Skip to main content

Low-Level Advanced Design of True Random Number Generators Based on Truly Chaotic Digital Nonlinear Oscillators in FPGAs

  • Conference paper
  • First Online:
  • 718 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 866))

Abstract

Recently, a new class of circuits named Digital Nonlinear Oscillators (DNOs) has been proposed for the design of fully digital True Random Number Generators (TRNGs). In this work we discuss the low-level advanced design of TRNGs based on chaotic DNOs, specialized for FPGAs. In detail, starting from a specific DNO topology, we discuss technical solutions to implement these systems exploiting FPGA device primitives. The proposed solutions have been characterized by means of exhaustive measurement campaigns to assess and investigate the impact on the entropy of both chip-to-chip and intra-device variability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acosta, A., Addabbo, T., Tena-Sanchez, E.: Embedded electronic circuits for cryptography, hardware security and true random number generation: an overview. Int. J. Circuit Theory Appl. 45(2), 145–169 (2017)

    Article  Google Scholar 

  2. NIST Special Publication 800-22 Rev. 1a: A statistical test suite for random and pseudorandom number generators for cryptographic applications, April 2010. https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf

  3. Kwok, S.H.M., Lam, E.Y.: FPGA-based high-speed true random number generator for cryptographic applications. In: TENCON 2006– IEEE Region 10 Conference, pp. 1–4 (2006)

    Google Scholar 

  4. Öztürk, H.S., Ergün, S.: A digital random number generator based on chaotic sampling of regular waveform. In: 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 178–181 (2020)

    Google Scholar 

  5. Demir, K., Ergun, S.: Random number generators based on irregular sampling and Fibonacci-Galois ring oscillators. IEEE Trans. Circuits Syst. II Express Briefs 66(10), 1718–1722 (2019)

    Article  Google Scholar 

  6. Anandakumar, N.N., Sanadhya, S.K., Hashmi, M.S.: FPGA-based true random number generation using programmable delays in oscillator-rings. IEEE Trans. Circuits Syst. II Express Briefs 67(3), 570–574 (2019)

    Google Scholar 

  7. Carreira, L.B., Danielson, P., Rahimi, A.A., Luppe, M., Gupta, S.: Low-latency reconfigurable entropy digital true random number generator with bias detection and correction. IEEE Trans. Circuits Syst. I Regul. Pap. 67(5), 1562–1575 (2020)

    Article  MathSciNet  Google Scholar 

  8. Sivaraman, R., Sridevi, A., Rajagopalan, S., Janakiraman, S., Rengarajan, A.: Design and analysis of ring oscillator influenced beat frequency detection for true random number generation on FPGA. In: 2019 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–6, January 2019

    Google Scholar 

  9. Tao, S., Yu, Y., Dubrova, E.: FPGA based true random number generators using non-linear feedback ring oscillators. In: 2018 16th IEEE International New Circuits and Systems Conference (NEWCAS), pp. 213–216, June 2018

    Google Scholar 

  10. Sui, C., Bai, S., Zhu, T., Cheng, C., Beetner, D.: New methods to characterize deterministic jitter and crosstalk-induced jitter from measurements. IEEE Trans. Electromagn. Compat. 57(4), 877–884 (2015)

    Article  Google Scholar 

  11. Raitza, M., Vogt, M., Hochberger, C., Pionteck, T.: Raw 2014: random number generators on FPGAs. ACM Trans. Reconfigurable Technol. Syst. 9(2), 15:1–15:21 (2015)

    Google Scholar 

  12. Golic, J.D.J.: New methods for digital generation and postprocessing of random data. IEEE Trans. Comput. 55(10), 1217–1229 (2006)

    Article  Google Scholar 

  13. Wang, X., et al.: High-throughput portable true random number generator based on Jitter-Latch structure. IEEE Trans. Circuits Syst. I Regul. Pap. 68(2), 741–750 (2021)

    Article  MathSciNet  Google Scholar 

  14. Tsoi, K.H., Leung, K.H., Leong, P.H.W.: Compact FPGA-based true and pseudo random number generators. In: 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM 2003, April 2003, pp. 51–61 (2003)

    Google Scholar 

  15. Hata, H., Ichikawa, S.: FPGA implementation of metastability-based true random number generator. IEICE Trans. Inf. Syst. E95.D(2), 426–436 (2012)

    Google Scholar 

  16. Wieczorek, P.Z.: An FPGA implementation of the resolve time-based true random number generator with quality control. IEEE Trans. Circuits Syst. I Regul. Pap. 61(12), 3450–3459 (2014)

    Article  Google Scholar 

  17. Wu, X., Li, S.: A new digital true random number generator based on delay chain feedback loop. In: IEEE International Symposium on Circuits and Systems (ISCAS), vol. 2017, pp. 1–4 (2017)

    Google Scholar 

  18. Addabbo, T., Alioto, M., Fort, A., Rocchi, S., Vignoli, V.: Low-hardware complexity PRBGs based on a piecewise-linear chaotic map. IEEE Trans. Circuits Syst. II Express Briefs 53(5), 329–333 (2006)

    Article  Google Scholar 

  19. Addabbo, T., Fort, A., Moretti, R., Mugnaini, M., Takaloo, H., Vignoli, V.: A new class of digital circuits for the design of entropy sources in programmable logic. IEEE Trans. Circuits Syst. I Regul. Pap. 67(7), 2419–2430 (2020)

    Article  Google Scholar 

  20. Addabbo, T., Fort, A., Moretti, R., Mugnaini, M., Vignoli, V., Garcia-Bosque, M.: Lightweight true random bit generators in PLDs: figures of merit and performance comparison. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5, May 2019

    Google Scholar 

  21. Addabbo, T., Fort, A., Mugnaini, M., Vignoli, V., Garcia-Bosque, M.: Digital nonlinear oscillators in PLDs: Pitfalls and open perspectives for a novel class of true random number generators. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5, May 2018

    Google Scholar 

  22. Addabbo, T., Fort, A., Moretti, R., Mugnaini, M., Vignoli, V.: Analysis of a circuit primitive for the reliable design of digital nonlinear oscillators. In: 2019 15th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), pp. 189–192, July 2019

    Google Scholar 

  23. Addabbo, T., Fort, A., Moretti, R., Mugnaini, M., Vignoli, V.: DNO Xilinx Artix 7 hardware implementation. http://www3.diism.unisi.it/~addabbo/ApplePies2021/HDL.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Moretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Addabbo, T., Fort, A., Moretti, R., Mugnaini, M., Vignoli, V. (2022). Low-Level Advanced Design of True Random Number Generators Based on Truly Chaotic Digital Nonlinear Oscillators in FPGAs. In: Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2021. Lecture Notes in Electrical Engineering, vol 866. Springer, Cham. https://doi.org/10.1007/978-3-030-95498-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95498-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95497-0

  • Online ISBN: 978-3-030-95498-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics