Skip to main content

A Novel Fault-Tolerant Approach to Web Service Composition upon the Edge Computing Environment

  • Conference paper
  • First Online:
Web Services – ICWS 2021 (ICWS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12994))

Included in the following conference series:

Abstract

In the edge environment, combining existing simple services to build value-added services that to meet users’ needs has become a research hotspot of great practical value. With the increasing popularity of the edge computing paradigm, a large number of web services with similar functions have been created and deployed. Aiming at efficient and trustworthy composition of edge services, we proposed a novel fault-tolerant approach (FTSC) for edge service composition. Employs Primary-Backup (PB) fault-tolerant model to ensure edge service execution under the fault background, and leverages Deep-Q-learning-Network (DQN)-based algorithm for identifying the optimal service composition. For the validation purpose, we conducted extensive simulations based on the real dataset, which showed the proposed method clearly outperforms the traditional ones in terms of edge service completion rate, service active time and resource utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., Liu, Z., Chen, Y., Li, Z.: Mobile edge computing based task offloading and resource allocation in 5G ultra-dense networks. IEEE Access 7, 184172–184182 (2019)

    Article  Google Scholar 

  2. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Pearson Education, India (1900)

    Google Scholar 

  3. Shu, Y., Wu, Z., Liu, H., Gao, Y.: A simulation-based reliability analysis approach of the fault-tolerant web services. In: 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), pp. 125–129 (2016)

    Google Scholar 

  4. Zheng, Z., Lyu, M.R.: Selecting an optimal fault tolerance strategy for reliable service-oriented systems with local and global constraints. IEEE Trans. Comput. 64(1), 219–232 (2014)

    Article  MathSciNet  Google Scholar 

  5. Zheng, Z., Lyu, M.R.: A distributed replication strategy evaluation and selection framework for fault tolerant web services. In: 2008 IEEE International Conference on Web Services, pp. 145–152. IEEE (2008)

    Google Scholar 

  6. Tan, T.H., Chen, M., André, É., Sun, J., Liu, Y., Dong, J.S.: Automated runtime recovery for QoS-based service composition. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 563–574 (2014)

    Google Scholar 

  7. Liu, A., Li, Q., Huang, L., Xiao, M.: FACTS: a framework for fault-tolerant composition of transactional web services. IEEE Trans. Serv. Comput. 3(1), 46–59 (2009)

    Article  Google Scholar 

  8. Sun, H., Yu, H., Fan, G., Chen, L.: QoS-aware task placement with fault-tolerance in the edge-cloud. IEEE Access 8, 77987–78003 (2020)

    Article  Google Scholar 

  9. Moustafa, A., Ito, T.: A deep reinforcement learning approach for large-scale service composition. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds.) PRIMA 2018. LNCS (LNAI), vol. 11224, pp. 296–311. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03098-8_18

    Chapter  Google Scholar 

  10. Wang, H., et al.: Adaptive and large-scale service composition based on deep reinforcement learning. Knowl.-Based Syst. 180, 75–90 (2019)

    Article  Google Scholar 

  11. Doshi, P., Goodwin, R., Akkiraju, R., Verma, K.: Dynamic workflow composition: using Markov decision processes. Int. J. Web Serv. Res. (IJWSR) 2(1), 1–17 (2005)

    Article  Google Scholar 

  12. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw.: Pract. Exp. 41(1), 23–50 (2011)

    Google Scholar 

  13. Zhu, X., Wang, J., Guo, H., Zhu, D., Yang, L.T., Liu, L.: Fault-tolerant scheduling for real-time scientific workflows with elastic resource provisioning in virtualized clouds. IEEE Trans. Parallel Distrib. Syst. 27(12), 3501–3517 (2016)

    Article  Google Scholar 

  14. Cui, D., Ke, W., Peng, Z., Zuo, J.: Multiple DAGs workflow scheduling algorithm based on reinforcement learning in cloud computing. In: Li, K., Li, J., Liu, Y., Castiglione, A. (eds.) ISICA 2015. CCIS, vol. 575, pp. 305–311. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0356-1_31

    Chapter  Google Scholar 

  15. Jiahao, W., Zhiping, P., Delong, C., Qirui, L., Jieguang, H.: A multi-object optimization cloud workflow scheduling algorithm based on reinforcement learning. In: Huang, D.-S., Jo, K.-H., Zhang, X.-L. (eds.) ICIC 2018. LNCS, vol. 10955, pp. 550–559. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95933-7_64

    Chapter  MATH  Google Scholar 

  16. Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  17. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Google Scholar 

  18. Qin, X., Jiang, H.: A novel fault-tolerant scheduling algorithm for precedence constrained tasks in real-time heterogeneous systems. Parallel Comput. 32(5/6), 331–356 (2006)

    Article  MathSciNet  Google Scholar 

  19. Lai, P., et al.: Optimal edge user allocation in edge computing with variable sized vector bin packing. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 230–245. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9_15

    Chapter  Google Scholar 

  20. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services. IEEE Trans. Serv. Comput. 7(1), 32–39 (2012)

    Article  Google Scholar 

  21. Al-Masri, E., Mahmoud, Q.H.: Discovering the best web service. In: Proceedings of the 16th international conference on World Wide Web, pp. 1257–1258 (2007)

    Google Scholar 

  22. Tian, H.T., Chen, M., Étienne André, Sun, J., Jin, S.D.: Automated runtime recovery for QoS-based service composition. In: International Conference on World Wide Web (2014)

    Google Scholar 

  23. Deelman, E., et al.: Pegasus, a workflow management system for science automation. Futur. Gener. Comput. Syst. 46, 17–35 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Long, T., Chen, P., Xia, Y., Jiang, N., Wang, X., Long, M. (2022). A Novel Fault-Tolerant Approach to Web Service Composition upon the Edge Computing Environment. In: Xu, C., Xia, Y., Zhang, Y., Zhang, LJ. (eds) Web Services – ICWS 2021. ICWS 2021. Lecture Notes in Computer Science(), vol 12994. Springer, Cham. https://doi.org/10.1007/978-3-030-96140-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96140-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96139-8

  • Online ISBN: 978-3-030-96140-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics