Skip to main content

Symbolic Regression for Interpretable Scientific Discovery

  • Conference paper
  • First Online:
  • 745 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13167))

Abstract

Symbolic Regression (SR) is emerging as a promising machine learning tool to directly learn succinct, mathematical and interpretable expressions directly from data. The combination of SR with deep learning (e.g. Graph Neural Network and Autoencoders) provides a powerful toolkit for scientists to push the frontiers of scientific discovery in a data-driven manner. We briefly overview SR, autoencoders and GNN and highlight examples where they have been used to rediscover known physical phenomenon directly from data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Technically the pseudo-inverse, \(U^{+}\).

References

  1. Cranmer, M., et al.: Discovering symbolic models from deep learning with inductive biases. arXiv:2006.11287 [cs.LG]

  2. Champion, K., Lusch, B., Kutz, J.N., Brunton, S.L.: Data-driven discovery of coordinates and governing equations. PNAS 116(45), 22445–22451 (2019). https://doi.org/10.1073/pnas.1906995116

    Article  MathSciNet  MATH  Google Scholar 

  3. La Cava, W., et al.: Contemporary symbolic regression methods and their relative performance. In: NeurIPS 2021 Datasets and Benchmarks Track (Round 1) (2021)

    Google Scholar 

  4. Halzen, F., Martin, A.D.: Quarks and Leptons: An Introductory Course in Modern Particle Physics. Willey, Hoboken (1984)

    Google Scholar 

  5. Udrescu, S.M., Tegmark, M.: AI Feynman: a physics-inspired method for symbolic regression. Sci. Adv. 6(16), eaay2631 (2020). https://doi.org/10.1126/sciadv.aay2631

    Article  Google Scholar 

  6. Petersen, B.K., Larma, M.L., Mundhenk, T.N., Santiago, C.P, Kim, S.K., Kim, J.T.: Deep symbolic regression: recovering mathematical expressions from data via risk-seeking policy gradients. In: International Conference on Learning Representations (2021)

    Google Scholar 

  7. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  9. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. ArXiv:1806.01261 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Chawla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Makke, N., Sadeghi, M.A., Chawla, S. (2022). Symbolic Regression for Interpretable Scientific Discovery. In: Sachdeva, S., Watanobe, Y., Bhalla, S. (eds) Big-Data-Analytics in Astronomy, Science, and Engineering. BDA 2021. Lecture Notes in Computer Science(), vol 13167. Springer, Cham. https://doi.org/10.1007/978-3-030-96600-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96600-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96599-0

  • Online ISBN: 978-3-030-96600-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics