refers to converting existing trained models to 
overcome MCU limitations. Thus, these tools typically use inference tools de- 
rived from well-known ML libraries such as TensorFlow [11], Scikit-Learn [12] 
or PyTorch [13], and port their code to run on devices with scarce resources. 

The second category is based on the implementation of ML libraries specif- 
ically designed for MCUs to provide them with offline training and inference 
capabilities. It allows models to generate from data retrieved on the go from 
their device, which can immensely improve the model’s accuracy and enables 
the implementation of unsupervised learning algorithms. 



 

 
 

Finally, the last technique relies on the possibility of integrating a fully ded- 
icated co-processor to support the main computing unit in ML-specific tasks. 
This strategy allows for an increase in computing power, although it is the least 
common approach because it significantly increases the price and complexity 
of processing platforms. Big tech companies are helping expand the TinyML 
ecosystem by contributing to open source development libraries [14]. Google has 
launched TensorFlow Lite for microcontrollers [15], which includes a set of tools 
to optimize TensorFlow models to make them run on mobile and embedded 
devices. The key to reducing the size and complexity of the framework is that 
it keeps only important features on the platform and eliminates less important 
ones. For instance, it fails to perform a full training of a model, but capable of 
making inferences on models that have already been trained on a cloud com- 
puting platform. This framework is based on two elements: the model converter, 
which converts TensorFlow models into optimized binary code that can be used 
on low-power MCUs, and the model interpreter, which executes the code gener- 
ated by the converter. 

The optimized models, which support a range of algorithms from the NN 
class, can run on several platforms, including smartphones, embedded Linux sys- 
tems, and MCUs. In the case of MCUs, the optimized code is written in C++ 
and requires 32-bit processors. It has been successfully deployed on devices, such 
as the Arduino Nano, and other architectures, such as the ESP32 with ARM 
Cortex-M series processors. Given the prominence of Arduino, a special library 
for this platform is available through their IDE. STMicroelectronics is among 
the well-known electronics manufacturer that has developed specific libraries for 
its devices. Specifically, the STM32Cube.AI Toolkit [16] allows the integration of 
pre-trained NNs into STM32 ARM CortexM-based microcontrollers. It generates 
from the NN models provided by Tensorflow and Keras [17] STM32-compatible 
C code or from models in the standard ONNX format. As an interesting fea- 
ture, STM32Cube.AI allows the execution of large NNs by storing weights and 
activation buffers in external flash memory or RAM. In addition, Microsoft has 
also contributed to the TinyML scene with the release of its open-source library 
Embedded Learning (ELL) [18]. 

This framework enables the design and deployment of pre-trained ML models 
on constrained platforms, such as ARM Cortex-A and Cortex-M based archi- 
tectures like Arduino, Raspberry Pi and micro:bit. ELL acts as an optimizing 
cross-compiler that runs on a regular desktop computer and outputs C++ code 
that can be executed on the targeted single-board computer. The API of ELL 
can be used for both C++ and Python and uses pre-trained NN models provided 
by the Microsoft Cognition Toolkit (CNTK). The toolkit ARM-NN was intro- 
duced by ARM for integrating ML into their devices [19]. In addition to open 
source offerings, some institutions and companies have also launched privately 
licensed products. The Fraunhofer Institute for Microelectronic Circuits and Sys- 
tems (IMS) has developed Artificial Intelligence Library for Embedded Systems 
(AIfES) running on even the smallest microcontrollers [20]. However, despite the 
variety of frameworks presented, they focus on only one type of ML algorithm, 



 

 
 

namely NN. Researchers and industry leaders have recently considered other 
ML techniques, such as decision trees, Naive Bayes classifier, k-Nearest Neigh- 
bors (k-NN), and others. For example, MicroML [21] is a novel technique that 
allows porting Support Vector Machine (SVM) and Relevance Vector Machine 
(RVM) algorithms to C code that can be used on a variety of MCUs, e.g. Ar- 
duino, ESP8266, ESP32 and others with C support. It supports the widely used 
scikit-learn toolkit and converts models generated by this library for use on 8-bit 
microcontrollers with 2 KB of RAM. A similar tool is m2cgen [22], which can 
transform the data from models formed with scikit-learn into native code, e.g. 
Python, C, Java. In this case, both the number of compatible algorithms and 
target programming languages is even larger than in m2cgen. Table I summarizes 
the main features of the frameworks considered in this section. 

 
Table 1. Framework Comparison 

 
 

Framework Algorithms Compatible 
Platforms 

Output 
Languages 

External 
Libraries 

Availability 

TFLM Neural networks ARM Cortex-M C++ 11 Tensor Flow Open Source 
 
 
STM Cube AI 

 
 

Neural networks 

 
 

STM32 

 
 

C 

Keras 
TensorFlow 
Lite Caffe 
ConvNetJs 

Lasagne 

 
STM32 Devices 

only 

 
ELL 

 
Neural networks ARM Cortex-M 

ARM Cortex-A 

 
C/C++ 

CNTK 
ARMDarknet 

ONNX 

 
Open Source 

 
ARM-NN AI 

 
Neural networks 

ARM Cortex-A 
ARM Mali 

ARM Ethos 

 
C 

TensorFlow 
Caffe 

ONNX 

 
Open Source 

 
AIfES 

 
Neural networks 

Raspberry Pi 
Windows (DLL) 
ARM Cortex-M4 

 
C TensorFlow 

Keras 

 
Private License 

MicroMLGen SVM 
RVM 

Arduino ESP32 
Arduino ESP8266 C Scikit-learn Private License 

 
 
m2cgen 

Linear regression 
Logistic regression 
Neural networks 

SVM 
Decision tree 

 
Multiple constrained 

nonconstrained 
platforms 

Python 
C 

C # 
Java 

 
 

Scikit-learn 

 
 
Private License 

 
 
 
 
 

3 Benchmarking Setting 
 

Machine learning benchmarks fall somewhere on the continuous sequence be- 
tween low-level and application-level evaluation. Low-level benchmarks attempt 
target kernels at the core of many ML performance analysis, such as matrix mul- 
tiplication, but hide critical elements such as memory bandwidth or model-level 



 

 
 

optimizations. Conversely, application-level benchmarks can hide the bench- 
mark’s goal behind other stages of the application pipeline. Our TinyML bench- 
mark targets model inference and memory occupation. This section outlines the 
benchmarking setting for our two use cases. Each benchmark targets a specific 
use case with a different dataset, modelled on two separate targets. To perform 
this comparison with due diligence, we ensured that all parameters, device spec- 
ifications, data used to train the model and model architecture were identical 
for both platforms. 

 
3.1 Gesture Recognition Use Case 

 
Motivation Gestures are expressive, meaningful body movements that involve 
physical movements of the fingers, hands, arms, or body to communicate and 
interact with the environment. New technology trends are driving the need to 
integrate such applications as part of smart systems to establish gesture recog- 
nition applications on tiny embedded devices. 

 
Dataset As for the dataset, there are a number of open-source datasets rele- 
vant to TinyML use cases. However, we build a distinct dataset similar to the 
technique used by authors in [23], using the inertial measurement unit (IMU) via 
the LSM9DS1 sensor on the Arduino Nano 33 BLE. Figure 1 shows the spectral 
features extracted from the dataset of characters O, H, G, and C for acceler- 
ation data in the X, Y, and Z planes. From Figure 1 we can also identify the 
significant difference between the acquired data, which confirms the robustness 
of the dataset [23]. For each character of the 26 alphabet letters, 100 samples 
were acquired with a sampling frequency of 100 Hz, and each sample had an 
acquisition duration of 4000 ms, as shown in Figure 2. 

 
Network Architecture For our application, we opted for a Convolutional 
Neural Network (CNN) to train our model compatible with TinyML deployment, 
as illustrated in Figure 3. The model is trained using Keras and Tensorflow Lite 
(TFL) libraries, which are compatible with both devices. In the case of the 
Arduino Nano, the model is converted to TFL using the Python API of the TFL 
converter. Then, our Keras model is written to disk in the form of a FlatBuffer, 
a special file format designed to save space [24-25]. 

 
Model Optimization There are two methods to choose from when optimizing 
a model: quantization and pruning. For the purpose of our application, we chose 
quantization. Quantization is still an active research topic, and there are many 
different options [26-27]. With dynamic quantization from float32 to int8, we 
were able to achieve promising results, as the model size was significantly reduced 
compared to the original version. In doing so, we managed to maintain reasonable 
accuracy when testing from 346KB to 275KB for TFLM and to 192KB for CUBE 
AI, while maintaining 85% accuracy. 



 

 

 

 

 
 

 
 
 

Fig. 1. Spectral Features of the dataset. 
 
 
 
 
 
 

 

Fig. 2. N Character data representation. 



 
 
 
 

 
 

Fig. 3. Network Architecture 
 
 

3.2 Wake Word Spotting Use Case 

Motivation Wake Word Spotting (WWS), also known as Key Word Spotting, 
is a highlighted application and early use of TinyML, because voice command is 
an important aspect of human-machine interaction. The WWS application aims 
to run fully trained ML models on low-power devices to continuously monitor 
the environment for the wake-up word that triggers a particular functionality or 
service. 

 
Dataset Dataset acquired from an open-source voice commands dataset fea- 
turing 500 speech samples with a duration of 1000 ms for 10 different wake-up 
words (UP, DOWN, YES, NO, GO, STOP, LEFT, RIGHT, ON, OFF) [28]. 

 
Network Architecture Similar to the Gesture Recognition application, we 
select a Convolutional Neural Network (CNN) to train our model compatible 
for TinyML deployment. The model is trained using Keras and Tensorflow Lite 
(TFL) libraries compatible with both devices. 

 
Model Optimization Using the dynamic quantization feature from float32 to 
int8, we were able to achieve promising results as the model size was significantly 
decreased in comparison to the unoptimized size. The post training model was 
reduced from 650KB to 288KB for TLM and 247KB for X-Cube-AI. 

 
3.3 Inference 

After the model is converted, it is used on the two selected microcontrollers. For 
the Arduino platform, the C++ library for microcontrollers compatible with 
TFL is used to load the model and make predictions. The model is integrated 
as part of our applications shown in Figure 4 for the Gesture Recognition ap- 
plication to infer input data and display the output through the serial port. For 



 

 
 

the STM32 platform, the X-Cube AI supports both TFL and Keras model for- 
mats, allowing great flexibility in deploying the model on the microcontroller. 
We also generate C code using the platform-tools to represent and allocate all 
the resources of the model. Then, inference is performed based on given test data 
representing the characters and predictions are made based on the recognised 
character with the highest probability, which then indicates the accuracy of the 
model. 

 

 

Fig. 4. Application Structure 
 
 
 
 

4 TFLite-Micro vs X-CUBE-AI 
 

For the comparison between the two frameworks, we chose two different micro- 
controllers that support the frameworks. The Arduino Nano 33 BLE and the 
STM NUCLEO F401RE were selected, as indicated in Table II. After success- 
fully running and releasing our models on both platforms using the respective 
supported frameworks, as can be seen in Table III, the flash memory required by 
the application deployed on the X-CUBE-AI framework is significantly smaller 
than the same application deployed on the Arduino platform using the TFLM 



 

 
 

framework. Moreover, the inference time on the X-CUBE-AI framework is also 
significantly less in the first application but almost the same as TFLM for the 
second application. 

 
Table 2. Comparison between the Two Devices 

 
Device MCU CPU Clock Memory Framework 
Arduino 
Nano BLE 33 nRF52840 32-bit ARM 

Cortex M4 64MHz 1MB TFLM 

STM32 
NUCLEO-F401RE LQFP64 32-bit ARM 

Cortex M4 84MHz 512KB X-CUBE-AI 

 
 
 
 
 

Table 3. Comparison between the Two Frameworks for The Two Use Cases 
 

Gesture Recognition Application 
Framework Memory DSP Inference Time 

TFLM 275KB 28ms 30ms 
X-CUBE-AI 192KB 5ms 9ms 

Wake Word Spotting Application 
Framework Memory DSP Inference Time 

TFLM 288KB 187ms 193ms 
X-CUBE-AI 247KB 162ms 211ms 

 
 
 
 
 

5 Conclusion 
 

Overall, the CUBE AI has a fairly straightforward system with a powerful in- 
terface that provides many tools for optimizing and handling the model and 
even generating code. On the other hand, the TFLM is more complex and re- 
quires many compromises to use the model successfully. Nevertheless, the TFLM 
outperforms the CUBE AI platform in terms of wide availability, because it is 
open-source and supports many devices. After running our two trained models 
on the two devices, the results show that CUBE AI performs better than the 
Tensorflow Lite Micro models, from the size differences to the more robust per- 
formance. However, it has the disadvantage of being supported only for STM 
devices and being software-oriented. 

Finally, through the two discussed and compared applications in this paper, 
we conclude that the CUBE AI framework is better suited for memory-limited 
and performance-intensive TinyML applications. Future work would include fur- 
ther implementation of the two frameworks on more platforms through different 
performance demanding applications. 
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