Skip to main content

Classifying Simulated Driving Scenarios from Automated Cars

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2021)

Abstract

Detection of driving scenarios is getting ever more importance for assessment and control of automated driving functions. This paper investigates the performance of two versions of a high-end 3D convolutional network for scenario classification. The first one uses fully 3D kernels, the second one separates, in each constituting block, the 2D spatial convolution from the temporal convolution, (2 + 1)D. We made the tests on a synthetic dataset created by specifying scenarios in OpenScenario and running them in the CarLA 3D simulator. We focused our analysis on three main performance profiles: at different frame per second rates, different video clip lengths, and different weather conditions. Results show an overall robustness of the 3D predictors, and seem to suggest two different use cases: (2 + 1)D looks more suited when the scenario changes quickly or a low latency is required, while the plain 3D solution is better for slow-changing scenarios and when FPS can be low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber, H., et al.: A framework for definition of logical scenarios for safety assurance of automated driving, Traffic Inj. Prev. 20(sup1), S65–S70 (2019), https://doi.org/10.1080/15389588.2019.1630827

  2. Bellotti, F., et al.: Managing big data for addressing research questions in a collaborative project on automated driving impact assessment. Sensors 20, 6773 (2020)

    Article  Google Scholar 

  3. Mozaffari, S., Al-Jarrah, O.Y., Dianati, M., Jennings, P., Mouzakitis, A.: Deep Learning-based vehicle behavior prediction for autonomous driving applications: a review. IEEE Trans. Intell. Transp. Syst. https://doi.org/10.1109/TITS.2020.3012034

  4. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018). https://doi.org/10.1109/CVPR.2018.00675

  5. Bonora, S., Motta, J.: Progettazione e realizzazione di una to. olchain per la generazione di dataset e il riconoscimento basato su deep learning di scenari per la guida autonoma. Elettronica, Università di Genova, Tesi laurea magistrale Ing (2021)

    Google Scholar 

  6. Carla community. Carla Simulator. Version 0.9.11. https://carla.readthedocs.io/en/latest/. Accessed 23 Apr 2021

  7. OpenSCENARIO User Guide. https://releases.asam.net/OpenSCENARIO/1.0.0/ ASAM_OpenSCENARIO_BS-1–2_User-Guide_V1–0–0.html, accessed on 22/04/2021

  8. KITTI dataset. http://www.cvlibs.net/datasets/kitti/

  9. Izquierdo, R., Quintanar, A., Parra, I., Fernández-Llorca, D., Sotelo, M.A.: The PREVENTION dataset: a novel benchmark for PREdiction of VEhicles iNTentIONs. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3114–3121, October 2019. https://doi.org/10.1109/ITSC.2019.8917433

  10. NGSIM and US-101 datasets. https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

  11. apolloscape dataset. http://apolloscape.auto/

  12. Géron, A.: Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media, Boston (2019)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: InNIPS (2012)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  15. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078

  16. Feichtenhofer, C., Pinz, A., Wildes, R.P.: Spatiotemporal residual networks for video action recognition. In: NIPS (2016)

    Google Scholar 

  17. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: ICCV (2017)

    Google Scholar 

  18. R(2+1)D code. https://github.com/irhum/R2Plus1D-PyTorch

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Cossu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cossu, M. et al. (2022). Classifying Simulated Driving Scenarios from Automated Cars. In: Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2021. Lecture Notes in Electrical Engineering, vol 866. Springer, Cham. https://doi.org/10.1007/978-3-030-95498-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95498-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95497-0

  • Online ISBN: 978-3-030-95498-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics