
XtraLibD: Detecting Irrelevant Third-Party
libraries in Java and Python Applications

Ritu Kapur1[0000−0001−7112−0630], Poojith U Rao1, Agrim Dewam2, and
Balwinder Sodhi1

1 Indian Institute of Technology, Ropar, Punjab , India
dev.ritu.kapur@gmail.com,{poojith.19csz0006,sodhi}@iitrpr.ac.in

2 Punjab Engineering College, Chandigarh, India.
agrim334@gmail.com

Abstract. Software development comprises the use of multiple Third-
Party Libraries (TPLs). However, the irrelevant libraries present in soft-
ware application’s distributable often lead to excessive consumption of
resources such as CPU cycles, memory, and modile-devices’ battery us-
age. Therefore, the identification and removal of unused TPLs present
in an application are desirable. We present a rapid, storage-efficient,
obfuscation-resilient method to detect the irrelevant-TPLs in Java and
Python applications. Our approach’s novel aspects are i) Computing a
vector representation of a .class file using a model that we call Lib2Vec.
The Lib2Vec model is trained using the Paragraph Vector Algorithm. ii)
Before using it for training the Lib2Vec models, a .class file is converted
to a normalized form via semantics-preserving transformations. iii) A
eXtra Library Detector (XtraLibD) developed and tested with 27 differ-
ent language-specific Lib2Vec models. These models were trained using
different parameters and >30,000 .class and >478,000 .py files taken from
>100 different Java libraries and 43,711 Python available at MavenCen-
tral.com and Pypi.com, respectively. XtraLibD achieves an accuracy of
99.48% with an F1 score of 0.968 and outperforms the existing tools,
viz., LibScout, LiteRadar, and LibD with an accuracy improvement of
74.5%, 30.33%, and 14.1%, respectively. Compared with LibD, XtraLibD
achieves a response time improvement of 61.37% and a storage reduction
of 87.93% (99.85% over JIngredient). Our program artifacts are available
at https://www.doi.org/10.5281/zenodo.5179747.

Keywords: Third-party library detection · code similarity · Paragraph
Vectors · Software Bloat · Obfuscation

1 Introduction

Third Party Libraries (TPLs) play a significant role in software development
as they provide ready-made implementations of various functionalities, such as
image manipulation, data access and transformation, and advertisement. As re-
ported by [16], 57% of apps contain third-party ad libraries, and 60% of an

ar
X

iv
:2

20
2.

10
77

6v
1

 [
cs

.S
E

]
 2

2
Fe

b
20

22

https://www.doi.org/10.5281/zenodo.5179747

2 R. Kapur et al.

application’s code is contributed by TPLs [25]. However, as the software de-
velopment process progresses through multiple iterations, there is generally a
change in the requirements or technology. In the process of performing modifica-
tions to embed the changes into the application, an unused (or irrelevant) set of
libraries (which were used earlier) often remains referenced in the application’s
distributable. Such unused TPLs have become a prominent source of software
bloat. We refer to such unused TPLs as irrelevant-TPLs. Resource wastage is a
critical problem for mobile devices that possess limited computing resources and
significantly impact the performance by affecting the execution time, through-
put, and scalability of various applications [18,26]. Therefore, the identification
and removal of the irrelevant TPLs present in an application are desirable.

1.1 Motivation

Our primary objective is to develop a technique for detecting irrelevant TPLs
present in a software application’s distributable binary. An essential task for
achieving this objective is to develop a robust technique for TPL-detection. The
existing TPL-detection methods [5,17] generally depend, directly or indirectly,
on the package names or the library’s structural details and code. Thus, they
are potentially affected by various obfuscations, such as package-name obfus-
cation and API obfuscation. Also, most of the works are restricted to Android
applications [27,17,15,5].

Definition 1 (Irrelevant-TPL). We define an irrelevant TPL as the
one bundled in the distributable binary of a software application A but
not relevant to it. The examples of such TPLs would be the Mockitoa or
JUnitb Java ARchives (JARs) that get packaged in the deployable release
archive of a Java or Python application.
The relevance of a TPL is based on its application in different contexts.
For instance, relevant vs. irrelevant, reliable vs. unreliable, anomalous vs.
non-anomalous, bloat vs. non-bloat, used vs. unused etc. The idea is to
compare with a reference list of relevant libraries or white-listed librariesc

in an automated manner.

a https://site.mockito.org/
b https://junit.org/
c Black libraries matter

Definition 2 (Paragraph Vector Algorithm). Paragraph Vector
Algorithm (PVA) is an unsupervised algorithm that learns fixed-length
feature representations from variable-length pieces of texts, such as sen-
tences, paragraphs, and documents. The algorithm represents each docu-
ment by a dense vector trained to predict words in the document [14].

XtraLibD: Detecting Irrelevant Third-Party Libraries 3

In our recent work, we proposed an obfuscation-resilient tool, Bloat Library
Detector (BloatLibD) [10]3, that detects the TPLs present in a given Java appli-
cation by identifying the similarities between the source code of the “available
TPLs” and the TPLs used in the given application. To obtain this set of “avail-
able TPLs,” we leverage the TPLs present at MavenCentral repository4 that
hosts TPLs for various functionalities, which we assume to be a trustworthy
source. In our previous work [10], we also validated the efficacy of PVA in com-
puting a reliable and accurate representation of binary and textual code. The
current work aims to extend the existing method for Python applications. We
name our new tool as eXtra Library Detector (XtraLibD) which is capable of de-
tecting irrelevant libraries in both Java and Python applications. In our current
work, we also compare XtraLibD for some new TPL detection tools for Python
and Java applications. One of the reasons for choosing these very languages is
their popularity with the professional programmers [23] and the availability of a
large volume of OSS source code written using these languages5.

(a) For Java TPLs [10]

(b) For Python TPLs

Fig. 1: Basic idea of our method.

3 Tool and dataset available at https://www.doi.org/10.5281/zenodo.5179634
4 https://mvnrepository.com/repos/central
5 Sources of stats: https://octoverse.github.com/projects.html and

https://githut.info/

https://www.doi.org/10.5281/zenodo.5179634
https://mvnrepository.com/repos/central

4 R. Kapur et al.

1.2 Basic tenets behind our system

In this paper, we present a novel TPL-detection technique by creating a library
embedding using PVA – we named it Lib2Vec. The central idea underlying our
approach is illustrated in Figure 1 and stated as follows:

1. Each of the TPLs consists of a collection of binary .class files or source code
files, which we refer to as TPL-constituent files.

2. Semantics-preserving transformations (such as compilation, decompilation,
and disassembly) are applied to the TPL-constituent files to obtain their nor-
malized textual form(s), viz., the textual forms of source code and bytecode
instructions.

3. With a large corpus of such text, we train Lib2Vec models, using which a
vector representation of any TPL-constituent file can be computed.

4. Further, the vector representations of a TPL can be computed as a suit-
able function of the vector representations of all the TPL-constituent files
contained in that TPL.

5. If the vector representations of a TPL T in an application, have a consider-
able cosine similarity6 with the vector representations of the set of “available
TPLs,” we label T as likely-to-be-non-irrelevant-TPL or else likely-to-be-
irrelevant-TPL.

1.3 Handling obfuscated libraries

One of the significant issues faced in TPL-detection is the obfuscation of the li-
brary code. The TPL-detection techniques that rely on the obfuscation-sensitive
features of a library would fail to detect a library under obfuscation. The key
idea underlying our approach towards handling obfuscated libraries is to pro-
duce a “normalized” textual representation of the library’s binary .class files
before using it to train the Lib2Vec models and when checking an input .class
using a Lib2Vec model. We perform the decompilation and disassembly of .class
files to obtain their “normalized” textual forms, viz., source code and bytecode
instructions as text. These operations on a .class file are obfuscation-invariant.
Similarly, for Python cose, we perform compilation operation on .py files present
in .zip package of a Python TPL to obtain .pyc files, from which th bytecode
instructions are obtained by performing the dissasembly operation. For example,
we transform a .class file using a decompiler [24] (with suitable configuration),
which produces almost identical output for both obfuscated and unobfuscated
versions. The decompiler can emit either bytecode or the Java source code for
the .class files.

2 RELATED WORK

Most of the existing works that target TPL-detection assume that “the libraries
can be identified, either through developer input or inspection of the application’s
code.” The existing approaches for TPLs detection can be categorized as follows:

6 http://bit.ly/2ODWoEy

http://bit.ly/2ODWoEy

XtraLibD: Detecting Irrelevant Third-Party Libraries 5

1. Based on a “reference list” of TPLs: The techniques presented in [7,16,12,6]
are significant works in this category. A “reference list” comprises libraries
known to be obtained from a trustworthy source and useful for software de-
velopment. The basic idea behind the approach is first to construct a “refer-
ence list” of libraries and then test the application under consideration using
the list. In this process, it is evaluated that the application’s constituent li-
braries are present in the “reference list” or not. All the constituent libraries,
which are not present in the list, are deemed to be irrelevant-TPLs. In prac-
tice, this approach requires keeping the “reference list” up-to-date. Since
these methods require manually comparing the libraries with the “reference
list” and a periodic update of this list, they tend to be slower, costly, and
storage-inefficient.

2. Features-Based approaches: [5,17,15] are some of the approaches that work
by extracting individual libraries’ features and then use them to identify
libraries that are similar to another. The feature-based methods generally
depend, directly or indirectly, on the package names or the structural details
of the application and source code. A brief description of these works is
provided below:
(a) LibScout [5] presents a TPL-detection technique based on Class Hi-

erarchical Analysis (CHA) and hashing mechanism performed on the
application’s package names. Though the method has been proven to
be resilient to most code-obfuscation techniques, it fails in certain cor-
ner cases. For example, modification in the class hierarchy or package
names, or when the boundaries between app and library code become
blurred. Another recent work is [11], which relies on the obfuscation-
resilient features extracted from the Abstract Syntax Tree of code to
compute a code fingerprint. The fingerprint is then used to calculate the
similarity of two libraries.

(b) LibRadar [17] is resilient to the package name obfuscation problem of
LibScout and presents a solution for large-scale TPL-detection. LibRadar
leverages the benefits of hashing-based representation and multi-level
clustering and works by computing the similarity in the hashing-based
representation of static semantic features of application packages. Li-
bRadar has successfully found the original package names for an obfus-
cated library, generating the list of API permissions used by an appli-
cation by leveraging the API-permission maps generated by PScout [4].
Though LibRadar is resilient to package obfuscation, it depends on the
package hierarchy’s directory structure and requires a library candidate
to be a sub-tree in the package hierarchy. Thus, the approach may fail
when considering libraries being packaged in their different versions [15].
An alternate version of LibRadar, which uses an online TPL-database,
is named as LiteRadar.

(c) LibD [15] leverages feature hashing to obtain code features, which re-
duces the dependency on package information and supplementary infor-
mation for TPL-detection. LibD works by developing library instances
based on the package-structure details extracted using Apktool, such as

6 R. Kapur et al.

the direct relations among various constituent packages, classes, meth-
ods, and homogeny graphs. Authors employ Androguard [3] to extract
information about central relationships, viz., inclusion, inheritance, and
call relations. LibD depends upon the directory structure of applications,
which leads to the possibility of LibD’s failure due to obfuscation in the
directory structure.

(d) DepClean [22] detects the presence of bloated dependencies in Maven
artifacts. Given an input maven project, DepClean analyzes the bloat
library dependencies through API member calls to identify the actual
used libraries by the project. The final output from the tool is new
maven POM file containing only the used bloat libraries along with a
dependency usage report. Authors conduct a qualitative assessment of
DepClean on 9,639 Java projects hosted on Maven Central comprising a
total of 723,444 dependency relationships. Some key observations of the
study were that it is possible to reduce the number of dependencies of
the Maven projects by 25%. Further, it was observed that when pointed
out, developers were willing to remove bloated dependencies.

(e) JIngredient [13] detects the TPLs present in a project’s JAR file and
proposes their origin TPLs. Basically, given an input TPL (in .jar format)
z, JIngredient identifies the source TPLs containing source files similar to
those present in z. To determine the similarity in source code, JIngredient
uses class names (as class signatures) for classes present in z. As the tool
depends on class names, which can easily be obfuscated, it is not resilient
to source code obfuscations (also reported by the authors). JIngredient
when compared with an existing software Bertillonage technique [9], it
achieves an improvement of 64.2% in terms of precision metrics.

(f) Autoflake [19] removes unused TPL imports and unused variables from
the code written in python. However, the removal of unused varables is
disabled by default. Authoflake uses Pyflakes [20] in its implementation.
Pyflakes analyzes python programs to detect errors present in them by
parsing them.

(g) PyCln [2] is another tool used to detect and remove unused TPL import
statements in python source code.

Limitations of the current works: While the TPL-detection based on “ref-
erence list” methods tend to be inefficient and costly, the feature-based methods
are potentially affected by various types of obfuscations and are mostly developed
for Android applications. Therefore, it is desirable to develop TPL-detection
techniques that are resilient against such issues. Also, while surveying the liter-
ature, we observed that there are very few TPL detection tools for Python, and
most of the solutions exist for Java or Android based applications. Therefore,
there exist a need to develop efficient, obfuscation-resilient TPL detection tools
for applications developed in other programming languages, such as Python, C#,
etc. To the best of our knowledge, we were not able to find any tools that detect
TPLs for Python-based applications, i.e., applications having source code writ-
ten in Python. AutoFlake and PyCln were the closest tools related to our work

XtraLibD: Detecting Irrelevant Third-Party Libraries 7

Table 1: Table of Notations.

T , A TPL in its JAR, RAR, or ZIP file format.

L , Set of considered programming languages, {Java, Python}.
C , The collection of TPLs files fetched from MavenCentral or PyPi.

Z , The set of PVA tuning-parameter variation scenarios, listed in Table- 4.

F j
bc, F

j
sc, F

p
bc, F

p
sc , The collections of bytecode (bc) and source code (sc) data obtained by disas-

sembling and decompilation of .class and .pyc files f , respectively, such that
f ∈ T , and T ∈ C. Note: j refers to Java (j) and p refers to Python (p).

M j
bc,M

j
sc,M

p
bc,M

p
sc , The collections of Lib2Vec models trained on F j

bc, F
j
sc, F

p
bc, F

p
sc, ∀Z.

M̂ j
bc, M̂

j
sc, M̂

p
bc, M̂

p
sc , The best performing Lib2Vec models among all M j

bc,M
j
sc,M

p
bc,M

p
sc.

φj
bc, φ

j
sc, φ

p
bc, φ

p
sc , The PVA vectors corresponding to source files’ bytecode and source code.

φ̂j
sc, φ̂

j
bc, φ̂

p
sc, φ̂

p
bc , The reference PVA vectors for source code and bytecode representations.

D , The database containing the source files’ vectors (φj
bc, φ

j
sc, φ

p
bc, φ

p
sc) for C.

β , The number of training iterations or epochs used for training a PVA model.

γ , The PVA vector size used for training a PVA model.

ψ , The number of training samples used for training a PVA model.

α , The cosine similarity score between two PVA vectors.

α̂ , The threshold cosine similarity score.

as they too work with TPLs, though they detect the bloatness or Irrelevance in
terms of the usage of TPLs. In contrary, XtraLibD aims to detect the irrelvant
TPLs by comparing with a certain collection of white-listed TPLs. Nevertheless,
XtraLibD provides a novel solution for detection of irrelevant TPLs present in
python applications.

3 Proposed Approach

Our system’s primary goal can be stated as follows: Given a TPL T , determine if
T is likely-to-be-irrelevant-TPL or a non-irrelevant-TPL in the given application.
Our approach’s central idea is to look for source code similarity and bytecode
similarity between T and the set of “available TPLs.” However, analyzing the
detailed usages of the TPLs in the application is currently out of scope of this
work. Our method can be considered as similar to the “reference list” methods,
but the similarity here is determined on the basis of source code present in the
TPL, and not merely the TPL names or package-hierarchial structure. Table- 1
shows the notation used for various terms in this paper.

3.1 Steps of our approach

The central ideas behind our approach were presented in Section 1.2. Here we
expand those steps in more detail and highlight the relevant design decisions to
be addressed while implementing each step.

8 R. Kapur et al.

1. Preparing the dataset of “available TPLs”
(a) Download a set of Java TPLs C from MavenCentral, and Python TPLs

from Pypi7.
Design decision: Why use MavenCentral or Pypi to collect TPLs? How
many TPLs should be collected from different software categories?

(b) For each TPL J ∈ C, obtain the Java or Python source code and byte-
code collections (Fsc, Fbc) by performing the decompilation and disas-
sembly transformation operations.
Design decision: Why are the decompilation and disassembly transfor-
mations appropriate?

(c) Train the PVA models Msc and Mbc on Fsc and Fbc, respectively, ob-
tained in the previous step.
Design decision: Why use PVA, and what should be the PVA tuning-
parameters for obtaining optimal results in our task?

(d) For each source file f ∈ Fsc and the bytecode record b ∈ Fbc, obtain
the corresponding vector representations (φsc, φbc) using suitable PVA
models trained in the previous step. φsc and φbc obtained for each source
code and bytecode instance are stored in the database D.

2. Determining if an input TPL (T) is a irrelevant-TPL or not for a
given application
(a) Compute the vector representation 〈φ′bc, φ′sc〉 for the bytecode and source

code representations of T .
(b) Obtain all the vectors 〈φbc, φsc〉 ∈ D, such that the respective similar-

ity scores between 〈φ′bc, φbc〉 and 〈φ′sc, φsc〉 are above specific threshold
values (α̂bc and α̂sc).
Design decision: What are the optimal values of similarity thresholds
(α̂bc and α̂sc)?

(c) Determine whether T is a irrelevant-TPL or not for the given application.
Design decision: How is the nature of T determined?

3.2 Design considerations in our approach

In this section, we address the design decisions taken while implementing our
approach.

Collecting TPLs from MavenCentral and Pypi: The libraries used for
training our models (named Lib2Vec) were taken from MavenCentral and Pypi
software repository hosts. We use MavenCentral to fetch Java-TPLs and Pypi for
Python-TPLs. We choose these portals as these are the public hosts for a wide
variety of popular Java and Python libraries. Further, MavenCentral categorizes
the Java libraries based on the functionality provided by the libraries. However,
our method is not dependent on MavenCentral or Pypi; the TPLs could be
sourced from reliable providers. To collect the TPLs, we perform the following
steps:

7 https://pypi.org/

https://pypi.org/

XtraLibD: Detecting Irrelevant Third-Party Libraries 9

1. Crawl the page https://mvnrepository.com/open-source and https://

pypi.org/, and download the latest versions of TPLs in JAR and .rar (or
.zip) formats, respectively. We download top k (=3) libraries listed under
each category at MavenCentral. Similarly, we downloaded a random collec-
tion of python TPLs from PyPi. Pypi categorizes the TPLs based on different
programming languages and frameworks used while developing them. While
collecting the TPLs, we made sure to download Python libraries belonging
to different frameworks to obtain a heterogeneous TPL dataset. Further, we
applied the following constraints to obtain a useful (non-trivial) collection
of TPLs:
(a) Size constraint: The size of library should be greater than a threshold

(≥ 9 KB). Please note that repository size here stands for the total size
of only the source files present in the repository. All the binary files such
as multimedia and libraries are excluded.

(b) Source file count constraint: The repository should contain at least one
source file written in Java or Python.

(c) Reputation constraint: The repository should have earned >= 1 star.
This constraint was applied to ensure that the selected repositories are
popular and are being used by a minimum number of programmers.

2. Extract and save in a database table the metadata associated with the down-
loaded TPLs. The metadata includes details of the TPL, such as the category,
tags, and usage stats.

Rationale for choosing PVA for training models: We train Lib2Vec mod-
els using PVA on the source code and bytecode textual forms of the .class files
obtained by the decompilation and disassembly of various JAR TPLs. In case
of Python-TPLs (available in .zip or .rar formats), we directly obtain the source
files by uncompressing them. We then obtain the bytecode by first perform-
ing the compilation and then the disassembly process as shown in Fig. 1, and
discussed in Section 1.2. For our experiments, we train language-specific and
type-specific PVA models, i.e., a Lib2Vec model trained on python source code
Mp
sc, a Lib2Vec model trained on python bytecode Mp

bc, and similarly for Java

(M j
sc,M

j
bc). The key reasons for choosing PVA are i) It allows us to compute the

fixed-length vectors that accurately represent the source code samples. Keeping
the length of vectors same for every source code sample is critical for implement-
ing an efficient and fast system. ii) Recent works [1] propose a close variant of
PVA, and have proven that it is possible to compute accurate vector represen-
tations of source code and that such vectors can be very useful in computing
semantic similarity between two source code samples.

Tuning parameters for PVA: Performance, in terms of accuracy, effi-
ciency, and speed of PVA, is determined by its input parameters such as β, γ,
and ψ (see Table- 1). Therefore, one of the major tasks is to select the opti-
mal values of β, γ, and ψ that can result in the best performing Lib2Vec models

(
ˆ
M j
bc,

ˆ
M j
sc, M̂

p
bc, M̂

p
sc). The experiments’ details to determine β, γ, and ψ are pro-

vided in the Appendix.

https://mvnrepository.com/open-source
https://pypi.org/
https://pypi.org/

10 R. Kapur et al.

Rationale for using the decompilation and disassembly transforma-
tions: It is necessary to derive a “normalized” and obfuscation-resilient textual
form of the source files to compute a reliable vector representation. The normal-
ization applies a consistent naming of symbols while preserving the semantics
and structure of the code. We use the decompilation (giving a source code text)
and disassembly (giving a bytecode text) as transformations to extract such nor-
malized textual forms of .class (or source) files.

Employing the use of vector representations for performing similar-
ity detection between TPLs: To determine the similarity between libraries
efficiently, we create a database (D) of vectors. These vectors correspond to the
source files present in a target repository of libraries (such as MavenCentral, or
an in-house repository maintained by an organization). We obtain the vector
representations for both the source code and bytecode of source files present in
TPLs using suitably trained PVA models and store them in D. The PVA vectors
enable fast and efficient detection of TPL similarity.

Computing the threshold similarity measure α̂ Our method detects two
libraries’ similarity by inferring the similarity scores for source files contained in
those libraries. To check if two source file vectors are similar or not, we compute
their cosine similarity8. An important design decision in this context is:

For reliably detecting a library, what is the acceptable value of Lib2Vec simi-
larity scores for decompiled source code and bytecode inputs?

We deem two source files (.java or .py files) as highly similar or identical when
the similarity score for the files is higher than a threshold value α̂. Note: In these
comparisons, we compare the files written in the same language only. The value
of α̂ is determined by running several experiments to measure similarity scores
for independent testing samples. The details of the experiments are discussed in
the Appendix.

Determining the nature of an unseen TPL T for a given application
A: To determine if a given TPL (T) is “irrelevant-TPL” for an application (A),
we leverage the best performing Lib2Vec models (M̂bc and M̂sc) and the vectors
database D.

If L contains .class or .py files depicting considerable similarity (≥ α̂) with
the “available TPLs,” it is deemed to be as “likely-to-be-relevant” for A. If for
at least N source files in T , the similarity scores are ≥ α̂, we label T as a likely-
to-be-relevant TPL for A, else a irrelevant-TPL. In our experiments, we take N
as half of the count of source files present in T . For a more strict matching, a
higher value of N can be set. The complete steps for the detection procedure are
listed in Algorithm 1.

Selection of the top-similar “available TPLs”: We explain it with an example.
Suppose we have four “available Java TPLs”, with C := {M1.jar, M2.jar, M3.jar,

8 https://bit.ly/2RZ3W5L

https://bit.ly/2RZ3W5L

XtraLibD: Detecting Irrelevant Third-Party Libraries 11

M4.jar}, such that these contain 15, 6, 10, and 10 .class files, respectively. Now,
D will contain the PVA vectors corresponding to the source code and bytecode
representations of all the .class files present in all the JARs in C. Next, suppose
we want to test a JAR file Foo.jar that contains ten .class files, and that we have
the following similarity scenarios:

1. All ten .class files of Foo.jar are present in M1.jar.
2. All six .class files of M2.jar are present in Foo.jar.
3. Seven out of ten .class files of M3.jar are present in Foo.jar.
4. For M4.jar, none of these files is identical to those present in Foo.jar, but

they have similarity scores higher than the threshold.

Which of the JAR files (M1 – M4) listed above will be determined as the most
similar to Foo.jar?

Our approach determines the most-similar JAR file by measuring the total
number of distinct .class file matches. So with this logic, the similarity ordering
for Foo.jar is M1, M4, M3, M2.

In this setting, determining the similarity of two JARs is akin to comparing
two sets for similarity. Here the items of the sets would be the PVA vectors
representing .class files. We apply the following approach to determine the TPL-
similarity:

1. For each .class c in Foo.jar, find each record r ∈ D such that the similarity
score between c and r is higher than a threshold. Let R ⊂ D denote the set
of all such matched records.

2. Find the set Y of distinct JARs to which each r ∈ R belongs.
3. Sort Y by the number of classes present in R.
4. Select the top-k items from Y as similar JARs to Foo.jar.

Algorithm- 1 presents the above logic in more detail. The same algorithm works
for both the JAR-based and Python-based TPLs.

3.3 Implementation details

The logical structure of the proposed system is shown in Figure 2. All compo-
nents of the system have been developed using the Python programming lan-
guage. Details of each of the components are as follows:

1. TPL file collector: We developed a crawler program to collect the TPLs
and the metadata associated with each file. The files were downloaded from
www.mavencentral.com and https://pypi.org/, reputed public reposito-
ries of Open Source Software (OSS) Java and Python libraries. MavenCentral
has about 15 million indexed artifacts, which are classified into about 150
categories. Some examples of the categories include JSON Libraries, Logging
Frameworks, and Cache Implementations. The metadata about each JAR
includes the following main items: License, Categories, HomePage, Date of
Availability, Files, Used By (count, and links to projects using a library).

www.mavencentral.com
https://pypi.org/

12 R. Kapur et al.

Algorithm 1 Steps for determining the nature of a TPL T .

1: Input: T := A TPL file provided as input by an end-user.
L := Set of considered programming languages, {Java, Python}
M̂ j

bc, M̂
j
sc, M̂

p
bc, M̂

p
sc := The best performing Lib2Vec models.

α̂j
sc, α̂

j
bc, α̂

p
sc, α̂

p
bc := Threshold similarity scores for source code and bytecode for

Python and Java.

φ̂j
sc, φ̂

j
bc, φ̂

p
sc, φ̂

p
bc := Reference PVA vectors for source code and bytecode for Python

and Java.
D := Database containing the vector representations of source files in C.

2: Output: d := Decision on the nature of J .
/*Please see Table 1 for notation*/

3: Ssc := Sbc := NULL
4: for all .class files or .py files f ∈ T do
5: l := Detect Programming Language of f.

6: Obtain the PVA vectors 〈φl
bc, φ

l
sc〉 for 〈fbc, fsc〉 using 〈M̂ l

bc, M̂
l
sc〉, where l ∈ L.

7: Query the database D for top-k most similar vectors to φl
sc and φl

bc.

8: αl
sc, α

l
bc := Compute the cosine similarity between 〈φl

sc, φ̂l
sc〉 and 〈φl

bc, φ̂
l
bc〉.

9: Ssc := Ssc ∪ 〈αsc〉
10: Sbc := Sbc ∪ 〈αbc〉
11: end for
12:

d :=

relevant if for at least N source file
records in both Ssc and Sbc

individually, αl
sc > α̂l

sc and

αl
bc > α̂l

bc respectively.

irrelevant otherwise

Fig. 2: Logical structure of the proposed system [10].

XtraLibD: Detecting Irrelevant Third-Party Libraries 13

Similarly, Pypi has 300 +K python projects classified by programming lan-
guages, topics, frameworks, etc., used while developing them. Django, Dash,
CherryPy, Flask, and IDLE are some of the example Pypi frameworks.
The metadata about each Python project on Pypi comprises release-history,
project readme, the count of stars, forks, pull requests, Date of Release,
Latest Version, HomePage, License, Author information, Maintainers in-
formation, Programming Environment, Programming Framework, Intended
Audience, Operating System, and Programming Language used.

2. Transformation handler: This module provides the transformations and
preprocessing of the source files present in the input TPL files (in JAR or
.zip/.rar formats). Three types of transformations implemented are a) De-
compilation of the .class file present in JAR files to produce a corresponding
Java source, b) Compilation of the .py files present in .rar/.zip Python TPLs
to produce the corresponding compiled .pyc files, and c) Disassembling the
.class and .pyc files into human-readable text files containing bytecode in-
structions for the .class files and .pyc files, respectively.
We used the Procyon [24] tool for performing the decompilation and disas-
sembling of the .class files. The respective transformation output is further
preprocessed to remove comments and adjust token whitespaces before stor-
ing it as a text file in a local repository. The preprocessing was done for
the decompiled Java source to ensure that the keywords and special tokens
such as parentheses and operators were delimited by whitespace. Similar, we
removed the comments from the python source code (in .py) files during the
preprocessing phase. The preprocessing provides proper tokenization of the
source into meaningful “vocabulary words” expected by the PVA.

3. Lib2Vec trainer-cum-tester: We use an open-source implementation of
the PVA – called Gensim [8], to train our Lib2Vec models. The Lib2Vec
trainer-cum-tester module’s primary task is to:
(a) Train the Lib2Vec models using bytecode and source code produced by

various disassembling, compilation, and decompilation operations.
(b) Infer the vectors for unseen .class files’ bytecode and source code by using

the respective models.
4. Metadata and the vectors’ database: The information about libraries

fetched from MavenCentral is stored in a relational database. The following
are the essential data items stored in the database:
(a) Name, category, version, size, and usage count of the library.
(b) Location of the library on the local disk as well as a remote host.
(c) For each .class file f in a JAR or .py file f in a Python project:

i. The fully qualified name of the f .
ii. Sizes of f , and the textual form of its decompiled Java source code

(f jsc), python source code (fpsc), and the disassembled bytecode for
both Java and Python TPLs (f jbc, f

p
bc).

iii. Inferred PVA vectors 〈φlsc, φlbc〉, l ∈ L for the above files.

iv. Cosine similarity scores α̂lsc and α̂lbc between 〈φlsc, α̂lsc〉 and 〈φlbc, α̂lbc〉,
respectively. The values α̂lsc and α̂lbc are scalar.

14 R. Kapur et al.

Fig. 3: Top similar TPLs detected by XtraLibD.

5. XtraLibD’s GUI: The user interface of XtraLibD is a web-based applica-
tion. End-user uploads a TPL using this GUI, which is then processed by
our tool at the server-side. The tool requires the TPLs in JAR, .zip, or .rar
formats as input. Figure 3 displays the results for a test file9 submitted to
our tool. As shown by the figure, XtraLibD displays the input file’s nature
and the top-k (k=5) similar essential libraries along with the correspond-
ing similarity scores. As we achieve higher accuracy with the source code
Lib2Vec models than the bytecode models (discussed in the Appendix), we
use the best performing source code Lib2Vec model for developing our tool.

4 Experimental Evaluation

The primary goal of our experiments is to validate the correctness and accu-
racy of our tool – XtraLibD. For a given input file, XtraLibD labels it as 〈
likely-to-be-irrelevant-TPL, likely-to-be-non-irrelevant-TPL〉, and lists the top-
k similar libraries and the respective similarity scores shown in Figure 3. The
efficacy of our tool depends on its accuracy in performing the task of detecting
similar TPLs. XtraLibD achieves this by detecting the similarity between the
PVA vectors of the .class files present in the TPLs. The Lib2Vec models used
by XtraLibD are responsible for generating different PVA vectors. Therefore,
we perform various parameter-tuning experiments to obtain the best performing

9 https://bit.ly/2yb2eHY

https://bit.ly/2yb2eHY

XtraLibD: Detecting Irrelevant Third-Party Libraries 15

Lib2Vec models (discussed in the Appendix). To evaluate the performance of
XtraLibD, we develop a test-bed using the TPLs collected from MavenCentral
and PyPi (discussed in Section 4.1) and perform the following experiments:

1. Test the performance of Lib2Vec models (and thus XtraLibD) in performing
the TPL-detection task (discussed in the Appendix).

2. Compare the performance of XtraLibD with the existing TPL-detection tools
(discussed in Section 4.2).

4.1 Test-bed setup

To compare the performance of XtraLibD on Java-based and Python-based tools,
we setup Java and Python testbeds separately for our experiments. In this sec-
tion, we provide the deatils of setting these testbeds.

Developing Test-bed for comparison with Java-based tools: We crawled
https://mvnrepository.com/open-source?p=PgNo, where PgNo varied from
1 to 15. Each page listed ten different categories from the list of most popular
ones, and under each category, the top-three libraries were listed.

We started by downloading one JAR file for each of the above libraries. That
is, a total of 15× 10× 3 = 450 JAR files were fetched. In addition to the above
JAR files, we also included the JDK1.8 runtime classes (rt.jar). After removing
the invalid files, we were left with 97 JAR files containing 38839 .class files.

We chose random 76 JAR files out of 97 plus the rt.jar for training the
Lib2Vec models, and the remaining 20 JAR files were used for testing. We used
only those .class files for training whose size was at least 1kB since such tiny .class
files do not give sufficient Java and byte code, which is necessary to compute
a sufficiently unique vector representation of the .class contents. The training
JARs had 33,292 .class files, out of which only 30,427 were of size 1kB or bigger.
The testing JARs had 4,033 .class files.

Developing Test-bed for comparison with Python-based tools: We
crawled https://pypi.org/search/?c=Programming+Language+%3A%3A+Python&

o=&q=&page=PgNo, where PgNo varied from 1 to 500. Since Pypi also catego-
rizes the projects based on the Developing Framework, we made sure to select
top 10 libraries belonging to each framework on different pages, resulting in a
total of 43,711 python TPLs. By applying the constraints during the selection of
these libraries (discussed in Section 3.2), we made sure that each library contains
atleast one source file written in python. These libraries were available in .zip
or .rar formats, and by uncompressing them we obtained 42,497,414 .py files.
Out of the total 42,497,414 .py files, only 682,901 .py had size >= 1kB, which
we considered for training and testing our python Lib2Vec models. From these
682,901 .py files, we choose random 30,598 .py for training and rest 13,113 for
test our python Lib2Vec models.

https://mvnrepository.com/open-source?p=
https://pypi.org/search/?c=Programming+Language+%3A%3A+Python&o=&q=&page=PgNo
https://pypi.org/search/?c=Programming+Language+%3A%3A+Python&o=&q=&page=PgNo

16 R. Kapur et al.

Table 2: TPL Data summary.

Item Java Count [10] Python Count

Downloaded TPLs 450 43,711

TPLs selected for experiments 97 43,711

TPLs used for training 76 + 1 (rt.jar) 30,597+ 1 (rt.zip)

TPLs used for testing 20 13,113

.class (or .py) files used for training 30427 478,031

.class (or .py) files used for gen-
erating test pairs of bytecode and
source code

4033 204,870

Unique pairs of bytecode files used
for testing

20,100 200,000

Unique pairs of source code files
used for testing

20,100 200,000

Note: We chose the minimum source file size as 1kB because we observed that
the files smaller than 1kB did not significantly train an accurate Lib2Vec model.
A summary of the TPL data is shown in Table 2. Note: the training and testing
of Lib2Vec models were performed on the source code and bytecode extracted
from the respective number of source files.

4.2 Performance Comparison of XtraLibD with the existing
TPL-detection tools

To the best of our knowledge, no work leverages the direction of using code sim-
ilarity (in TPLs) and the vector representations of code to detect the irrelevant-
TPLs for Java and Python applications. We present our tool’s performance com-
parison (XtraLibD) with some of the prominently used tools, viz., LiteRadar,
LibD, and LibScout, DepClean, JIngredient, Autoflake, and PyCln. The details
about these tools have been discussed in Section 2. We already conducted the
experiments with LiteRadar, LibD, and LibScout in our previous research work
[10], and extend our previous work by providing the TPL-detection support for
python-based TPLs. In this section, we provide the details of new experiments
perfomed with some of the recent Java-based and Python-based TPL detection
tools, viz., DepClean, JIngredient, Autoflake, PyCln, and also a summarized
comparison of performance results obtained in our previous comparisons [10]
with LiteRadar, LibD, and LibScout.

Though PyCln and Autoflake work in detection of used/ unused import
TPLs, and not the detection of TPLs, we included them as in our research,
we found them to be the closest available python tools working with TPLs. For
experiment with PyCln and Autoflake we experimented by developing different
import scenarios, for instance, direct imports, secondary imports, and both with
used and unused cases.

XtraLibD: Detecting Irrelevant Third-Party Libraries 17

Objective To compare the performance of XtraLibD with the existing TPL-
detection tools. Through this experiment, we address the following:

How does XtraLibD perform in comparison to the existing TPL-detection
tools? What is the effect on storage and response time? Is XtraLibD resilient to
the source code obfuscations?

Procedure To perform this experiment, we invited professional programmers
and asked them to evaluate our tool. One hundred and one of them partici-
pated in the experiment. We had a mixture of programmers from final year
computer science undergraduates, postgraduates, and the IT industry with ex-
perience between 0-6 years. The participants had considerable knowledge of Java
programming language, software engineering fundamentals, and several Java and
Python applications. The experiment was performed in a controlled industrial
environment. We provided access to our tool for performing this experiment by
sharing it at https://www.doi.org/10.5281/zenodo.5179747. The tools’ per-
formance was evaluated based on their accuracy, response time, and the storage
requirement in performing the TPL-detection task. We compute the tool’s stor-
age requirement of the tools by measuring the memory space occupied in storing
the relevant “reference TPLs.” The TPL-detection tools – LibD, LibScout, and
LibRadar, require the inputs in an Android application PacKage (APK) format.
Therefore, APK files corresponding to the JAR versions of the TPLs were gen-
erated using the Android Studio toolkit10 (listed in Step 13 of Algorithm 2).
Similarly, DepClean requires the input TPLs in maven project format and JIn-
gredient in JAR file format. Both PyCln and Autoflake require the input files in
.py format.

The programmers were requested to perform the following steps:

1. Randomly select a sample of 3-5 TPLs from the test-bed developed for the
experiments (discussed in Section4.1).

2. Test the TPLs using Algorithm 2.
3. Report the tools’ accuracy and response time, as observed from the experi-

ment(s).

Evaluation criteria In the context of the TPL-detection, we define the accu-
racy as [10]:

Accuracy =
Number of TPLs correctly detected

Total number of TPLs tested
(1)

Similarly, for the detection of used/ unused TPL imports, we define accuracy
as follows:

Accuracy =
Number of correctly identified(used/unused) TPL imports

Total number of TPL imports
(2)

10 https://developer.android.com/studio

https://www.doi.org/10.5281/zenodo.5179747

18 R. Kapur et al.

Algorithm 2 Steps for performing the comparison.

1: Input: C = Set of TPLs (T) downloaded randomly from MavenCentral and Pypi.
X = Set of XML files required as input by LibScout.

M̂ j
bc,

ˆM j
sc,M

p
bc, M̂

p
sc := The best performing Lib2Vec models for Java and Python.

φ̂j
sc, φ̂

j
bc, φ̂

p
sc, φ̂

p
bc := Reference PVA vectors for source code and bytecode.

/*Please see Table 1 for notation*/
2: Output: Terminal outputs generated by the tools.
3: F p

sc := F p
bc := F j

sc := F j
bc := NULL

4: for all TPLs T ∈ C do
5: for all .class and .py files f ∈ T do
6: l := Detect the programming language of fu.
7: f l

bc, f
l
sc := Obtain the textual forms of the bytecode and source code of fl.

8: f ′
bc, f

′
sc := Modify f l

bc and f l
sc using transformations listed in Section 4.1.

9: F l
sc := F l

sc ∪ 〈f ′
sc〉

10: F l
bc := F l

bc ∪ 〈f ′
bc〉

11: end for
12: end for
13: Y := Convert F l

sc into the respective input formats required by the tools.
14: Test with the considered tools using X and Y .
15: Test F l

sc and F l
bc with XtraLibD using Algorithm 1.

By a correctly identified TPL import we imply to a scenario when a used
import is labelled (or identified or marked) as a used import, and an unused
import is labelled as an uned import by a considered tool.

Results and observations Table 3 lists the accuracy, response time, and stor-
age space requirement values observed for the tools. We now present a brief
discussion of our results.

Accuracy of the TPL-detection tools: Some of the key observations from
the experiments are:

1. LiteRadar cannot detect the transformed versions of the TPLs and fails in
some cases when tested with the TPLs containing no transformations. For
instance, it cannot detect exact matches in the case of zookeeper-3.3.0.jar
library11 and kotlin-reflect-1.3.61.jar library12.

2. LibScout detects the TPLs without any transformations but suffers from
package-name obfuscations as it cannot detect the modified versions of TPLs
containing package-name transformations.

3. LibD substantially outperforms LibRadar and LibScout in capturing the
similarity between the TPLs but does not comment on their nature, i.e.,
〈likely-to-be-irrelevant-TPL, likely-to-be-non-irrelevant-TPL〉. It also comes
with an additional cost of manually comparing the TPLs with the “reference
set.”

11 http://bit.ly/2VymUmA
12 http://bit.ly/32MvkZe

http://bit.ly/2VymUmA
http://bit.ly/32MvkZe

XtraLibD: Detecting Irrelevant Third-Party Libraries 19

Table 3: Performance comparison of various TPL-detection tools.

TPL
detection

tools

Performance Metrics values

Accuracy

(in %)

Response Time

(in seconds)

Storage requirement

(in MBs)

LiteRadar 68.97 12.29 1.64
LibScout 25.23 6.46 3.93

LibD 85.06 100.92 12.59
DepClean 99 4.458 Not applicable

JIngredient 99.75 0.001 1000
Autoflake 99.29 0.002 Not applicable

PyCln 99.29 0.002 Not applicable
XtraLibD (Java) 99.48 12.043 1.52

XtraLibD (Python) 99.5 12.043 401.94

4. DepClean is able to detect 99% of the direct dependency cases, but is unable
to detect transitive dependency cases as observed by us and an existing
research [21].

5. JIngredient detects the TPLs and their class reuse with an accuracy of
99.75%. However, its dependence on class names to form the class signa-
tures used to detect TPL similarity, makes it prone to obfuscations. Also, its
use is constrained by huge storage and processing requirements (discussed
shortly in detail).

6. Since PyCln and Autoflake do not perform TPL detection and both perform
the detection of used/ unused TPL imports, we analyze them independenly
and compare them with each other. In our experiments, PyCln was unable
to detect the import statements present in a try-except structure, whereas
Autoflake was successful in detecting them. Further, both the tools miss the
import statements where one library imports another but does not use all
the models of it. For instance, when a file A.py imports from B.py (as from
B import *), and does not use all the modules imported in B.

7. XtraLibD detects the TPLs for 99.5% of the test cases. As observed from
the table values, XtraLibD outperforms LiteRadar, LibScout, and LibD with
the improvement scores of 30.33%, 74.5%, and 14.1%, respectively. Though
XtraLibD has a comparable accuracy rate as DepClean, JIngredient, Aut-
oflake, and PyCln, its benefits in terms of low storage requirements and small
response time make it more feasible for use. Also, XtraLibD performs equally
well on the obfuscated test-inputs, the results validate that it is resilient to
the considered obfuscation types.

Storage requirement of the TPL-detection tools: XtraLibD leverages
the PVA vectors to detect the similarity among the TPLs, while the tools used
for comparison, viz., LibD, LibScout, and LiteRadar, use the “reference lists” of
TPLs. These tools contain the “reference lists” of TPLs as files within their tool
packages. As observed from the storage requirement values, XtraLibD has the

20 R. Kapur et al.

lowest storage requirement due to the vector representation format. XtraLibD
reduces the storage requirement by 87.93% compared to LibD, 61.28% com-
pared to LibScout, and 7.3% compared to LiteRadar. As DepClean is based on
the TPL dependency usage rather than the comparison with a reference list of
libraries, storage requirement comparison is not applicable to it. Similarly, Py-
Cln and AutoFlake are based on code analysis for TPL import detection, hence
the storage requirement comparison is not applicable in their case.

JIngredients performs TPL detection by using the source code class names
as signatures to match with a reference database for determining TPL reuse.
However, JIngredients has a storage requirement of 1 GB for its database, and
needs a high performance hardware and memory support to implement its ap-
proach. It was originally implemented on a high end workstation with 2 Six core
processors with a 64 GB RAM on a large corpus size of 1 GB (which itself
was constructed from an original repository data of size 77.8 GB with a total
of 172,232 JAR files). To perform our experiments, we used a database of 214
JAR files from which 192 JAR files were used in JIngredient’s database. We
performed the experiments on a machine having an AMD Ryzen 5 4600H 3.0
Ghz 6 Cores 12 Threads processor with an 8 GB RAM. JIngredients was unable
to detect any instances of reuse on this machine, though it is able to identify
the classes within the JAR files. Thus, JIngredient’s working is constrained by
its high storage and processing requirement. However, XtraLibD has only 1.52
MBs storage requirement for its Java version at a comparable accuracy rate as
JIngredient. Thus, when compared in terms of storage requirement, XtraLibD
outperforms JIngredient by 99.85%.

Response time of the TPL-detection tools: For DepClean, the average
response time mentioned in Table 3 includes only the time involved in running
the actual dependency analysis on the maven projects. XtraLibD has an average
response time of 12.043 seconds with a 61.37% improvement in the response time
over LibD while delivering higher response times than the rest of the tools.

4.3 Threats to validity

For developing our Lib2Vec models and D, we utilize a subset of Java TPLs (i.e.,
JAR files) present in the MavenCentral repository, and a subset of Python TPLs
from Pypi.org. We assume that these TPLs cover a reasonably wide variety of
Java and Python code such that the Lib2Vec models that we train on them will
be accurate. However, there could still be many other Java and Python code
types that could have improved the Lib2Vec models’ accuracy. For training the
Lib2Vec models, we obtain the normalized textual forms of the source code and
bytecode representations of the .class files present in the JAR files and .py files
present in Python TPLs (in .zip/ .rar/ /tar.gz forms). We obtain the source
code and bytecode by using the compilation, decompilation and disassembly
operations. Therefore, our Lib2Vec models’ accuracy is subject to the accuracy
of the decompilation and disassembly operations.

Next, we treat an unseen TPL that shows considerable similarity with the set
of “available TPLs” as likely-to-be-non-irrelevant-TPLs. Thus, the labeling of a

XtraLibD: Detecting Irrelevant Third-Party Libraries 21

TPL as likely-to-be-non-irrelevant-TPL or irrelevant-TPL is strongly dependent
on its use in the considered application. We do not consider the TPL-usage as
per now, but have included it as part of our future work.

While training the Lib2Vec models, we consider only the .class and .py files of
size 1kB or larger. However, there may exist Java and Python libraries where the
average class size is lower than this limit. Excluding such a group of TPLs from
the training might give inaccurate results when the input TPL being checked
happens in such a group. The main reason for excluding such tiny source files
is that they do not give sufficient Java and byte code, which is necessary to
compute a sufficiently unique vector representation of the source code contents.

By reviewing the literature [17,5,15], we realized that there are a significant
amount of TPL-detection tools designed for Android Applications, requiring
the input file in an APK format. To the best of our knowledge, very few tools
perform the TPL-detection for software applications existing in JAR format or
for Python applications. Therefore, we converted our TPLs present from JAR
to APK format using the Android Studio toolkit and choose LibD, LibRadar,
and LibScout – some of the popular TPL-detection tools for our comparison.
However, due to the fast advances of research in this area, we might have missed
some interesting TPL-detection tool that works with the JAR file formats.

5 CONCLUSIONS

Software Development is immensely supported by the functionalities provided
by various TPLs. However, as the software progresses through various releases,
there tend to remain some irrelevant TPLs in the software distributable. These
irrelevant TPLs lead to the unnecessary consumption of various resources such
as CPU cycles, memory, etc., and thus its desirable to remove them. We propose
a novel extra-library detector (XtraLibD) tool that detects the irrelevant li-
braries present in an application distributable. XtraLibD detects these libraries
by performing code similarity detection with a reference dataset of 450 Java
and 43,711 Python TPLs collected from MavenCentral. We use PVA to train
language-specific code similarity detection model on the source code and byte
code of these MavenCentral libraries. To the best of our knowledge, we are the
first to apply PVA for detecting code similarity in TPLs.

We used source code and byte code representations of TPLs to train our
models as these preserve the semantics and are free from source code obfus-
cations. We successfully leveraged the semantics-preserving Java decompilers
(and Python compilers) to transform the binary .class files and .pyc files into
an obfuscation-invariant textual form, viz., source code and byte code. We ver-
ified our approach’s efficacy by testing it with more than 30,000 .class files and
478,031 .py files, where we have achieved detection accuracy above 99.48% and
an F1 score of 0.968 for Java, and 99.5% accuracy for Python. XtraLibD out-
performs the existing TPL-detection tools, such as LibScout, LiteRadar, and
LibD, with an accuracy improvement of 74.5%, 30.33%, and 14.1%, respectively.

22 R. Kapur et al.

XtraLibD achieves a storage reduction of 87.93% over LibD and of 99.85% over
JIngredient.

As part of the future work, we plan to explore the direction of actual TPL-
usage within the application to detect the unused parts of TPL-code. The idea
can be leveraged to develop various software artifacts for automating the SDLC
activities, such as software code review, source code recommendation, and code
clone detection.

References

1. Alon, U., Zilberstein, M., Levy, O., Yahav, E.: Code2vec: Learning distributed
representations of code. Proc. ACM Program. Lang. 3(POPL), 40:1–40:29 (Jan
2019)

2. Alqattan, H.: Pycln. https://hadialqattan.github.io/pycln/ (2020), online; ac-
cessed 09 August 2021

3. Anthony Desnos, Geoffroy Gueguen, S.B.: Welcome to androguard’s documenta-
tion! (2018), https://androguard.readthedocs.io/en/latest/

4. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: analyzing the android per-
mission specification. In: Proceedings of the 2012 ACM conference on Computer
and communications security. pp. 217–228. ACM (2012)

5. Backes, M., Bugiel, S., Derr, E.: Reliable third-party library detection in android
and its security applications. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. pp. 356–367. ACM (2016)

6. Book, T., Pridgen, A., Wallach, D.S.: Longitudinal analysis of android ad library
permissions. arXiv preprint arXiv:1303.0857 (2013)

7. Chen, K., Liu, P., Zhang, Y.: Achieving accuracy and scalability simultaneously
in detecting application clones on android markets. In: Proceedings of the 36th
International Conference on Software Engineering. pp. 175–186. ACM (2014)

8. Dai, A.M., Olah, C., Le, Q.V.: Document embedding with paragraph vectors. In:
NIPS Deep Learning Workshop (2015)

9. Davies, J., German, D.M., Godfrey, M.W., Hindle, A.: Software bertillonage. Em-
pirical Software Engineering 18(6), 1195–1237 (2013)

10. Dewan, A., Rao, P.U., Sodhi, B., Kapur, R.: Bloatlibd: Detecting bloat libraries
in java applications. In: ENASE. pp. 126–137 (2021)

11. Feichtner, J., Rabensteiner, C.: Obfuscation-resilient code recognition in android
apps. In: Proceedings of the 14th International Conference on Availability, Relia-
bility and Security. p. 8. ACM (2019)

12. Grace, M.C., Zhou, W., Jiang, X., Sadeghi, A.R.: Unsafe exposure analysis of
mobile in-app advertisements. In: Proceedings of the fifth ACM conference on
Security and Privacy in Wireless and Mobile Networks. pp. 101–112. ACM (2012)

13. Ishio, T., Kula, R.G., Kanda, T., German, D.M., Inoue, K.: Software ingredi-
ents: Detection of third-party component reuse in java software release. In: 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR).
pp. 339–350. IEEE (2016)

14. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International conference on machine learning. pp. 1188–1196 (2014)

15. Li, M., Wang, W., Wang, P., Wang, S., Wu, D., Liu, J., Xue, R., Huo, W.: Libd:
scalable and precise third-party library detection in android markets. In: 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE). pp.
335–346. IEEE (2017)

https://hadialqattan.github.io/pycln/
https://androguard.readthedocs.io/en/latest/

XtraLibD: Detecting Irrelevant Third-Party Libraries 23

16. Liu, B., Liu, B., Jin, H., Govindan, R.: Efficient privilege de-escalation for ad
libraries in mobile apps. In: Proceedings of the 13th annual international conference
on mobile systems, applications, and services. pp. 89–103 (2015)

17. Ma, Z., Wang, H., Guo, Y., Chen, X.: Libradar: fast and accurate detection of
third-party libraries in android apps. In: Proceedings of the 38th international
conference on software engineering companion. pp. 653–656. ACM (2016)

18. Mitchell, N., Sevitsky, G.: The causes of bloat, the limits of health. In: Proceedings
of the 22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications. pp. 245–260 (2007)

19. Myint, S.: Autoflake. https://pypi.org/project/autoflake/ (2016), online; ac-
cessed 09 August 2021

20. Phil Frost, M.A.e.a.: Pyflakes. https://pypi.org/project/pyflakes/ (2014), on-
line; accessed 09 August 2021

21. Serena Elisa Ponta, W.F.e.a.: The used, the bloated, and the vulnerable: Reducing
the attack surface of an industrial application (2021)

22. Soto-Valero, C., Harrand, N., Monperrus, M., Baudry, B.: A comprehensive study
of bloated dependencies in the maven ecosystem. Empirical Software Engineering
26(3), 1–44 (2021)

23. StackOverflow: Stackoverflow developer survey results 2020: Most popu-
lar technologies (2020), https://insights.stackoverflow.com/survey/2020#

technology

24. Strobel, M.: Procyon: A suite of java metaprogramming tools focused on code
generation, analysis, and decompilation. (Jun 2019), https://bitbucket.org/

mstrobel/procyon/src/default/

25. Wang, H., Guo, Y., Ma, Z., Chen, X.: Wukong: A scalable and accurate two-phase
approach to android app clone detection. In: Proceedings of the 2015 International
Symposium on Software Testing and Analysis. pp. 71–82. ACM (2015)

26. Xu, G., Mitchell, N., Arnold, M., Rountev, A., Sevitsky, G.: Software bloat analysis:
Finding, removing, and preventing performance problems in modern large-scale
object-oriented applications. In: Proceedings of the FSE/SDP workshop on Future
of software engineering research. pp. 421–426 (2010)

27. Zhang, Y., Dai, J., Zhang, X., Huang, S., Yang, Z., Yang, M., Chen, H.: Detecting
third-party libraries in android applications with high precision and recall. In:
2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). pp. 141–152. IEEE (2018)

APPENDIX

Objective: The objective here is to seek an answer to our questions:

1. For reliably detecting a library, what is the acceptable value of Lib2Vec sim-
ilarity scores for source code and bytecode inputs?

2. Does the threshold similarity score (α̂) vary with the input parameters (β, γ,
and ψ) of PVA?

3. What are the optimal values for the PVA tuning-parameters β, γ, and ψ?

Please refer to Table-1 for notation definitions.
Test-bed setup: Using the test partition of the test-bed developed in Sec-

tion 4.1, we generate a test dataset (Y) containing same, different file pairs in

https://pypi.org/project/autoflake/
https://pypi.org/project/pyflakes/
https://insights.stackoverflow.com/survey/2020#technology
https://insights.stackoverflow.com/survey/2020#technology
https://bitbucket.org/mstrobel/procyon/src/default/
https://bitbucket.org/mstrobel/procyon/src/default/

24 R. Kapur et al.

Table 4: Scenarios for training Lib2Vec models using PVA [10].
Parameters varied

Epochs β Vector size γ Training samples ψ Models

Fixed
at
10

Fixed
at
10

Vary 5000 to-
CorpusSize in-

steps of 5000

CorpusSize
÷

5000

Vary 5-
to 50 in-
steps of 5

Fixed
at
10

Fixed at-
CorpusSize 10

Fixed
at
10

Vary 5-
to 50 in-
steps of 5

Fixed at-
CorpusSize 10

Fig. 4: Variation of average similarity with PVA tuning-parameters [10].

50:50 ratio. Further, to check if our tool is resilient to source code transforma-
tions, we test it for the following three scenarios:

1. Package-name transformations: Package names of the classes present in
TPLs are modified.

2. Function (or method) transformations: Function names are changed in the
constituent classes’ source code, and function bodies are relocated within a
class.

3. Source code transformations: Names of various variables are changed, source
code statements are inserted, deleted, or modified, such that it does not alter

Fig. 5: Performance metrics with PVA models trained on source code [10].

XtraLibD: Detecting Irrelevant Third-Party Libraries 25

the semantics of the source code. For instance, adding print statements at
various places in the source file.

We test Lib2Vec models’ efficacy in detecting similar source code pairs (or byte-
code pairs) using Y .

Procedure: The salient steps are [10]:

1. Fbc, Fsc := Obtain the textual forms of bytecode and source code present in
source files of training JARs of the test-bed (developed in Section 4.1).

2. For each parameter combination π ∈ Z (listed in Table-4):
(a) Sπsc := Sπbc := NULL
(b) Mπ

bc,M
π
sc := Train the Lib2Vec models using Fbc, Fsc.

(c) Save Mπ
bc and Mπ

sc to disk.
(d) For each file pairs 〈pi, pj〉 ∈ Y :

i. φi, φj := Obtain PVA vectors for pi, pj using M(π)
ii. αi,j := Compute cosine similarity between 〈φi, φj〉

iii. if pi == pj : Ssame = Ssame ∪ 〈αi,j〉
iv. else: Sdifferent = Sdifferent ∪ 〈αi,j〉

(e) α̂πbc, α̂
π
sc := Obtain the average similarity scores using Sπbc and Sπsc and

save them.
(f) Using the α̂πbc, α̂

π
sc as thresholds, compute the accuracy of Mπ

bc and Mπ
sc.

(g) Plot the variation of α̂bc, α̂sc, the accuracy of PVA models for different
values of β, γ, and ψ used in the experiment, and analyze.

Results and Observations: Figure 4 and 5 show the effect of PVA tuning-
parameters on the average similarity and the model performance metrics values,
respectively. The legend entry BC-Ep-Diff represents the similarity variation
w.r.t epochs for bytecode case when two samples were different. SC-Vec-Same
indicates the variation w.r.t vector size for source code case when two samples
were identical. The following are the salient observations:

1. Effect of increasing the epochs beyond 10 seems to have a diminishing im-
provement in the accuracy scores.

2. A noticeable decrease in similarity scores was observed by increasing the
vector count beyond 5, and the epochs count beyond 10.

3. As anticipated, the accuracy (indicated by F1 scores13) improves with the
size of training samples.

Therefore, we take α̂sc = 0.98359 and α̂bc = 0.99110 as the similarity thresh-
old values for source code data and bytecode data, respectively. Further, the best
accuracy (99.48% for source code and 99.41% for bytecode) is achieved with the
Lib2Vec model trained using 30427 samples, 10 epochs, and the vector size of 10.
The precision and recall values, in this case, were 99.00% and 99.00%, respec-
tively, resulting in an F1 score of 99% for the source code case. As we achieve
the highest accuracy scores at β = γ = 10, we take these as the optimal input
parameter values for PVA.

13 https://bit.ly/3kHqkNg

https://bit.ly/3kHqkNg

	XtraLibD: Detecting Irrelevant Third-Party libraries in Java and Python Applications

