
Lawrence Berkeley National Laboratory
LBL Publications

Title
Use It or Lose It: Cheap Compute Everywhere

Permalink
https://escholarship.org/uc/item/60w672j2

ISBN
9783030964979

Authors
Groves, Taylor
Hazen, Damian
Lockwood, Glenn
et al.

Publication Date
2022

DOI
10.1007/978-3-030-96498-6_16
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/60w672j2
https://escholarship.org/uc/item/60w672j2#author
https://escholarship.org
http://www.cdlib.org/


Use It or Lose It: Cheap Compute Everywhere?

Taylor Groves1, Damian Hazen1, Glenn Lockwood1, and Nicholas J. Wright1

NERSC, Lawrence Berkeley National Laboratory
{tgroves, dhazen, glock, njwright}@lbl.gov

Abstract. Moore’s Law is tapering off, but FLOPS per dollar continues to
grow. Inexpensive CPUs are emerging everywhere from network to storage as
an effective way of managing and deploying hardware and firmware as well as
providing services close to the data path. Examples of this include ARM cores
within Mellanox Bluefield, Broadcom Stingray DPUs, switches, and compute
in storage. This additional processing power can be useful for (1) enabling
higher throughput, (2) decreasing or hiding latency, (3) increasing power/cost
efficiency, (4) alleviating contention for oversubscribed resources. In order
to make these additional resources available to a wide range of services and
applications we must first develop: (1) an understanding of the strengths
and weaknesses of the hardware, (2) an understanding of how portions of
a workload might be decomposed into tasks for offload, (3) abstractions to
allow code portability on the heterogeneous components. We take a look at
existing hardware trends through a survey of existing and original work to
examine how new compute-in-network show promise, where they fall short
and how HPC might evolve to take advantage of them.

Keywords: Data Processing Unit · Smart NIC · Infrastructure Processing
Unit · Compute-in-Network.

1 Introduction

Facilities deploy high-end systems for a variety of reasons, including (1)
faster time to solution, (2) higher-precision support (3) better power
efficiency (4) difficulty of problem decomposition (as seen in the ML
landscape) and (5) achieving unprecedented simulation scale. Given the
coming ubiquity of cheap computational resources, the question natu-
rally arises - how can ancillary services and infrastructure be profitably
offloaded to these compute resources?

Over the last 10 years compute power has continued to become more affordable.
The cost of a transistor and FLOPS per dollar have continued to decrease in recent

? This manuscript has been authored by an author at Lawrence Berkeley National
Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of
Energy. The U.S. Government retains, and the publisher, by accepting the article for
publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for U.S. Government purposes.



2 T. Groves et al.

years. However, at any point in time there is a range of performance per dollar that
can be obtained. At one end, high-end (premium) hardware offers greater density,
additional I/O connectivity and more sophisticated error correction, albeit at a higher
price. On the other end of the spectrum, lower-end (freemium) components provide
moderate computation at a value price point. And while they may not have all of
the features of the high-end parts (e.g. increased failure rates, decreased memory
capacity, or reduced precision) we are seeing a proliferation of these compute resources
scattered throughout HPC systems, including in networking and storage.

Traditionally, everything was run on a homogeneous CPU system. As Moore’s
Law slowed down, and Dennard scaling ended, this was followed by systems that
offloaded portions of codes to accelerators like GPUs. The next logical step is to push
the code and software that can effectively use them onto these lower performance
components. This will leave the premium hardware to the applications and software
that can leverage the most benefit.

In this paper we begin by reviewing the current landscape providing background
and further comparing the qualities of premium vs. freemium components. We begin
with a focus on Data Processing Units (DPUs)1 and how cheap compute is creating
new opportunities. We discuss hardware design points, uses of the hardware, the
perceived strengths and weaknesses as well as open challenges. We follow this with
a brief discussion of the memory market and potential solutions for addressing the
growing cost of system memory. Last, we summarize how cheap compute everywhere
may alter the HPC landscape as we must orchestrate distributed heterogeneous
resources for complex workflows.

2 Motivation

2.1 Premium and Freemium

In today’s hardware landscape there is often a breadth of choice when it comes
to balancing power, density, performance and cost. More capable processor SKUs
command a premium, but typically don’t provide the most efficient value in $/FLOP.
In some cases the lower-end (or freemium) components may have started as premium
components that encountered a defect in manufacturing. The manufacturers then dis-
able the defective portions of the unit and sell the remainder at a discount. Customers
that purchase these models are, in effect, riding on the coat tails of the customers pur-
chasing premium SKUs. In other examples we see how economies of scale (such as the
cell phone and gaming market) have led to massive increases in performance per dollar.
We see these price-to-performance gaps across both GPU and CPU architectures.

The price premium for top-tier performance provides motivation for offloading
ancillary software and infrastructure. If we can offload these workloads, the remaining
code running on the premium hardware benefits by reducing contention for shared
resources. An ancillary offload makes sense, when the workload is either (1) not in the
critical performance path or (2) does not make use of premium hardware capabilities
(e.g. 64 bit precision, or vector and tensor units). This ancillary offload may be on

1 DPU, Smart NIC, and IPU are used interchangeably.



Use It or Lose It: Cheap Compute Everywhere 3

Fig. 1. In the spectrum of offload, HPC has pivoted towards specialization offload such as
GPUs to provide additional capability to a subset of the workloads. Moving in the opposite
direction is the possibility of ancillary offload which isolates performance critical workloads
from those that could run on less capable hardware.

the same CPU as the Premium CPU (e.g. big.LITTLE) or distributed more broadly,
such as on a NIC. The benefit of having the ancillary services on the same CPU is
tighter coupling. The downside is that this takes up chip area on the high density
premium CPU and there are challenges of having multiple clock and power domains
within an integrated circuit.

2.2 Data movement

Another reason to distribute cheap compute throughout the system is to reduce the
cost of data movement, which can improve both throughput and latency [56]. Placing
computation throughout the data path reduces the need for additional transfers
and hops across the network and through complex memory hierarchies, resulting in
improved latency. By placing the compute next to the data we may be able to take ad-
vantage of higher throughput links while reducing the load on shared network resources.

Though, just because the compute is closer physically to the data does not
guarantee it will achieve improved performance. Even if positioned closer to the data,
low power, cheap cores running a full OS may not be able to provide enough processing
power to facilitate increased throughput and lower latency. From a throughput
perspective, a single core does not have enough cycles to keep up with 100, 200, 400
Gbps or greater network speeds we are seeing in HPC [19, 38]. Because of the deep
memory hierarchy on the host CPU, it would take many cores to saturate the NIC
peak message rate (IB HDR is 5 ns per message). Figure 2 illustrates how a single
Broadwell core is unable to come close to saturating the Mellanox EDR 100GBps NIC.
Furthermore the lower power and cheaper A72 incurs an additional delay of around 250
ns per message. The penalty of using lightweight cores may not provide a data locality
benefit since link latency is approximately 5ns per meter of fiber plus an additional 100-
200 ns per switch.For this reason, many approaches targeting throughput and latency
improvements are built around lightweight and specialized line-rate offload [27].

However, offload hardware need not be devoted entirely to line rate processing.
Cheap cores may be part of a data pipeline in DPUs that allows for variable per-
formance offload as seen in work by Lin et al [35]. In their design, separate paths



4 T. Groves et al.

Fig. 2. Approximate latencies (half round trip) for different interconnects and memory
alongside the time (gap) between sending consecutive messages over an Infiniband network
with different CPUs. Latency values are approximates from [45, 8]. Best case gap was
recorded for single core ib write bw tests using Arm A72 and Intel Broadwell E5-2697A
CPUs connected to an IB HDR NIC.

in the switching fabric of the NIC allow for line rate traffic to proceed through a
lightweight reconfigurable match table. Depending on the match/action, traffic may
(1) forwarded directly out the NIC or (2) proceed to a buffer and scheduling unit
where more complex and potentially non-line rate offload chains may be composed on
the NIC. Additionally, if we look at current trends for hardware such as the Mellanox
Bluefield [46], Xilinx Alveo [60] and Broadcom Stingray [14] series DPUs, we see that
there is a set of inexpensive Arm cores on the NIC (ancillary offload) as well as a
set of accelerator units (e.g. compression, encryption, regular expression engines or
FPGAs) which provide specialization offload.

In summary, the benefits of reduced data movement can provide a benefit as
both (1) a direct performance benefit by reducing latencies and providing greater
throughput and (2) indirect performance benefit by reducing contention for shared
network resources. In some cases it may create opportunities for performance gains,
but the other benefit is from freeing premium resources.

3 Hardware Design Points

NICs began as a card to provide a connection between the computer and an external
network. Historically, a substantial amount of network processing was done on the
host CPU, but over time more functionality shifted onto the NIC, such as protocol
offload [51], Remote Direct Memory Access (RDMA) and programmable match and
action engines [28]. Smart NICs have been a part of the HPC vocabulary for over
twenty years [51, 18], but recently there has been a revival of interest in the topic with
Smart NIC, or in vogue data processing units (DPU) and Infrastructure Processing
Unit (IPU), being announced by a variety of vendors and hyperscalers. While many



Use It or Lose It: Cheap Compute Everywhere 5

Fig. 3. Summary of different strengths and weaknesses of varied DPU architectures.

of these cards include a mixture of CPU, many-core, Field Programmable Gate
Array (FPGA) or Application Specific Integrated Circuit (ASIC) components we
must understand the strengths and weaknesses of each approach..

In Figure 3 we map the attributes of FPGA, CPU, many-core and ASIC hard-
ware used in DPUs to their strengths and weaknesses. We provide rough guidelines
regarding Peak Throughput, Memory Bandwidth, Ease of Use, Cost (in terms of
hardware and design time), and Hardware Reconfigurability.

3.1 FPGA

A large proportion of DPUs rely on line-rate packet processing with fast turn around
times using FPGAs [59, 15, 60, 17, 30, 43, 19]. This class of hardware expanded on
traditional Smart NIC use cases offloading hypervisor functionality, multi-tenant
Software Defined Networking (SDN), and application-specific functionality such as
portions of a web search engine [53]. The strengths of these architectures are focused
around high peak throughput, hardware reconfigurability and memory bandwidth.
The downsides of this these cards are the absolute cost (though they may provide
good performance per dollar value), the DRAM memory capacity and ease of use.



6 T. Groves et al.

FPGAs are a common architectural choice for processing packets at line rate. This
is accomplished by allowing developers to construct application-specific assembly lines
that can fully leverage pipelining and parallelism inherent to a particular workload.
This contrasts with a CPU where data moves between deep memory hierarchies and
stalls incurred are hidden by pipelining and scheduling. FPGAs have a large amount
of extremely fast SRAM. As a reference point, the Xilinx Alveo U250 targets memory
bandwidth-bound code and features 38TB/s of internal SRAM bandwidth (54 MB
capacity).

Regarding ease of use, these cards require a significant investment in software and
programming, but have a faster development cycle than an ASIC. These approaches
target specialization offload but have an emphasis on use cases that require iterative
hardware design and deployment.

3.2 Many-core

Other approaches utilize a mixture of many packet and flow processing cores combined
with specialized hardware blocks to perform processing for a variety of different net-
work and data-centric flows [44, 23]. By leveraging many cores these platforms provide
good peak throughput, but the hardware is not reconfigurable. These approaches
still target line-rate processing, but may focus on a subset of targeted use cases (e.g.
disaggregated storage platform [24]). As a reference point, the Fungible F1 DPU [23]
is divided into multiple data cluster of 200 threads with full cache coherency. All
of this is connected to a scheduling block, network units and host units by an on
chip network. Again, there is a higher absolute cost than cheap CPUs, though the
performance per dollar can be great if the application can leverage the parallelism
of the architecture. Memory bandwidth is often favored in lieu of memory capacity.
For this reason, these approaches typically target specialization offload.

One of the challenges of building out a many-core approach is the on-chip network
that ties it all together. As the number of cores and endpoints increases, it becomes
increasingly difficult to scale a non-blocking full bisection network that can facilitate
line rate processing on the chip [35, 19]. Another challenge of many-core architectures
is extracting sufficient parallelism from the workload to fully leverage collections of
threads in a SIMD architecture.

3.3 Cheap CPUs

A third class of DPUs [14, 46, 50, 39] combine general purpose, but relatively weak,
inexpensive and low power Arm cores with network and storage centric acceleration
blocks. These often run a Linux operating system. In the Bluefield [46] architecture
these CPUs are connected to the NIC over a PCIe switch that treats the CPU the
same as the host CPU, while in other cases the CPU is more tightly integrated [50].
The benefits of these CPUs are that they are extremely cheap and easy to integrate.
This means that they are commonly added to other varieties of FPGA DPUs [60] to
handle exceptions, errors and non-conventional control plane functions. However, this
style of CPU provides lower throughput than alternatives [36] and they may need
to provide greater memory capacity for data buffering and storage with relatively



Use It or Lose It: Cheap Compute Everywhere 7

modest memory bandwidth compared to many-core and FGPA architectures. This
third class of NIC is the optimal choice for ancillary offload, since they
provide a minimal of specialized and costly resources.

3.4 ASICs and ASIC-hybrid

Throughout all of these design points are many heterogenous ASIC components such
as encryption, compression and regular expression engines. These are specialized
hardware units that provide excellent performance and value but only for a subset
of fixed functionality. The fixed function blocks are designed around static workloads
that don’t change frequently. To create a good value proposition the speedups of an
ASIC must offset one-time design and verification costs (both time and money). It is
likely that many DPU architectures will take a hybrid approach combining ASICs for
well understood, slow-to-change acceleration and flexible, lightweight cores or FPGAs
for rapidly evolving use cases.

4 Target market and use cases

4.1 Opportunities better suited for specialization offload

Protocol Offload, load balancing, security and encryption: Things that used to be con-
sidered smart such as TCP/IP acceleration and virtualization offload (e.g. SR-IOV)
are now commonplace in NICs. Newer Smart NICs have expanded the role of what
is offloaded and added additional functionality for networks and packet processing [9,
31, 32, 51]. This may include things such as RDMA protocol acceleration, traffic
monitoring, programmable match+action engines and HPC targeted protocol offload
such as MPI tag-matching.

Virtualization offload and multi-tenancy: Hyperscalers have embraced DPU solutions
to free up premium CPU cores on the host for applications and customers. Publicly
announced platforms include Microsoft Catapult [19], AmazonWeb Services Nitro [10],
and Alibaba X-Dragon [16]. On these platforms there is an emphasis on providing as
close to bare metal performance, while enabling the efficiency, security and flexibility
that virtualization offers. Offload challenges here include scheduling [57], multi-tenant
QoS [54], and security[10]. All of these have an emphasis on line rate processing and a
majority of them rely on FPGAs for implementation/prototyping, this is because the
lightweight hypervisor being offloaded is in the critical path for accessing resources
and application performance.

The initial work using FPGAs at Microsoft for the Catapult Project was motivated
primarily by finding alternative pathways to performance in light of the slowdown of
Moore’s Law. In the Catapult work [53], the authors chose FPGAs to provide a layer
of computation to accelerate a search ranking engine between the host CPU and the
network. FPGAs were selected because they could provide price/performance benefits
in latency and throughput at line rate, while being reconfigurable as the datacenter
workloads evolved. In later work, FPGAs were used to both offload and accelerate the



8 T. Groves et al.

software defined networking (SDN) that ran on the host hypervisor[19]. For Microsoft
the deployment of FPGAs makes sense, given the fleet of more than a million nodes,
the development cost is easily amortized. However the HPC environment has different
economies. Top HPC centers have significantly lower node counts and rather than
focusing on a small number of workloads (such as search) our centers contain thousands
of unique workloads with application developers running on bare-metal systems.

Virtualization and resource isolation has not been a focus in the HPC space
because workloads are designed to run across multiple nodes and utilize the full node
for each node allocated. However machine learning is pushing node sizes bigger, with
more GPUs and resources tied up in a single node. The economics of this have bled
into many recent HPC designs which now feature nodes with fatter architectures. As
future systems grow even larger and more heterogeneous, we may need to leverage
multi-tenancy techniques similar to cloud providers, but it is unlikely to be a job
suited for cheap cores and ancillary offload.

4.2 Opportunities for ancillary offload

Compared to cases leveraging specialization offload, relatively little work has been
done to motivate ancillary offload on the DPU. However there are several areas where
DPUs have found success by being able to alleviate pressure for host resources.

Key value stores: In work by Liu et al. [38] a range of microservices were evaluated
comparing, the Marvell CN78XX DPU with 12 MIPS cores, against more powerful
host based CPUs. The work showed that complicated workloads performed poorly
on the DPU, but was unique in that it highlighted the potential energy savings cheap
DPU cores could provide. One of the microservices the DPU provided greater energy
efficiency for was key value stores. Key value stores are fundamentally (1) a hash
evaluation which provides a memory location and (2) a memory access to read/write
or perform atomics on the data, both of which can be adequately handled by cheap
cores. In work by [36] using the stress-ng benchmark, memory focused benchmarks
such as mcontend performed better on Bluefield Arm cores than compared to a range
of host CPUs. In work by Phothilimthana et al. [52], a DPU was used as a write-back
cache for a host-based key-value store (KVS) and observed a 28-60% performance
improvement. By offloading to portions of a KVS, host applications may experience
less pollution of the cache due to network-induced memory contention [25]. Despite
the benefits, a challenge of utilizing the DPU as a cache is maintaining a consistent
state between the data that resides on the DPU and host memory.

Simple analytics: A number of simple analytics functions can be implemented on a
DPU where a powerful host CPU would otherwise be overkill. These include things like
K-nearest neighbor, and Spike [38], or portions of the Apache Storm [21] like multiplex-
ing and demultiplexing operations. In the case of the latter, a 76% improvement was
observed when multiplexing and demultiplexing was offloaded to the DPU compared
to running the workload entirely on the host CPU [52]. In cases where analytics are
sufficiently independent of host workloads, such that they can tolerate the extra hop
over PCIe or network interfaces, cheap compute on DPUs can be leveraged successfully.



Use It or Lose It: Cheap Compute Everywhere 9

If the DPU processor and host memory could be more tightly coupled, additional
avenues for analytics would be possible as often the penalty for moving memory across
PCIe is several times greater than local memory accesses (as shown in Figure 2).

Communication and computation overlap: A third avenue for ancillary offload is
providing communication and computation overlap by leveraging cheap cores on DPUs
to manage complex communications on the host’s behalf. In work by Bayatpour et
al. [11], non-blocking all-to-all collectives are delegated to Arm cores on the Bluefield
2 DPU. In this model the host simply provides metadata information about the
collective to threads on the DPU. These threads then read and write host memory
using Remote Direct Memory Addressing (RDMA) to complete the iterations of the
all-to-all algorithm. Because of the extra latency incurred transferring data to and
from host memory to DPU cores this approach focused on message sizes greater than
16KiB. In this range, four A72 Arm cores were able to deliver performance similar to
that of the host CPU. However, the real benefit of this approach is that the all-to-all
operation is offloaded and the host is left able to focus on other more demanding work.

Node-local IO virtualization The proliferation of AI and other non-traditional I/O
workloads on HPC systems has resulted in a tension in storage systems design between
traditional parallel file systems and node-local storage. Node-local NVMe (Non-volatile
Memory Express) has been shown to dramatically accelerate some workloads by
localizing metadata-intensive and high-frequency accesses to the PCIe data paths
within nodes, sparing the global network and parallel file system from disruption
that would otherwise adversely affect other users of those shared network and file
system resources. Not every HPC workload can use node-local storage because they
collectively lack the coherence required by shared-file I/O. As a result, the decision
of whether to provision hinges on balancing the cost of adding new components to
every compute node against the fact that those components may be poorly utilized.

NVMe over Fabrics (NVMeoF) allows compute nodes to mount NVMe devices
over the network, offering the benefits of localizing many expensive metadata and
high-frequency I/O operations to a compute node by fully delegating namespace
coherence and I/O buffering to each compute node. Using NVMeoF, it is possible
to provision only a subset of nodes with node-local NVMe, and letting any node
“borrow” an unused NVMe drive from a neighboring compute node on-demand. As
such, systems designers can provision only a subset of compute nodes with NVMe
drives to keep costs commensurate with utilization but still achieve the effect of any
compute node having a node-local NVMe when needed.

The biggest challenge with this disaggregated NVMeoF model is that the node
“loaning” its NVMe to another node still has to service interrupts triggered by NVMeoF
activity, and its memory bandwidth must be shared between its local computational
workload and the I/O workload targeting its loaned NVMe drive. SNAP [42] holds
promise to break this tradeoff by allowing the entire NVMeoF stack to run entirely on
the loaner node NIC, fully shielding the host from interrupts and memory contention
associated with serving up NVMeoF. A borrower node uses the NVMe drive loaned
by a DPU, and the ”loaner” node can be completely unaffected by I/O targeting
its physically local NVMe and compute its local workload without interruption.



10 T. Groves et al.

Machine learning inference: By sitting on the network data path, DPUs provide an
opportunity for deploying ML inference at the edge. A typical inference workload will
load relevant features of the data, apply the weights of the model and then perform
multiply-accumuate operations on the result. Many neural networks may only need
8 bit precision compared to 64 bit precision of many scientific workloads. This means
that the host CPU is mismatched with the workload. A standalone GPU may provide
much greater efficiency than the host CPU, but may be overkill for modest inference
workloads. The standalone GPU often contains a large volume of costly on-package
memory that is critical for training but less for inference. In this scenario having a less
powerful GPU on the DPU may provide an opportunity for ancillary offload and leave
premium GPU resources for more intensive workloads. Nvidia has recently announced
the Bluefield-X [6] line of DPUs which include an A100 GPU integrated into the
DPU. While this is a premium GPU it may make sense to explore future offerings
with less power-hungry GPUs – similar to the approach taken with Nvidia Jetson [7].
Other companies may begin to incorporate functionality of the ARM Ethos NPUs [1]
into their DPU. This is an exciting area to look forward to in the future of DPUs.

Specialization offload often receives most of the attention when researchers evalu-
ate the benefits of DPUs. However, given the premium paid for HPC systems and the
proliferation of cheap CPUs appearing on NICs we believe ancillary offload deserves
greater consideration. However, in order to accelerate this development there are
open questions that must be addressed.

5 Open questions

5.1 Balancing power, performance and cost

One such question is, how powerful a CPU should reside on the DPU? Current studies
show that the Arm A72 on the Bluefield 2 DPU and Marvell CN913X are incapable
of driving line rate speeds of 100 Gbps. This means that products relying on CPUs-
on-NIC for pushing the network will need to shift towards more cores. Additionally,
newer architectures may increase the number of memory channels and bandwidth.
This has the downside of adding increased power and cost to the DPU. For example,
Bluefield 3 is anticipated to have a 5X increase in SPECint performance over the
previous-generation Bluefield 2 [47]. Similar upgrades to the Marvell line of DPUs
required moving from four to thirty-two cores with the transition to the latest genera-
tion of processors. This requires increasing the TDP by 70-110 watts [41]. How much
processing power to shift over to the DPU from the host is an open question that re-
quires the community to engage in successive evaluations to determine whether future
DPUs are best suited for ancillary or specialization offload. Determining exactly where
the delineation will fall between host CPU, NIC, DPU and GPU is difficult to predict.

5.2 The right level of abstraction

One of the biggest hurdles of developing code for a DPU is the interfaces for program-
ming them. One of the reasons for this is the breadth of architectural design points



Use It or Lose It: Cheap Compute Everywhere 11

that DPUs span and the range of use cases. Many interfaces are low-level, focused on
processing packets, designed to be stateless and perform at line rate, such as P4 [12].
A number of efforts have attempted to ease the development burden by providing
abstraction layers on top [34, 52]. Interfaces such as the Data Plane Development
Kit (DPDK) [4] abstract common packet processing functions in a run-to-completion
model. Other efforts introduce abstract machine models to allow for portability across
varying architectures. In sPIN [27] different header, payload and completion handlers
are associated with different connections to facilitate flexible offload, but has the
constraint that the workload must not obstruct line rate processing. The INCA
model [55] supports additional functionality by removing the deadline constraints of
line-rate processing, but requires the code running on the DPU be preemptable. In an
environment where cheap cores are everywhere, the INCA model facilitates ancillary
offload and allows for more varied types of computation than prior approaches.

There is a huge gap between these abstractions and a fully featured Linux
environment on a Bluefield DPU, where process scheduling is provided by the operating
system and codes are written at a higher level. In order to encompass the total range of
functionality possible, we are seeing the continued evolution and layering of abstraction
on top of performance-focused, lower-level interfaces. This will allow systems and
communication library designers to develop powerful tools that can be composed and
leveraged by higher level user applications. Work by Liu et al [37] developed the iPipe
framework to provide an actor-based model that supports multi-tenancy, scheduling
and hardware heterogeneity. Cloud-focused DPU company, Pensando has proposed
portable APIs that target popular cloud services, but has noted that there is a lack
of standardization for controller interfaces, operating systems, and data paths [49].
Within the Unified Communication Framework there is an effort to create a Smart
NIC API (OpenSNAPI) [22] which will allow developers to leverage compute cores in
the network. Nvidia is developing the DOCA SDK [48]. With the DOCA SDKNvidia’s
goal is to create a single portal for harnessing the DPU in a manner akin to CUDA for
GPUs. We see similar approaches from Broadcom [13] and Marvell [40] where each of
these SDKs consolidates lower level functionality. Two of the questions around
this are how much will these SDKs differ as products try to differentiate
themselves and what will the hurdles be for program portability?

Other companies take more of an appliance-based approach, where services are
accessed via REST APIs [24] or blocks of functionality can be downloaded from
product specific app-stores [61]. While this approach may provide great performance
it isn’t necessarily a good fit for ancillary offload in an HPC environment where the
emphasis is on ease of programming and portability rather than raw performance.

When considering which approaches are likely to gain traction with ancillary
offload, DPUs that contain cheap CPUs are attractive because they provide one of the
simplest programming environments. Since they run a full Linux OS, it is possible to
log onto and compile code much like any other node in the system. The downside of
running a full system software stack means that cheap cores incur greater overheads
on performance. However, this is not as much of a concern for ancillary offload.

Finally, DPUs create an additional domain for computation, which creates addi-
tional challenges for memory interfaces and migration of data in much the same way



12 T. Groves et al.

GPUs and CPUs experience today with unified virtual memory. Adding in a third
processing unit to the mix will require additional coordination between the CPU,
GPU and DPU.

5.3 The memory problem

Fig. 4. Historic memory prices per byte. Memory prices per byte have not continued to
drop as the same rate of computation, resulting in memory taking up larger percentages of
system budgets. Data was originally from John C. McCallum of http://jcmit.net.

While FLOPS per dollar has continued to become more affordable over time,
memory prices per byte have been relatively flat or occasionally spiked depending
on demand as shown in Figure 4. 3D technologies such as HBM have raised the
cost of memory even further for the workloads that require greater bandwidth than
traditional DDR can provide.

Exacerbating this problem is the fact that each time an accelerator such as a GPU
is added into a system we are paying for extra memory in addition to the host memory.
This is because host DRAM often serves as a launching point for GPU kernels before
data is transferred to HBM, but then may go unused during the execution of the
GPU kernel. DPUs threaten to create another instance where additional memory
is required. Futhermore, having multiple memory spaces complicates programming
and necessitates additional data movement.

One idea would be to create a unified memory space between the DPU, CPU
and GPU with coherency supported in hardware. This would allow for a reduction of
device attached memory, but the interfaces to support this efficiently are (1) still under
development and (2) the market has not yet chosen a standard. PCIe is insufficient
for these goals since it suffers substantial latency overheads [29] compared to a local
memory access and the protocol does not provide the abstractions necessary for
complex interactions across multiple memory domains. In work by Li et al [33], PCIe
presented a number of challenges to implementing a key-value cache on DPUs such as
a limited number of requests due to credit-based flow control, and a limited number of
PCIe tags to differentiate between DMA read response that may arrive out of order.

The need for a coherent interface between processors and accelerators has been
identified in the past. Coherent Accelerator Processor Interface (CAPI) [58] is the



Use It or Lose It: Cheap Compute Everywhere 13

protocol supported by IBM. CAPI provides coherency and virtual addressing capa-
bilities that more tightly couple the accelerator to IBM Power Processors. In joint
development between Nvidia and IBM, ORNL’s Summit [26] system leveraged a
tighter coupling between its Power 9 CPUs and Nvidia GPUs by having multiple
NVLink [20] connections going directly on-die. Nvidia has bypassed the limitations of
PCIe by utilizing NVLink for its DGX products. NVLink provides high bandwidth
and low latency between Nvidia devices with hardware coherency and load/store
semantics. NVLink is a central component of enabling machine learning training by
composing multiple GPUs and creating large memory spaces for problems that are
difficult to decompose. As companies expand their offerings to cover greater breadth
we would like to see tighter integration between CPU, GPU and future DPUs.

Two other technologies, Compute Express Link (CXL) [3] and Cache Coherent In-
terconnect for Accelerators (CCIX) [2], both provide opportunities to address problems
with managing memory by building on PCIe. CXL has three different levels of capabili-
ties that hardware may support: CXL.io, CXL.cache and CXL.mem. CXL.io is similar
to PCIe with a few extensions for initialization, device discovery and memory mapped
register access. CXL.cache targets applications that require basic coherency protocols
between a CXL compliant accelerator’s cache and host-attached memory. This is
beneficial for applications that want to leverage CXL supported atomic operations,
and allow for flexible ordering models. CXL.mem provides additional functionality to
CXL.cache by allowing the host to access device memory without incurring overheads
that offset the benefit of having an attached device or DPU. This relies on host CPU to
provide management of device memory and manage coherency via a Home Agent and
Coherency Bridge. Ownership of memory can favor the host or device depending on dif-
ferent bias assigned. The downside to this approach is that it is host-centric and doesn’t
readily facilitate device to device memory transactions. CCIX is a competing standard
that differs by allowing the Home Agent to reside on the accelerator rather than
limiting that location to solely the host. In either case having the reduced latency and
coherency that CXL and CCIX support greatly increases the variety of work that could
be offloaded to a DPU and reduces the number of required transactions over PCIe.

One of the biggest hurdles is that there are many competing standards today
which limit portability between future CPUs and devices which must provide mutual
support for a standard.

5.4 Tying it all together

In Figure 5, we provide an example of the different places that compute-in-network
may be applied throughout a HPC center such as NERSC . Green stars indicate
where offload may be placed and text pop-outs exemplify types of offload that could
be enabled. Determining how these resources are accessed and shared across hundreds
of workloads creates new challenges for HPC workflows. In contrast to typical HPC
applications running on a single system such as Perlmutter [5], these workflows may
span (1) a larger variety of heterogeneous hardware, (2) multiple networks, and
(3) may sit beyond the reach of traditional resource management and scheduling
systems. One solution is to implement these offload units as appliances with user
interaction limited to specific purposes similar to data-transfer nodes on today’s



14 T. Groves et al.

Fig. 5. Opportunities for compute-in-network/storage to offload tasks (both ancillary and
accelerated) in a typical HPC datacenter. Green stars represent different points where
compute-in-NIC, fabric or storage could be applied with example uses called out. Potential
benefits include a (1) reduced data movement, (2) reduction of required non-compute nodes,
IO nodes and (3) reduced contention for premium resources on the compute cluster.

systems. But the more interesting discussion is focused on how we can make these pro-
grammable, flexible and accessible to a wide ranger of users and workflows, bridging
the HPC-to-workflow gap. New methods for orchestrating and facilitating data-flow
and communication may be necessary and we may need to leverage best practices
from cloud environments for this. For example we may need a stable definition for
Quality of Service (QoS) throughout the data center, so that an urgent HPC workload
may run at a higher priority as it traverses the many locations of compute-in-network.
This will require efforts in scheduling, program portability, and multi-tenancy. If we
do this successfully we reduce the number of non-compute and service nodes, while
opening up new possibilities for scientific workflows and machine learning.

6 Conclusions

Heterogeneity and specialized units are now part of the HPC landscape. In the
future we want to reserve premium resources for high priority workloads, while taking
advantage of the cheap compute that is being distributed throughout the network. For
these types of resources we propose ancillary offload, and an effort should be made
in the HPC community to identify the opportunities in hardware and software to
leverage this strategy. Ancillary workloads are the types of workloads that can tolerate



Use It or Lose It: Cheap Compute Everywhere 15

Fig. 6. Abstract view of cheap compute in the data center (edge, storage, traditional compute
nodes and in-network) and the functionality needed (center) to tie it all together.

the performance penalty that may occur because of (1) lower frequency or fewer cores,
(2) reduced memory capacity/bandwidth and (3) additional latency across an on-node
interconnect. Already identified opportunities include: key-value stores, node-local
storage virtualization, analytics and inference, but many more exist. We show in
Fig. 6, that to fully leverage the hardware we must expand beyond abstract machine
models and develop abstract data center models that enable center-wide scheduling
and runtimes. Abstract data center models must efficiently represent heterogenous
hardware characteristics and match them to appropriate portions of a workflow with
an understanding of the quality of service required by the workload. In order to make
this vision a reality we must address future challenges of developing programming
abstractions that support a multitude of architectures and use cases, multi-tenancy,
and the memory problem. If we do this successfully, we can reduce the number of
non-compute and service nodes, alleviate the noise on premium compute units and
enable new possibilities for scientific workflows and machine learning.

References

1. Arm Ethos, https://developer.arm.com/ip-products/processors/machine-learning/arm-
ethos-n

2. Cache coherent accelerator interface, https://www.ccixconsortium.com/



16 T. Groves et al.

3. Compute express link, https://www.computeexpresslink.org/

4. Data plane development kit, https://www.dpdk.org/

5. NERSC perlmutter, https://www.nersc.gov/systems/perlmutter/

6. Nvidia DPU, https://www.nvidia.com/en-us/networking/products/data-processing-
unit/

7. Nvidia embedded systems, https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/

8. AnandTech: AMD 3rd generation Milan review,
https://www.anandtech.com/show/16529/amd-epyc-milan-review/4

9. Arashloo, M.T., Lavrov, A., Ghobadi, M., Rexford, J., Walker, D., Wentzlaff, D.:
Enabling programmable transport protocols in high-speed NICs. In: 17th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 20). pp.
93–109 (2020)

10. AWS: AWS Nitro, https://aws.amazon.com/ec2/nitro/

11. Bayatpour, M., Sarkauskas, N., Subramoni, H., J. Hashmi, D.P.: BluesMPI: Efficient mpi
non-blocking alltoall offloading designs on modern BlueField smart NICs (June 2021)

12. Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C.,
Talayco, D., Vahdat, A., Varghese, G., et al.: P4: Programming protocol-independent
packet processors. ACM SIGCOMM Computer Communication Review 44(3), 87–95
(2014)

13. Broadcom: Broadcom SmartNIC SDK, https://docs.broadcom.com/doc/5880X-UG30X

14. Broadcom: Stingray PS225, https://docs.broadcom.com/doc/PS225-PB

15. Cisco: Cisco Nexus smartnic+ V9P data sheet,
https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/nexus-
smartnic/datasheet-c78-743830.html

16. Cloud, A.: X-dragon, https://www.alibabacloud.com/blog/introducing-the-sixth-
generation-of-alibaba-clouds-elastic-compute-service 595716

17. Data, A.: ADM-PCIE-9V3, https://www.alpha-data.com/pdfs/adm-pcie-9v3.pdf

18. Dufey, J.P., Jost, B., Neufeld, N., Zuin, M.: Event building in an intelligent network
interface card for the lhcb readout network. In: 2000 IEEE Nuclear Science Symposium.
Conference Record (Cat. No. 00CH37149). vol. 3, pp. 26–50. IEEE (2000)

19. Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A., Andrewartha, M.,
Angepat, H., Bhanu, V., Caulfield, A., Chung, E., et al.: Azure accelerated networking:
Smartnics in the public cloud. In: 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18). pp. 51–66 (2018)

20. Foley, D., Danskin, J.: Ultra-performance pascal gpu and nvlink interconnect. IEEE
Micro 37(2), 7–17 (2017)

21. Foundation, A.S.: Apache Storm, https://storm.apache.org/

22. Framework, U.C.: OpenSNAPI, https://www.ucfconsortium.org/projects/opensnapi/

23. Fungible: Fungible F1 data processing unit, https://www.fungible.com/wp-
content/uploads/2020/08/PB0028.01.02020820-Fungible-F1-Data-Processing-Unit.pdf

24. Fungible: Fungible storage cluster, https://www.fungible.com/wp-
content/uploads/2020/12/PB0020.04.02021214-Fungible-Storage-Cluster-FSC-
Disaggregated-Storage-Platform.pdf

25. Groves, T.L., Grant, R.E., Gonzales, A., Arnold, D.: Unraveling network-induced
memory contention: Deeper insights with machine learning. IEEE Transactions on
Parallel and Distributed Systems 29(8), 1907–1922 (2017)

26. Hanson, W.A.: The coral supercomputer systems. IBM Journal of Research and
Development 64(3/4), 1–1 (2019)



Use It or Lose It: Cheap Compute Everywhere 17

27. Hoefler, T., Di Girolamo, S., Taranov, K., Grant, R.E., Brightwell, R.: spin: High-
performance streaming processing in the network. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis. pp.
1–16 (2017)

28. Ibanez, S., Brebner, G., McKeown, N., Zilberman, N.: The p4-¿ netfpga workflow for
line-rate packet processing. In: Proceedings of the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. pp. 1–9 (2019)

29. Ibanez, S., Shahbaz, M., McKeown, N.: The case for a network fast path to the cpu. In:
Proceedings of the 18th ACM Workshop on Hot Topics in Networks. pp. 52–59 (2019)

30. Intel: Intel FPGA programmable acceleration card
N3000, https://www.intel.com/content/www/us/en/programmable/products/boards and kits/dev-
kits/altera/intel-fpga-pac-n3000/overview.html

31. Kaufmann, A., Peter, S., Sharma, N.K., Anderson, T., Krishnamurthy, A.: High
performance packet processing with flexnic. In: Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages and
Operating Systems. pp. 67–81 (2016)

32. Le, Y., Chang, H., Mukherjee, S., Wang, L., Akella, A., Swift, M.M., Lakshman, T.:
Uno: Uniflying host and smart nic offload for flexible packet processing. In: Proceedings
of the 2017 Symposium on Cloud Computing. pp. 506–519 (2017)

33. Li, B., Ruan, Z., Xiao, W., Lu, Y., Xiong, Y., Putnam, A., Chen, E., Zhang, L.: Kv-direct:
High-performance in-memory key-value store with programmable nic. In: Proceedings
of the 26th Symposium on Operating Systems Principles. pp. 137–152 (2017)

34. Li, B., Tan, K., Luo, L., Peng, Y., Luo, R., Xu, N., Xiong, Y., Cheng, P., Chen, E.:
Clicknp: Highly flexible and high performance network processing with reconfigurable
hardware. In: Proceedings of the 2016 ACM SIGCOMM Conference. pp. 1–14 (2016)

35. Lin, J., Patel, K., Stephens, B.E., Sivaraman, A., Akella, A.: {PANIC}: A high-
performance programmable {NIC} for multi-tenant networks. In: 14th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 20). pp.
243–259 (2020)

36. Liu, J., Maltzahn, C., Ulmer, C., Curry, M.L.: Performance characteristics of the
bluefield-2 smartnic (2021)

37. Liu, M., Cui, T., Schuh, H., Krishnamurthy, A., Peter, S., Gupta, K.: Offloading
distributed applications onto smartnics using ipipe. In: Proceedings of the ACM Special
Interest Group on Data Communication, pp. 318–333 (2019)

38. Liu, M., Peter, S., Krishnamurthy, A., Phothilimthana, P.M.: E3: Energy-efficient
microservices on smartnic-accelerated servers. In: 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19). pp. 363–378 (2019)

39. Marvell: Marvell CN913X, https://www.marvell.com/content/dam/marvell/en/public-
collateral/embedded-processors/marvell-infrastructure-processors-octeon-tx2-cn913x-
product-brief-2020-02.pdf

40. Marvell: Marvell octeon SDK, https://www.marvell.com/content/dam/marvell/en/public-
collateral/embedded-processors/marvell-octeon-tx2-sdk-solutions-brief.pdf

41. Marvell: Marvell Octeon TX2 Press Deck, https://www.marvell.com/content/dam/marvell/en/company/media-
kit/infrastructure-processors/marvell-octeon-tx2-press-deck.pdf

42. Mellanox: NVMe SNAP, https://www.mellanox.com/files/doc-2020/sb-mellanox-nvme-
snap.pdf

43. NetFPGA: Netfpga sume, https://netfpga.org/site/#/systems/1netfpga-sume/details/

44. Netronome: Netronome NFP-4000 flow processor,
https://www.netronome.com/media/documents/PB NFP-4000-7-20.pdf



18 T. Groves et al.

45. Neugebauer, R., Antichi, G., Zazo, J.F., Audzevich, Y., López-Buedo, S., Moore, A.W.:
Understanding pcie performance for end host networking. In: Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication. pp. 327–341
(2018)

46. Nvidia: Nvidia Bluefield-2 DPU, https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf

47. Nvidia: Nvidia Bluefield-3 DPU, https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf

48. Nvidia: Nvidia DOCA SDK, https://developer.nvidia.com/networking/doca
49. Pensando: The need for standardization, https://pensando.io/the-need-for-

standardization-in-a-thriving-network-ecosystem/
50. Pensando: Pensando DSC-100, https://pensando.io/wp-

content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf
51. Petrini, F., chun Feng, W., Hoisie, A., Coll, S., Frachtenberg, E.: The quadrics

network (qsnet): high-performance clustering technology. In: HOT 9 Intercon-
nects. Symposium on High Performance Interconnects. pp. 125–130 (2001).
https://doi.org/10.1109/HIS.2001.946704

52. Phothilimthana, P.M., Liu, M., Kaufmann, A., Peter, S., Bodik, R., Anderson, T.:
Floem: A programming system for nic-accelerated network applications. In: 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). pp. 663–679 (2018)

53. Putnam, A., Caulfield, A.M., Chung, E.S., Chiou, D., Constantinides, K., Demme, J.,
Esmaeilzadeh, H., Fowers, J., Gopal, G.P., Gray, J., et al.: A reconfigurable fabric for
accelerating large-scale datacenter services. In: 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA). pp. 13–24. IEEE (2014)

54. Radhakrishnan, S., Geng, Y., Jeyakumar, V., Kabbani, A., Porter, G., Vahdat, A.:
{SENIC}: Scalable {NIC} for end-host rate limiting. In: 11th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 14). pp. 475–488 (2014)

55. Schonbein, W., Grant, R.E., Dosanjh, M.G., Arnold, D.: Inca: in-network compute
assistance. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. pp. 1–13 (2019)

56. Shi, H., Lu, X.: Triec: Tripartite graph based erasure coding nic offload. In: Proceedings
of the International Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3295500.3356178, https://doi.org/10.1145/3295500.3356178

57. Stephens, B., Akella, A., Swift, M.: Loom: Flexible and efficient {NIC} packet scheduling.
In: 16th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 19). pp. 33–46 (2019)

58. Stuecheli, J., Blaner, B., Johns, C., Siegel, M.: Capi: A coherent accelerator processor
interface. IBM Journal of Research and Development 59(1), 7–1 (2015)

59. Technology, A.: ANIC host cpu offload features overview,
https://accoladetechnology.com/whitepapers/ANIC-Features-Overview.pdf

60. Xilinx: Alveo SN1000 data sheet, https://www.xilinx.com/support/documentation/data sheets/ds989-
sn1000.pdf

61. Xilinx: Xilinx app-store, https://www.xilinx.com/products/app-store/alveo.htm




