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Abstract. As the world is experiencing population growth, the portion
of the older people, aged 65 and above, is also growing at a faster rate. As
a result, the dementia with Alzheimer’s disease is expected to increase
rapidly in the next few years. Currently, healthcare systems require an
accurate detection of the disease for its treatment and prevention. There-
fore, it has become essential to develop a framework for early detection
of Alzheimer’s disease to avoid complications. To this end, a novel frame-
work, based on machine-learning (ML) and deep-learning (DL) methods,
is proposed to detect Alzheimer’s disease. In particular, the performance
of different ML and DL algorithms has been evaluated against their de-
tection accuracy. The experimental results state that bidirectional long
short-term memory (BiLSTM) outperforms the ML methods with a de-
tection accuracy of 91.28%. Furthermore, the comparison with the state-
of-the-art indicates the superiority of the our framework over the other
proposed approaches in the literature.
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1 Introduction

Alzheimer is from a family of diseases that can develop dementia, specially in
elderly people. Dementia is a loss of memory and/or other mental disability
that can cause physical damaged to the brain. Although Alzheimer is the most
common type of dementia but there are different types of dementia [35}[49],
such as vascular dementia, Lewy Body disease, frontotemporal dementia, alcohol
related dementia and HIV associated dementia, etc. The most common type of
dementia after Alzheimer’s disease is vascular dementia which can happens after
stroke. In addition, some of the causes of dementia are reversible such as thyroid
problem and vitamin deficiencies. The dementia is not just a disease but its
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associated risks such as decline in the memory significantly reduces a person’s
ability to perform daily tasks. It is expected that the number of people affected
from dementia will increase over the time. The early detection can not only help
doctors to precisely make decision on the treatment but also help preventing the
complications [21]. Tt is important to develop a system that can help in early
detection of dementia.

The Alzheimer’s disease has number of symptoms, especially in the elderly
people that can cause problems to perform daily tasks due to memory loss.
Although the Alzheimer is not normal due to aging, its risk factor increases
with the aging. Most of the people who suffer from Alzheimer are aged 65 or
above. However, it not uncommon to have this disease in the people younger
than 65. For instance, more than two hundred thousand American aged less
than 65 suffers from Alzheimer disease. Fig [I] shows the difference between the
normal brain and Alzheimer’s brain [47].

It can be noticed that the brain of the Alzheimer’s disease in not only signif-
icantly smaller than the normal brain but is affected severely from neurological
disorder and dysfunction. Additionally, Fig [2] presents some of the common
symptoms of the Alzheimer’s disease. The most common types of symptoms
are loss of memory, changes in the behaviour, difficulty with everyday task and
confusion in familiar environments.
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Fig. 1. Difference between a normal brain and a severe Alzheimer’s Brain [47].

Practically, no effective cure to treat Alzheimer’s disease exist to date. How-
ever, there exist ways that can temporarily slow down the process of Alzheimer’s
symptoms and improve the quality of the life of the patient. To this end, sig-
nificant research efforts are dedicated to find the effective ways of treating the
Alzheimer’s disease with a focus on preventing the disease from progressing over
the time [39].

It is suggested that ML and DL algorithms, which have proven their sig-
nificance in various fields, can help solve the problem of early detection of
Alzheimer’s disease clearly, ML, and DL methods have their applications in var-
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Fig. 2. Alzheimer symptoms

ious domains, including but not limited to sentiment analysis [2,/9-11,/13-19,
30,132,|33], speech enhancement [27,/28], cyber-security [31}/34], image classifi-
cation [36], energy efficiency [51], travel detection [5}/6], posture detection 48],
and atrial fibrillation [37,38|, etc. Therefore, the ML techniques including sup-
port vector machine (SVM), logistic regression, multi-layered perceptron and
deep learning classifiers. In particular, feature selection is an important element
of traditional ML classifiers which is inherently incorporated in DL classifiers.
Generally, DL classifiers achieve better results on large datasets.

In this paper, we proposed a novel approach, based on ML and DL methods,
to detect Alzheimer’s disease. The obtained results from DL algorithm are com-
pared against traditional ML algorithms [1,/24-26]. In particular, bidirectional
long short-term memory (BiLSTM) outperforms all the considered ML and DL
methods, with a detection accuracy of 91.28%.

The rest of the paper is structured as follows. Section [2| provides the state-
of-the-art in Alzheimer detection. Section [3] presents the proposed methodology.
Section [4] provides the experimental results of the proposed Alzheimer detection
and discussion, and finally Section [5] concludes the paper.

2 Related Work

In this section, we discuss the current state-of-the-art to detect dementia and
Alzheimer’s disease using DL and ML algorithms.

The work in [7] propose novel metrics to identify the Alzheimer’s disease
using pattern similarity score. The authors characterize the metrics in terms
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of conditional probabilities modeled by logistic regression. In addition, they ex-
plore the performance of anatomical and cognitive impairment which is used to
generate the output of the classifiers using different types of data.

The authors in [41] use the online available datasets of MRI scan images
and other cognitive features, such as RAVLT tests, MOCA and FDG score
etc to identify the Alzheimer’s disease. In particular, clustering algorithms are
developed based on logistic regression and SVM to detect the patient having
Alzheimer’s disease. Ammar et al. [4] presented a framework based on the speech
processing to detect dementia. The framework was used to extract features from
patients with dementia and without dementia wherein the speech data used
was having verbal description and manual transcription. Therefore, the speech
and textual features were used to train ML classifiers. The authors achieved an
overall accuracy of 79% only.

Another interesting work in presented in [52] where authors introduced a
detection method based on the MRI images of brain based on the Eigenbrain.
Their approach used SVM and particle swarm optimization to train the model.
Their proposal achieved satisfactory results in detecting the parts of the brain
affected from Alzheimer’s disease. Working on the similar lines of MRI scans, au-
thors in [44] detected dementia and other different features using gradient boost
and Artificial Neural Network (ANN) models. The authors achieved comparable
results with the ones presented in [52]. The authors in [45] proposed a hybrid
multimodal method based on the cognitive and linguistic features. The authors
used ANN to train the model detect Alzheimer’s disease and its severity. Their
scheme achieved good results as compared to the state-of-the-art.

3 Methodology

This work proposes a novel Alzheimer’s detection system using different ML
and DL algorithms. In particular, the raw data data coming from MRI scans is
pre-processed before applying various ML and DL methods. Fig [3| presents an
overall picture of the proposed Alzheimer detection system.

Deep Learning

Alzheimer

Raw Data — Pre-process .
Detection

Machine
Learning

Fig. 3. Overview of Alzheimer Detection Framework
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3.1 Machine Learning Methods

This subsection highlights our simulation settings to train different ML models.
Scikit-learn is used to train ML classifiers. More specifically, radial basis function
(RBF) kernel is used to train support vector machine (SVM). Elasticnet is used
as a penalty for logistic regression, two hidden layers are used for multilayer
perceptron (MLP), number of neighbors are set to 5 for k-nearest neighbors
(KNN), epsilon is set to float for Naive Bayes, max features are set to int for
decision tree and finally number of estimate is set to 100 for random forest.
It is worth mentioning that the ML classifiers are trained based on standard
deviation, average, square root, skew, maximum and minimum value.

3.2 Deep Learning Methods

This subsection highlights our simulation settings to train different DL models.
Mainly, two different DL models are used in this work, namely convolutional
neural network (CNN) and LSTM The developed CNN architecture, inspired
from [12}/29/42], contains input, hidden and output layers where hidden layers
are made up of convolutional, max pooling and fully connected layers. In par-
ticular, 10-layered CNN architecture is employed. On the other hand, LSTM
architecture, inspired from [3},/8,[23/43], contains two bidirectional LSMT along
with 128 and 64 cells with dropout of 0.2. In addition, a dense layer with two
neurons and softmax activation is used.

4 Experimental results and discussions

The dataset consists of 373 images from 150 subjects aged between 60 and 96.
The MRI scan of each subject was taken for his one or two visits with a separa-
tion of at least one year between visits. All the subjects were right-handed with
a mixture of men and women. Out of 150, 72 subjects were non-demented, with
no mental disorder or dysfunction. On the other hand, 64 subjects were catego-
rized as demented during their initial visit, including 51 with mild to moderate
Alzheimer’s disease. Importantly, the dataset is marked with five labels as nor-
mal, very mild dementia, mild dementia, moderate dementia, severe dementia.
In order to detect Alzheimer’s disease, we compare the results of different
ML classifiers including logistic regression, SVM, random forest, MLP, KNN,
naive bayes, decision tree and DL classifiers (1D-CNN, 2D-CNN, LSTM and
BiLSTM). For ML classifiers, the features, such as skew, percentile, standard
deviation, mean and square root are used to train the classifier. However, for DL
classifiers raw data is used to train the models. It is important to that we used
5-fold and 10-fold cross-validation to perform the experiments. The considered
evaluation parameters are precision, recall, f-measure and detection accuracy. It
is evident from Tables [1| highlights are results of different ML and DL methods
for a 5-fold cross validation settings. It can be noted that SVM provides the most
promising results as compared to other ML methods such as logistic regression,
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Fig. 4. 5-Fold Summary of Machine learning and deep learning Results

MLP and etc. Overall, the experimental results show that the DL classifiers
outperforms ML methods. However, the DL classifiers are expensive both in
terms of computational resources and time.

Table [2] shows the summary of considered ML and DL results to the de-
tect Alzheimer’s disease for a 10-fold cross validation settings. Here again, SVM
classifiers outperforms to other ML approaches such as logistic regression, MLP,
KNN, Naive Bayes, decision tree and random forest. On the the other hand,
naive bayes gives the worst performance as compared to all ML and DL meth-
ods and also it took longer to train the model. Overall, DL methods perform
better. In particular, BILSTM achieved the best performance. However, BILSTM
took longer to train the model.

4.1 Discussion

It is important to note that the detection of Alzheimer’s disease using ML meth-
ods is cost-effective (Computation and time) than DL algorithms. On the other
hand, training deep learning classifiers is time and computationally expensive.
Clearly, as shown in Figs [f] and [5] the BILSTM achieved better performance as
compared to other methods in both 5-fold and 10-fold cross validation strategies.
In addition to having such a promising results, our work has certain limitations
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Training |Testing

Methods Precision|Recall|F-Score|Time
Accuracy|Accuracy
SVM 80.78 78.56 0.78 0.76 ]0.76 2m2ls
Logistic 80.23 78.12 0.78 077 (078 [2m8s
Regression
MLP 79.81 78 0.78 0.77 (0.78 2m6 s
KNN 77.25 76.58 0.76 0.75 [0.76 2m2s
Naive Bayes 75.89 73.28 0.73 0.72 (0.73 2m19s
Decision Tree |76.98 75.59 0.75 0.74 10.75 2mlls
Random Forest|76.85 75.89 0.75 0.75 0.75 2m 3l s
1D-CNN 88.59 86.14 0.86 0.85 [0.86 8m 28 s
2D-CNN 89.45 87 0.87 0.86  [0.87 9m1ls
LSTM 91.26 90.85 0.90 0.90 {0.90 10m 17 s
BiLSTM 93.21 91.28 0.91 0.91 0.91 10m 12 s

Table 1. Summary of Machine learning and deep learning methods to detect Alzheimer
using 5-fold cross-validation

Methods Training | Testing Precision|Recall|F-Score|Time
Accuracy|Accuracy
SVM 82.24 80.75 0.80 0.79 |0.80 2m 33 s
Logisitc 81.86 79.86 0.79 078 (079  [2m12s
Regression
MLP 80.36 79.56 0.79 0.79 10.79 2m3ls
KNN 78.91 76.12 0.76 0.75 |0.76 2m4ds
Naive Bayes 75.2 71.64 0.71 0.70 |0.71 3m
Decision Tree |78.69 75.9 0.75 0.74 ]0.75 2m19s
Random Forest|75.97 73.29 0.73 0.72 |0.73 2m8s
1D-CNN 88.91 86.54 0.86 0.85 |0.86 8mbs
2D-CNN 89.43 87.01 0.87 0.86 |0.87 8m29s
LSTM 93.19 91.19 0.91 0.91 ]0.91 8m45s
BiLSTM 95.59 93.19 0.93 0.93 ]0.93 9m 16 s

Table 2. Summary of Machine learning and deep learning methods to detect Alzheimer
using 10-fold cross-validation

Ref Accuracy|Precision|Recall|F-Score
Zhang et al. [52] 86.24 0.85 0.83 |0.84
Dyrba et al. |20] 70.4 0.70 0.70  |0.70
Escudero et al. [22] {79.1 0.78 0.76  ]0.75
Trambaiolli et al. |50]|75.56 0.75 0.73 |0.71
Liu et al. |40] 84..40 0.84 0.82 |0.82
Shankar et al. [46] 76.23 0.75 0.74 |0.75
Our Approach 93.19 0.93 0.93 ]0.93

Table 3. Comparison with State-of-the-art approach
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Fig. 5. 5-Fold Summary of Machine learning and deep learning Results

as well (1) The dataset is very small with only 373 images in total. (2) The
dataset considers people of aged 65 and above only.

5 Conclusion

The alzheimer’s disease is the most challenging health problems scientists are
facing since decades. In this paper, we present a novel framework based on the
ML and DL algorithms including SVM, logistic regression, MLP, KNN, Naive
Bayes, decision tree and random forest, 1D-CNN, 2D,CNN, LSTM and BiL-
STM to automatically detect Alzheimer’s disease. The extensive experimental
results show that BIiLSTM achieved better performance as compared to other
ML and DL algorithms. As a future work, we intend to use transformers to
detect Alzheimer’s disease using images, visual and acoustic features.
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