Skip to main content

Scalable Broadband Switching Matrix for Telecom Payload Based on a Novel SWGs-Based MZI

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2021)

Abstract

Photonics is a disruptive technology also for enabling telecommunication payloads to achieve high performance and potentially low costs. In this paper, we propose the design of a scalable switching cell that consists of a Mach-Zehnder interferometer (MZI), based on a subwavelength grating (SWG) coupler and a thermo-optical phase shifter. The scalability of the device was demonstrated by evaluating the performance of a 4 × 4 dilated strictly non-blocking Banyan network. Worst-case insertion loss (IL) of 9 dB, crosstalk (XT) of −34 dB and extinction ratio (ER) of 42 dB have been theoretically proved, as well as power consumption of 46 mW and time response of 9.2 µs, within a footprint of 1080 µm × 288 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciminelli, C., Dell’Olio, F., Armenise, M.N.: Photonics in Space: Advanced Photonic Devices and Systems. World Scientific (2016). https://doi.org/10.1142/9817

    Book  Google Scholar 

  2. Ravel, K., et al.: Optical switch matrix development for new concepts of photonic based flexible telecom payloads. In: 2018 ICSO (2019) 111803H

    Google Scholar 

  3. Hauschildt, H., et al.: HydRON: high throughput optical network. In: 2019 IEEE ICSOS, pp. 1–6 (2019)

    Google Scholar 

  4. Poudereux, D., Barbero, J., Tijero, J.M.G., Esquivias, I., Mc Kenzie, I.: Evaluation of optical switches for space applications. In: 2016 ICSO, 11180 (2019) 111807H

    Google Scholar 

  5. Ciminelli, C., Armenise, M.N.: Photonic Switches, Enc. of Optical and Photonic Engineering, 2nd edn. CRC Press (2016)

    Google Scholar 

  6. Stabile, R., Albores-Mejia, A., Rohit, A., Williams, K.A.: Integrated optical switch matrices for packet data networks. Microsys. Nanoeng. 2, 1–10 (2016)

    Article  Google Scholar 

  7. Soref, R.: Tutorial: integrated-photonic switching structures. APL Photon. 3, 021101 (2018)

    Google Scholar 

  8. El-Bawab, T.S. (ed.): Optical Switching. Springer US, Boston, MA (2006). https://doi.org/10.1007/0-387-29159-8

    Book  Google Scholar 

  9. Li, B., Chua, S.J. (eds.): Optical Switches. Woodhead Publications (2010)

    Google Scholar 

  10. Hinton, H.: An Introduction to Photonic Switching Fabrics. Springer US, Boston, MA (1993). https://doi.org/10.1007/978-1-4757-9171-6

    Book  Google Scholar 

  11. Emelett, S.J., Soref, R.A.: Synthesis of dual-microring-resonator cross-connect filters. Opt. Express 13(12), 4439 (2005)

    Google Scholar 

  12. Ramaswamy, V., Divino, M., Standley, R.D.: Modified balanced-bridge switch with two straight waveguides. Appl. Phys. Lett. 32, 644–646 (1978)

    Google Scholar 

  13. Lee, G.B., Dupuis, N.: Silicon photonic switch fabrics: technology and architecture. J. Lightw. Technol. 37(1), 6–20 (2019)

    Google Scholar 

  14. Yang, H., Kuan, Y., Xiang, T., Zhu, Y., Cai, X., Liu, L.: Broadband polarization-insensitive optical switch on silicon-on-insulator platform. Opt. Express 26, 14340–14345 (2018)

    Google Scholar 

  15. Van Campenhout, J., Green, W.M., Assefa, S., Vlasov, Y.: A low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Opt. Express 17, 24020–24029 (2009)

    Article  Google Scholar 

  16. Chen, S., Shi, Y., He, S., Dai, D.: Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Opt. Lett. 41, 836–839 (2016)

    Article  Google Scholar 

  17. Lalanne, P., Lemercier-Lalanne, D.: On the effective medium theory of subwavelength periodic structures. J. Mod. Opt. 43, 2063–2085 (1996)

    Article  Google Scholar 

  18. Alferness, R.C., Cross, P.: Filter characteristics of codirectionally coupled waveguides with weighted coupling. IEEE J. Quant. Elec. 14, 843–847 (1978)

    Article  Google Scholar 

  19. Horikawa, T., Shimura, D., Mogami, T.: Low-loss silicon wire waveguides for optical integrated circuits. MRS Commun. 6(1), 9–15 (2015). https://doi.org/10.1557/mrc.2015.84

    Article  Google Scholar 

  20. Wang, Y., et al.: Compact broadband directional couplers using subwavelength gratings. IEEE Photon. J. 8(3), 1–8 (2016)

    Google Scholar 

  21. Brunetti G., Dell’Olio F., Conteduca D., Armenise M.N., Ciminelli C.: Comprehensive mathematical modelling of ultra-high Q grating-assisted ring resonators. J. Opt. 22, 035802 (2020)

    Google Scholar 

  22. Brunetti, G., Marocco, G., Di Benedetto, A., Giorgio, A., Armenise, M.N., Ciminelli, C.: Design of a large bandwidth 2 × 2 interferometric switching cell based on a sub-wavelength grating. J. Opt. 23, 085801 (2021)

    Google Scholar 

  23. Brunetti, G., Sasanelli, N., Armenise, M.N., Ciminelli, C.: High performance and tunable optical pump-rejection filter for quantum photonic systems. Opt. Las. Tech. 139, 106978 (2021)

    Google Scholar 

  24. Čtyroký, J., Richter, I., Šiňor, M.: Dual resonance in a waveguide-coupled ring microresonator. Opt. Quan. Ele. 38, 781–797 (2006)

    Article  Google Scholar 

  25. Hunter, D.K., Smith, D.G.: New architectures for optical TDM switching. J. Light. Tech. 11, 495–511 (1993)

    Article  Google Scholar 

  26. Ma, Y., et al.: Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect. Opt. Exp. 21, 29374–29382 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The work has been supported by Ministry of Research and University in the framework of New Satellites Generation Components (NSG) project – ARS01_01215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ciminelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brunetti, G., Marocco, G., Giorgio, A., Armenise, M.N., Ciminelli, C. (2022). Scalable Broadband Switching Matrix for Telecom Payload Based on a Novel SWGs-Based MZI. In: Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2021. Lecture Notes in Electrical Engineering, vol 866. Springer, Cham. https://doi.org/10.1007/978-3-030-95498-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95498-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95497-0

  • Online ISBN: 978-3-030-95498-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics