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Abstract. This position paper summarizes a recently developed re-
search program focused on inference in the context of data centric sci-
ence and engineering applications, and forecasts its trajectory forward
over the next decade. Often one endeavours in this context to learn
complex systems in order to make more informed predictions and high
stakes decisions under uncertainty. Some key challenges which must be
met in this context are robustness, generalizability, and interpretability.
The Bayesian framework addresses these three challenges, while bring-
ing with it a fourth, undesirable feature: it is typically far more ex-
pensive than its deterministic counterparts. In the 21st century, and
increasingly over the past decade, a growing number of methods have
emerged which allow one to leverage cheap low-fidelity models in or-
der to precondition algorithms for performing inference with more ex-
pensive models and make Bayesian inference tractable in the context of
high-dimensional and expensive models. Notable examples are multilevel
Monte Carlo (MLMC), multi-index Monte Carlo (MIMC), and their ran-
domized counterparts (rMLMC), which are able to provably achieve a
dimension-independent (including ∞−dimension) canonical complexity
rate with respect to mean squared error (MSE) of 1/MSE. Some paral-
lelizability is typically lost in an inference context, but recently this has
been largely recovered via novel double randomization approaches. Such
an approach delivers independent and identically distributed samples
of quantities of interest which are unbiased with respect to the infinite
resolution target distribution. Over the coming decade, this family of
algorithms has the potential to transform data centric science and engi-
neering, as well as classical machine learning applications such as deep
learning, by scaling up and scaling out fully Bayesian inference.

Keywords: Randomization Methods; Markov chain Monte Carlo; Bayesian
Inference

1 Introduction

The Bayesian framework begins with a statistical model characterizing the causal
relationship between various variables, parameters, and observations. A canoni-
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cal example in the context of inverse problems is

y ∼ N(Gθ(u), Γθ) , u ∼ N(mθ, Cθ) , θ ∼ π0 ,

where N(m,C) denotes a Gaussian random variable with mean m and covariance
C, Gθ : U → Rm is the (typically nonlinear) parameter-to-observation map,
θ ∈ Rp is a vector of parameters with π0 some distribution, and the data is
given in the form of observations y [53,54]. Nothing precludes the case where U
is a function space, e.g. leading to a Gaussian process prior above, but to avoid
unnecessary technicalities, assume U = Rd. The objective is to condition the
prior knowledge about (u, θ) with the observed data y and recover a posterior
distribution

p(u, θ|y) =
p(u, θ, y)

p(y)
=

p(y|u, θ)p(u|θ)p(θ)∫
U×Rp p(y|u, θ)p(u|θ)p(θ)dudθ

.

Often in the context above one may settle for a slightly simpler goal of identifying
a point estimate θ∗, e.g. θ∗ = argmaxθp(θ|y) (which we note may require an
intractable integration over U) and targeting p(u|y, θ∗) instead.

In the context described above, one often only has access to an approximation
of the map Gθ, and potentially an approximation of the domain U , which may
in principle be infinite dimensional. One example is the numerical solution of a
system of differential equations. Other notable examples include surrogate mod-
els arising from reduced-physics or machine-learning-type approximations [47] or
deep feedforward neural networks [45]. For the sake of concreteness the reader
can keep this model in mind, however it is noted that the framework is much
more general, for example the parameters θ can encode the causal relationship
between latent variables via a graphical model such as a deep belief network or
deep Boltzmann machine [5,43].

A concise statement of the general problem of Bayesian inference is that it
requires exploration of a posterior distribution Π from which one cannot obtain
independent and identically distributed (i.i.d.) samples. Specifically, the aim is
to compute quantities such as

Πθ(ϕ) :=

∫
U

ϕ(u)Πθ(du) , ϕ : U → R , (1)

where Πθ(du) = πθ(u)νθ(du), νθ(du) is either Lebesgue measure νθ(du) = du,
or one can simulate from it, πθ(u) = γθ(u)/νθ(γθ), and given u one can evaluate
γθ(u) (or at least a non-negative unbiased estimator). Markov chain Monte Carlo
(MCMC) and sequential Monte Carlo (SMC) samplers can be used for this [50].
Considering the example above with U = Rd, we may take ν(du) = du and then

γθ(u) = |Γθ|−1/2|Cθ|−1/2 exp(−1

2
|Γ−1/2θ (y−Gθ(u))|2− 1

2
|C−1/2θ (u−mθ)|2) , (2)

where |A| denotes the determinant for a matrix A ∈ Rn. Note we have used a
subscript for θ, as is typical in the statistics literature to denote that everything
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is conditional on θ, and note that the θ−dependent constants are not necessary
here, per se, but it is customary to define the un-normalized target as the joint on
(u, y), such that Zθ := νθ(γθ) = p(y|θ). Also note that in (2), u would be referred
to as a latent variable in the statistics and machine learning literature, and so
this setup corresponds to a complex physics-informed (via Gθ) unsupervised
learning model. Labelled data problems like regression and classification [44], as
well as semi-supervised learning [40,57], can also be naturally cast in a Bayesian
framework. In fact, if Gθ(u) is point-wise evaluation of u, i.e. Giθ(u) = u(xi), for
inputs or covariates xi associated to labels yi, and one allows U to be an infinite-
dimensional (reproducing kernel) Hilbert space, then standard Gaussian process
(GP) regression has this form. In infinite-dimensions there is no Lebesgue density,
so (2) does not make sense, but the marginal likelihood and posterior can both
be computed in closed form thanks to the properties of GP [48]. Alternatively,
if u are the parameters of a deep feedforward neural network [45] fθ(·;u), and
Giθ(u) = fθ(x

i;u) with Gaussian prior on u, then one has a standard Bayesian
neural network model [45,5].

1.1 The sweet and the bitter of Bayes

Three challenges which are elegantly handled in a Bayesian framework are (a)
robustness, (b) generalizability, and (c) interpretability [1,52]. Uncertainty quan-
tification (UQ) has been a topic of great interest in science and engineering
applications over the past decades, due to its ability to provide a more robust
model [17,1]. A model which can extrapolate outside training data coverage is
referred to as generalizable. Notice that via prior knowledge (1) and the phys-
ical model, (2) has this integrated capability by design. Interpretability is the
most heavily loaded word among the three desiderata. Our definition is that the
model (i) can be easily understood by the user [8], (ii) incorporates all data and
domain knowledge available in a principled way [8,27], and (iii) enables inference
of causal relationships between latent and observed variables [46]. The natural
question is then, “Why in the age of data doesn’t everybody adopt Bayesian
inference for all their learning requirements?”

The major hurdle to widespread adoption of a fully Bayesian treatment of
learning is the computational cost. Except for very special cases, such as GP
regression [48], the solution cannot be obtained in closed form. Point estimates,
Laplace approximations [51], and variational methods [38,6] have therefore taken
center stage, as they can yield acceptable results very quickly in many cases. In
particular, for a strongly convex objective function, gradient descent achieves
exponential convergence to a local minimizer, i.e. MSE ∝ exp(−N) in N steps.
Such point estimates are still suboptimal from a Bayesian perspective, as they
lack UQ. In terms of computation of (1), Monte Carlo (MC) methods are able to
achieve exact inference in (1) in general [41,50]. In the case of i.i.d. sampling, MC
methods achieve the canonical, dimension-independent convergence rate of MSE
∝ 1/N , for N−sample approximations, without any smoothness assumptions
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and out-of-the-box3. Quadrature methods [16] and quasi-MC [9] are able to
achieve improvements over MC rates, however the rates depend on the dimension
and the smoothness of the integrand.

A curse of dimensionality can still hamper application of MC methods through
the constant and the cost of simulation, meaning it is rare to achieve canonical
complexity of cost ∝ 1/MSE for non-trivial applications. Usually this is man-
ifested in the form of a penalty in the exponent, so that cost ∝ MSE−a, for
a > 2. A notable exception is MLMC [23,19] and MIMC [22] methods, and their
randomized counterparts rMLMC [49,55] and rMIMC [12], which are able to
achieve dimension-independent canonical complexity for a range of applications.
These estimators are constructed by using a natural telescopic sum identity and
constructing coupled increment estimators of decreasing variance. As an added
bonus, the randomized versions eliminate discretization bias entirely, and deliver
estimates with respect to the limiting infinite-resolution distribution.

In the context of inference problems, i.i.d. sampling is typically not possible
and one must resort to MCMC or SMC [50]. This makes application of (r)MLMC
and (r)MIMC more complex. Over the past decade, there has been an explosion
of interest in applying these methods to inference, e.g. see [25,15,3,26,33] for
examples of MLMC and [31,35] for MIMC. A notable benefit of MC methods is
easy parallelizability, however typically MLMC and MIMC methods for inference
are much more synchronous, or even serial in the case of MCMC. A family of
rMLMC methods have recently been introduced for inference [32,36,24], which
largely recover this lost parallelizability, and deliver i.i.d. samples that are un-
biased with respect to the limiting infinite resolution target distribution in the
inference context. In other words, the expectation of the resulting estimators
are free from any approximation error. The first instance of rMLMC for infer-
ence was [10], and the context was different to the above work – in particular,
consistent estimators are constructed that are free from discretization bias.

The rest of this paper is focused on these novel parallel rMLMC methods for
inference, which are able to achieve the gold standard of Bayesian posterior in-
ference with canonical complexity rate 1/MSE. In the age of data and increasing
parallelism of supercomputer architecture, these methods are prime candidates
to become a staple, if not the defacto standard, for inference in data-centric sci-
ence and engineering applications. Section 2 describes some technical details of
the methods, Section 3 presents a specific motivating example Bayesian inverse
problem and some compelling numerical results, and Section 4 concludes with a
call to action and roadmap forward for this exciting research program.

2 Technical Details of the methodology

The technical details of the methodology will be sketched in this section. The
idea is to give an accessible overview and invitation to this exciting methodol-

3 This is the same rate achieved by gradient descent for general non-convex smooth
objective functions. In fact, the success of deep neural networks for learning high-
dimensional functions has been attributed to this dimension-independence in [56].
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ogy. The interested reader can find details in the references cited. With respect
to the previous section, the notation for θ will be suppressed – the concerned
reader should imagine either everything is conditioned on θ or it has been ab-
sorbed into u← (u, θ). Subsection 2.1 sketches the MLMC idea, and some of the
challenges, strategies for overcoming them, and opportunities in the context of
inference. Subsection 2.2 sketches the rMLMC idea, and some of the challenges,
strategies for overcoming them, and opportunities in the context of inference.
Finally subsection 2.3 briefly sketches MIMC.

2.1 Multilevel Monte Carlo

As mentioned above, for problems requiring approximation, MLMC methods are
able to achieve a huge speedup in comparison to the naive approach of using a
single fixed approximation, and indeed in some cases canonical complexity of
cost ∝ 1/MSE. These methods leverage a range of successive approximations of
increasing cost and accuracy. In a simplified description, most MLMC theoretical
results rely on underlying assumptions of

(i) a hierarchy of targets Πl, l ≥ 0, of increasing cost, such that Πl → Π as
l→∞ ;

(ii) a coupling Π l s.t. ∀ A ⊂ U ,∫
A×U

Π l(du, du′) = Πl(A) , and

∫
U×A

Π l(du, du′) = Πl−1(A);

(iii) the coupling is such that∫
|ϕ(u)− ϕ(u′)|2Π l(du, du′) ≤ Chβl , (3)

and the cost to simulate from Π l is proportional to Ch−ζl , for some hl > 0
s.t. hl → 0 as l→∞, and C, β, ζ > 0 independent of l.

Now one leverages the telescopic sum

Π(ϕ) =

L∑
l=0

∆l(ϕ)︸ ︷︷ ︸
approximation

+

∞∑
l=L+1

∆l(ϕ)︸ ︷︷ ︸
bias

, (4)

where ∆l(ϕ) = Πl(ϕ) − Πl−1(ϕ), Π−1 ≡ 0, by approximating the first term,
ΠL(ϕ), using i.i.d. samples from the couplings Π l, l = 0, . . . , L. The second
term is the bias= Π(ϕ)−ΠL(ϕ). This allows one to optimally balance cost with
more samples on coarse/cheap levels, and a decreasing number of samples as l

increases, to construct a multilevel estimator Π̂(ϕ) that achieves a given mean
square error (MSE),

E(Π̂(ϕ)−Π(ϕ))2 = variance + bias2 ,
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(b) MSE vs Cost: MLSMC vs SMC for ellip-
tic PDE, illustrating the large gain in efficiency
(smaller Cost for a given MSE). [3]

Fig. 1. Synopsis of MLMC methods: a family of models, including coarse-resolution
approximation of differential equations, surrogates, etc. (a) can be combined in the
MLMC framework to yield improved complexity cost ∝ 1/MSE (b).

more efficiently than a single level method. A schematic is given in Fig. 1(a).
The MLMC estimator is defined as

Ŷ =

L∑
l=0

1

Nl

Nl∑
i=1

Y il , (5)

where Y il = ϕ(U il ) − ϕ(U il−1) and (Ul, Ul−1)i ∼ Π l for l ≥ 1, Y i0 = ϕ(U i0),

U i0 ∼ Π0, and L and {Nl}Ll=0 are chosen to balance the bias and variance. In

particular, L ∝ log(MSE) and Nl ∝ h
(β+ζ)/2
l . In the canonical regime where

β > ζ one achieves the canonical complexity of cost ∝ 1/MSE. If β ≤ ζ, there
are penalties. See [19] for details. Note that for the theory above, controlling the
bias requires only α > 0 such that∣∣∣∣∫ ϕ(u)− ϕ(u′)Π l(du, du′)

∣∣∣∣ ≤ Chαl ,
however it is clear that Jensen’s inequality provides α ≥ β/2, which is suitable
for the purposes of this exposition. There are notable exceptions where one can
achieve α > β/2, e.g. Euler-Maruyama or Milstein simulation of SDE [18], and
this of course provides tighter results.

Note that the assumptions above can be relaxed substantially if one sacrifices
a clean theory. In particular, the models Πl need not be defined hierarchically
in terms of a small parameter hl corresponding to “resolution”, as long as hβl
and h−ζl in assumption (iii) above can be replaced with Vl and Cl, respectively,
such that Vl → 0 as Cl → ∞ in some fashion. Indeed in practice one need not
ever consider the limit and can work with a finite set of models within the same
framework, as is advocated in the related multifidelity literature (see e.g. [47]).
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MLMC for inference. In the context of inference, it is rare that one can
achieve i.i.d. samples from couplings Π l. As described in Section 1, one more
often only has access to (unbiased estimates of) the un-normalized target and
must resort to MCMC or SMC. In the canonical regime β > ζ the theory can
proceed in a similar fashion provided one can obtain estimators Ŷ Nl such that
for some C, β > 0 and q = 1, 2

E
[
Ŷ Nl − (Πl(ϕ)−Πl−1(ϕ))

]q
≤ C

h
βq/2
l

N
. (6)

In the sub-canonical regime, the situation is slightly more complex.
Achieving such estimates with efficient inverse MC methods has been the

focus of a large body of work. These methods can be classified according to
3 primary strategies: importance sampling [25,3,2,42,37], coupled algorithms
[15,26,29,21,34], and approximate couplings [30,31,35]. See e.g. [33] for a recent
review. Importance sampling estimators are the simplest, and they proceed by
expressing the desired increment in terms of expectation with respect to one of
the levels. Its applicability is therefore limited to cases where the importance
weights can be calculated or estimated. Coupled algorithms attempt to achieve
the required rates by coupling two single level algorithms targeting the coarse
and fine targets, respectively. These are in some sense the most natural, and
in principle the most general, but it can be deceptively tricky to get them to
work correctly. Approximate coupling is the most straightforward strategy and
can also be quite versatile. In this case, one abandons exactness with respect
to coarse and fine marginals, and aims only to achieve well-behaved weights
associated to a change of measure with respect to an approximate coupling.

2.2 Randomized Multilevel Monte Carlo

Randomized MLMC (rMLMC) is defined similarly to (5) except with a notable
difference. Define a categorical distribution p = (p0,p1, . . . ) on Z+ and let
Li ∼ p, and Y iLi as above. The single term estimator [49] is defined as

Zi =
Y iLi

pLi
. (7)

Notice that, as a result of (4),

EZi =

∞∑
l=0

plE
(
Y il
pl

)
= Π0(ϕ) +

∞∑
l=1

Πl(ϕ)−Πl−1(ϕ) = Π(ϕ) ,

i.e. this estimator is free from discretization bias. The corresponding rMLMC
estimator is given by

Ẑ =
1

N

N∑
i=1

Zi =

∞∑
l=0

1

Npl

∑
i;Li=l

Y il . (8)
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It is easy to see that E#{i;Li = l} = Npl and #{i;Li = l} → Npl as N →∞,
and the optimal choice level of distribution is analogous to level selection above,
pl ∝ Nl, with Nl as in (5). Despite the infinite sum above, this estimator does
not incur infinite cost for finite N , because only finitely many summands are non-
zero. Furthermore, pl → 0, so higher levels are simulated rarely and the expected
cost is also typically finite. See [49] for further details and other variants.

rMLMC for inference In the inference context, one typically does not have
access to unbiased estimators of YLi , and rather E(Ŷ Nl ) 6= Πl(ϕ)−Πl−1(ϕ). In
the finite L case, one can get away with this provided (6) holds, however rMLMC
methods rely on this property. In the work [10], SMC is used to construct un-
biased estimators of increments with respect to the un-normalized target (a
well-known yet rather remarkable feature of SMC methods [14]), and subse-
quently a ratio estimator is used for posterior expectations, which are hence
biased (for finite N) but consistent (in the limit N → ∞) with respect to the
infinite-resolution (L = ∞) target. Subsequently it has been observed that an-
other inner application of the methodology presented above in Section 2.2 allows
one to transform a consistent estimator into an unbiased estimator [36,32].

In particular, suppose one can couple two estimators Ŷ Nl and Ŷ N
′

l , with
N ′ > N , that marginally satisfy (6), and such that the resulting estimator
satisfies, for q = 1, 2,

E
[
Ŷ Nl − Ŷ N

′

l

]q
≤ C

h
βq/2
l

N
. (9)

Introduce inner levels Nk, k ≥ 1, such that Nk → ∞ as k → ∞, and another
categorical distribution p = (p0, p1, . . . ) on Z+. Now let Ki ∼ p, Li ∼ p and

simulate Ŷ
NKi
Li , Ŷ

NKi−1

Li as above. The resulting doubly-randomized single term
estimator is given by

Zi =
1

pLipKi

(
Ŷ
NKi
Li − Ŷ NKi−1

Li

)
. (10)

Now, as above,

E
[

1

pKi

(
Ŷ
NKi
l − Ŷ NKi−1

l

)]
= Πl(ϕ)−Πl−1(ϕ) ,

and hence EZi = Π(ϕ). Furthermore, the estimators (10) can be simulated i.i.d.
In other words, the embarrassingly parallel nature of classical MC estimators is
restored, as well as all the classical results relating to i.i.d. random variables,
such as the central limit theorem.

The work [36] leverages such a doubly randomized estimator for online par-
ticle filtering in the framework of [29]. The work [32] uses a so-called coupled
sum variant in the framework of MLSMC samplers [3]. Both of these estimators
suffer from the standard limiting MC convergence rate with respect to the inner
randomization, which is sub-canonical. In other words the cost to achieve an
estimator at level K is O(NK) and the error is O(N−1K ). As a result, it is not
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possible to achieve finite variance and finite cost, and one must settle for finite
variance and finite cost with high probability [49]. In practice, one may truncate
the sum at finite Kmax to ensure finite cost, and accept the resulting bias.

rMLMCMC An alternative incarnation of the inner randomization can be
used in the context of MCMC, relying on the unbiased MCMC introduced in
[28], which is based on the approach of [20]. In [28] one couples a pair of MCMCs
(Un, U

′
n) targeting the same distribution Π in such a way that they (i) have the

same distribution at time n, Un
D∼ U ′n+1, (ii) meet in finite time E(τ) < ∞,

τ = inf{n;Un = U ′n}, and (iii) remain identical thereafter. An unbiased estimator
is then obtained via

X̂ = ϕ(Un∗) +

∞∑
n=n∗+1

ϕ(Un)− ϕ(U ′n)

= ϕ(Un∗) +

τ∑
n=n∗+1

ϕ(Un)− ϕ(U ′n) .

It is clear that in expectation the sum telescopes, giving the correct expectation
EX̂ = E(ϕ(U∞)) = Π(ϕ). Such estimators can be simulated i.i.d., which re-
moves the fundamental serial roadblock of MCMC, and the finite meeting time
ensures finite cost. Variations of the approach allow similar efficiency to a single
MCMC for a single CPU implementation, i.e. without leveraging parallelization.
As above, with parallel processors, the sky is the limit.

In order to apply such technology to the present context, one couples a pair
of coupled chains (Un,l, Un,l−1, U

′
n,l, U

′
n,l−1) such that

Un,l, Un,l−1
D∼ U ′n+1,l, U

′
n+1,l−1 ,

yielding a foursome that is capable of delivering finite-cost unbiased estimators
of Πl(ϕ)−Πl−1(ϕ). Indeed we are also able to achieve estimates of the type in
(6), and therefore (for suitable β) rMLMC estimators with finite variance and
finite cost. Note that only the intra-level pairs need to meet and remain faithful.
Ultimately, the i.i.d. estimators have the following form. Simulate Li ∼ p as
described in Section 2.2, and define Zi = Ŷ iLi/pLi , where

Ŷ il = ϕ(Un∗,l)− ϕ(Un∗,l−1)

+

τl∑
n=n∗+1

ϕ(Un,l)− ϕ(U ′n,l)−
τl−1∑

n=n∗+1

(
ϕ(Un,l−1)− ϕ(U ′n,l−1)

)
, (11)

with τ` = inf{n;Un,` = U ′n,`}, for ` = l, l − 1. The final estimator is

Ẑ =
1

N

N∑
i=1

Zi . (12)
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2.3 Multi-index Monte Carlo

Recently, the hierarchical telescopic sum identity that MLMC is based upon has
been viewed through the lense of sparse grids, for the case in which there are
multiple continuous spatial, temporal, and/or parametric dimensions of approx-
imation [22]. In other words, there is a hierarchy of targets Πα, where α is a
multi-index, such that Πα → Π as |α| → ∞. Under a more complex set of
assumptions, one can appeal instead to the identity

Π(ϕ) =
∑
α∈I

∆α(ϕ) +
∑
α/∈I

∆α(ϕ) , I ⊂ Zd+ ,

where d−fold multi-increments ∆α are used instead, i.e. letting ej ∈ Rd denote
the jth standard basis vector and δjΠα := Πα−Πα−ej , then ∆α := δd◦· · ·◦δ1Πα

(for any multi-index α′ with α′i < 0 for some i = 1, . . . , d, Πα′ := 0). The first
term is approximated again using coupled samples and the second is the bias.
Under suitable regularity conditions, this MIMC method yields further huge
speedup to obtain a given level of error [19,22]. Some preliminary work in this
direction has been done recently [31,35]. Forward randomized MIMC (rMIMC)
has recently been done as well [12].

3 Motivating example

3.1 Example of Problem

The following particular problem is presented as an example. This example is
prototypical of a variety of inverse problems involving physical systems in which
noisy/partial observations are made of the solution of an elliptic PDE and one
would like to infer the diffusion coefficient. For example, the solution to the
PDE v could represent pressure of a patch of land, subject to some forcing
f (sources/sinks), and the diffusion coefficient û(u) then corresponds to the
subsurface permeability [54,53], a highly desirable quantity of interest in the
context of oil recovery. Let D ⊂ Rd with ∂D ∈ C1 convex and f ∈ L2(D).
Consider the following PDE on D:

−∇ · (û(u)∇v) = f, on D, (13)

v = 0, on ∂D , (14)

where the diffusion coefficient has the form

û(x;u) = ū+

J∑
j=1

ujσjφj(x) , (15)

Define u = {uj}Jj=1, and the state space will be X =
∏J
j=1[−1, 1]. Let v(·;u)

denote the weak solution of (1) for parameter value u. The prior is given by
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uj ∼ U [−1, 1] (the uniform distribution on [−1, 1]) i.i.d. for j = 1, . . . , J . It
will be assumed that φj ∈ C(D), ‖φj‖∞ ≤ 1, and there is a u∗ > 0 such that

ū >
∑J
j=1 σj + u∗. Note that under the given assumptions, û(u) > u∗ uniformly

in u. Hence there is a well-defined (weak) solution v(·;u) that is bounded in
L∞(D) and L2(D) uniformly in u, and its gradient is also bounded in L2(D)
uniformly in u [11,13].

Define the following vector-valued function

G(u) = [〈g1, v(·;u)〉, . . . , 〈gm, v(·;u)〉]ᵀ, (16)

where gi ∈ L2(D) for i = 1, . . . ,m. We note that pointwise evaluation is also
permissible since u ∈ L∞(D), i.e. gi can be Dirac delta functions, however for
simplicity we restrict the presentation to L2(D). It is assumed that the data take
the form

y = G(u) + ξ, ξ ∼ N(0, θ−1 · Im), ξ ⊥ u , (17)

where ⊥ denotes independence. The unnormalized density γθ : X→ R+ of u for
fixed θ > 0 is given by

γθ(u) = θm/2 exp
(
− θ

2
‖G(u)− y‖2

)
. (18)

The normalized density is

ηθ(u) =
γθ(u)

Iθ
,

where Iθ =
∫
X
γθ(u)du, and the quantity of interest is defined for u ∈ X as

ϕθ(u) := ∇θ log
(
γθ(u)

)
=
m

2θ
− 1

2
‖G(u)− y‖2 . (19)

To motivation this particular objective function, notice that γθ is chosen
such that the marginal likelihood, or “evidence” for θ, is given by p(y|θ) = Iθ.
Therefore the MLE (λ = 0) or MAP are given as minimizers of − log Iθ +
λR(θ), where R(θ) = − log p(θ). Assuming R(θ) is known in closed form and
differentiable, then a gradient descent method requires

∇θ log Iθ =
1

Iθ

∫
X

∇θγθ(u)du =
1

Iθ

∫
X

∇θ log
(
γθ(u)

)
︸ ︷︷ ︸

ϕθ(u)

γθ(u)du = ηθ(ϕθ(u)) .

(20)
Stochastic gradient descent requires only an unbiased estimator of ηθ(ϕθ(u))
[39], which the presented rMLMC method delivers.

Numerical approximation The finite element method (FEM) is utilized for
solution of (14) with piecewise multi-linear nodal basis functions. Let d = 1 and
D = [0, 1] for simplicity. Note the approach is easily generalized to d ≥ 1 using
products of such piecewise linear functions described below following standard
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FEM literature [7]. The PDE problem at resolution level l is solved using FEM
with piecewise linear shape functions on a uniform mesh of width hl = 2−l,

for l ≥ 0. Thus, on the lth level the finite-element basis functions are {ψli}
2l−1
i=1

defined as (for xi = i · 2−l):

ψli(x) =

{
(1/hl)[x− (xi − hl)] if x ∈ [xi − hl, xi],
(1/hl)[xi + hl − x] if x ∈ [xi, xi + hl] .

To solve the PDE, vl(x) =
∑2l−1
i=1 vliψ

l
i(x) is plugged into (1), and projected onto

each basis element:

−
〈
∇ ·
(
û∇

2l−1∑
i=1

vliψ
l
i

)
, ψlj

〉
= 〈f, ψlj〉,

resulting in the following linear system:

Al(u)vl = f l,

where we introduce the matrix Al(u) with entries Alij(u) = 〈û∇ψli,∇ψlj〉, and

vectors vl,f l with entries vli = 〈v, ψli〉 and f li = 〈f, ψli〉, respectively.
Define Gl(u) = [〈g1, vl(·;u)〉, . . . , 〈gm, vl(·;u)〉]ᵀ. Denote the corresponding

approximated un-normalized density by

γlθ(u) = θm/2 exp
{
− θ

2
‖Gl(u)− y‖2

}
, (21)

and the approximated normalized density by ηlθ(u) = γlθ(u)/I lθ, where I lθ =∫
X
γlθ(u)du. Furthermore, define

ϕlθ(u) := ∇θ log
(
γlθ(u)

)
=
m

2θ
− 1

2
‖Gl(u)− y‖2 . (22)

It is well-known that under the stated assumptions vl(u) converges to v(u) as

l→∞ in L2(D) (as does its gradient), uniformly in u [7,11], with the rate h
β/2
l ,

β = 4. In a forward UQ context, this immediately provides (3) for Lipschitz
functions of v, with β = 4. Furthermore, continuity ensures γlθ(u) converges
to γθ(u) and ϕlθ(u) converges to ϕθ(u) uniformly in u as well. See also [4,2]
for further details. This allows one to achieve estimates of the type (6) in the
inference context.

3.2 Numerical results

This section is for illustration purposes and reproduces results from [24], specif-
ically Section 4.1.2 and Figure 5. The problem specified in the previous section
is considered with forcing f(x) = 100x. The prior specification of u = (u1, u2)
is taken as J = 2, ū = 0.15, σ1 = 1/10, σ2 = 1/40, φ1(t) = sin(πx) and
φ2(t) = cos(2πx). For this particular setting, the solution v is continuous and
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hence point-wise observations are well-defined. The observation function G(x) in
(16) is chosen as gi(v(u)) = v(0.01+0.02(i−1);u) for i ∈ {1, . . . ,m} withm = 50.
The FEM scheme in Section 3.1 is employed with mesh width of l← l+l0, where
l0 = 3. Using a discretization level of l = 10 to approximate G(x) with Gl(x),
x = (0.6,−0.4) and θ = 1, observations y ∈ Rm are simulated from (17).

The estimators Ŷ iLi are computed using a reflection maximal coupling of pCN
kernels, as described in [24]. The left panel of Figure 2 illustrates that averaging
single term estimators (11) as in (12) yields a consistent estimator that converges
at the canonical Monte Carlo rate of 1/MSE.

Consider now inference for θ in the Bayesian framework, under a prior p(θ)
specified as a standard Gaussian prior on log θ. A stochastic gradient ascent
algorithm is initialized at θ(0) = 0.1 to compute the maximum a posteriori
probability (MAP) estimator θMAP ∈ arg max p(θ)Iθ, simulated by subtracting
∇θR(θ) from the estimator of (20) given by Zi defined above and in (11). The
right panel of Figure 2 displays convergence of the stochastic iterates to θMAP.
An estimator following [32], of the type in (10), is also shown here, using the
algorithm in [4] instead of coupled MCMC. The plot shows some gains over [32]
when the same learning rates are employed.

Parallel implementation. An example is now presented to illustrate the par-
allel improvement of these methods on multiple cores. These results are borrowed
from [36] for (online) filtering of partially observed diffusions. In particular, an

estimator of the form (10) is constructed, in which each Ŷ
NKi
Li is a coupled

particle filter increment estimator at resolution Li and with Ki particles, for
i = 1, . . . , N , and these estimators are then averaged as in (12). The parallel
performance is assessed with up to 1000(≤ N) MPI cores on the KAUST super-
computer Shaheen. A Python notebook that implements the unbiased estimator
both on a single core and multiple cores can be found in the following Github link:
https://github.com/fangyuan-ksgk/Unbiased-Particle-Filter-HPC-.

To demonstrate the parallel scaling power, various numbers of processors
M ∈ {1, 5, 10, 20, 50, 100, 500, 1000} are used, with N = 103M . The serial com-
putation time to obtain the estimator on a single core is recorded, as well as
the parallel computation time on M cores. The parallel speedup is defined as
the ratio of cost for serial implementation and the cost for parallel implementa-
tion, and the parallel efficiency is given by the ratio of parallel speedup and the
number of parallel cores M .

The results are shown in Figure 3, which shows almost perfect strong scaling
for up to 1000 MPI cores, for this level of accuracy. It is important to note
that there will be a limitation to the speedup possible, depending upon the
accuracy level. In particular, the total simulation time is limited by the single
most expensive sample required. Therefore, it will not be possible to achieve
MSE∝ ε2 in O(1) time, even with arbitrarily many cores.
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Fig. 2. Elliptic Bayesian inverse problem of Section 3.2 Left: accuracy (minus MSE)
against number of single term samples N . The samples were simulated in serial on a
laptop, but can all be simulated in parallel. Right: convergence of stochastic gradient
iterates θ(n) to the maximum a posteriori probability estimator θMAP. The learning
rates considered here are αn = α1/n. The red curve corresponds to the unbiased
MLSMC algorithm of [32] for comparison.
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Fig. 3. Parallel Speedup and Parallel Efficiency against number of MPI cores for the
unbiased particle filter from [36].
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4 Conclusion and path forward

This position paper advocates for the widespread adoption of Bayesian meth-
ods for performing inference, especially in the context of complex science and
engineering applications, where high-stakes decisions require robustness, gener-
alizability, and interpretability. Such methods are rapidly gaining momentum
in science and engineering applications, following an explosive interest in UQ,
in concert with the data deluge and emerging fourth paradigm of data-centric
science and engineering. Meanwhile, in the field of machine learning and AI
the value of Bayesian methods has been recognized already for several decades.
There it is widely accepted that the Bayesian posterior is the gold standard,
but the community has largely converged on variational approximations or even
point estimators as surrogates, due to complexity limitations.

Here a family of embarrassingly parallel rMLMC simulation methods are
summarized. The methods are designed for performing exact Bayesian inference
in the context where only approximate models are available, which includes
a wide range of problems in physics, biology, finance, machine learning, and
spatial statistics. Canonical complexity is achieved. Important priorities going
forward are: (i) continued development of novel instances of this powerful class
of algorithms, (ii) adaptation to specific large scale application contexts across
science, engineering, and AI, and (iii) automation of the methods and the design
of usable software to enable deployment on a large scale and across applications
in science, engineering, and AI, ideally by practitioners and without requiring
an expert.

Acknowledgements. KJHL and AT were supported by The Alan Turing Insti-
tute under the EPSRC grant EP/N510129/1. AJ and FY acknowledge KAUST
baseline support.
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