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Deniz Ağaoğlu Çağırıcı1[0000−0002−1691−0434] and
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Abstract. A T -graph (a special case of a chordal graph) is the inter-
section graph of connected subtrees of a suitable subdivision of a fixed
tree T . We deal with the isomorphism problem for T -graphs which is
GI-complete in general – when T is a part of the input and even a star.
We prove that the T -graph isomorphism problem is in FPT when T

is the fixed parameter of the problem. This can equivalently be stated
that isomorphism is in FPT for chordal graphs of (so-called) bounded
leafage. While the recognition problem for T -graphs is not known to be in
FPT wrt. T , we do not need a T -representation to be given (a promise
is enough). To obtain the result, we combine a suitable isomorphism-
invariant decomposition of T -graphs with the classical tower-of-groups
algorithm of Babai, and reuse some of the ideas of our isomorphism al-
gorithm for Sd-graphs [MFCS 2020].

Keywords: chordal graph · H-graph · leafage · graph isomorphism ·

parameterized complexity.

1 Introduction

Two graphs G and H are called isomorphic, denoted by G ≃ H , if there is a
bijection f : V (G)→ V (H) such that for every pair u, v ∈ V (G), {u, v} ∈ E(G)
if and only if {f(u), f(v)} ∈ E(H). The well-known graph isomorphism problem
asks whether two input graphs are isomorphic, and it can be solved efficiently
for various special graph classes [1,9,12,14,18,23]. On the other hand, it is still
unknown whether this problem is polynomial-time solvable or not (though, it is
not expected to be NP-hard) in the general case, and a problem is said to be
GI-complete if it is polynomial-time equivalent to the graph isomorphism.

We now briefly introduce two complexity classes of parameterized problems.
Let k be the parameter, n be the input size, f and g be two computable functions,
and c be some constant. A decision problem is in the class FPT (or FPT-time)
if there exists an algorithm solving that problem correctly in time O(f(k) · nc).
Similarly, a decision problem is in the class XP if there exists an algorithm
solving that problem correctly in time O(f(k) · ng(k)). Some parameters which
yield to FPT - or XP -time algorithms for the graph isomorphism problem can be
listed as tree-depth [10], tree-width [21], maximum degree [7] and genus [23]. In
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this paper, we consider the parameterized complexity of the graph isomorphism
problem for special instances of intersection graphs which we introduce next.

The intersection graph for a finite family of sets is an undirected graph G
where each set is associated with a vertex of G, and each pair of vertices in G are
joined by an edge if and only if the corresponding sets have a non-empty inter-
section. Chordal and interval graphs are two of the most well-known intersection
graph classes related to our research.

A graph is chordal if every cycle of length more than three has a chord.
They are also defined as the intersection graphs of subtrees of some (non-fixed)
tree T [16]. Chordal graphs can be recognized in linear time, and they have
linearly many maximal cliques which can be listed in polynomial time [24]. De-
ciding the isomorphism of chordal graphs is a GI-complete problem [25]. A graph
G is an interval graph if it is the intersection graph of a set of intervals on the
real line. Interval graphs form a subclass of chordal graphs. They can also be
recognized in linear time, and interval graph isomorphism can be solved in linear
time [9].

A subdivision of a graph G is the operation of replacing selected edge(s)
of G by new induced paths (informally, putting new vertices to the middle of an
edge). For a fixed graph H , an H-graph is the intersection graph of connected
subgraphs of a suitable subdivision of the graph H [8], and they generalize many
types of intersection graphs. For instance, interval graphs are K2-graphs, their
generalization called circular-arc graphs are K3-graphs, and chordal graphs are
the union of T -graphs where T ranges over all trees. We, however, consider T -
graphs where T is a fixed tree. Even though chordal graphs can be recognized
in linear time [24], deciding whether a given chordal graph is a T -graph is NP-
complete when T is on the input [19]. In [11], Chaplick et al. gave an XP -time
algorithm to recognize T -graphs parameterized by the size of T .

Sd-graphs form a subclass of T -graphs where Sd is the star with d rays. The
isomorphism problem for Sd-graphs, and therefore for T -graphs, was shown to
be GI-complete [25] with d on the input. In [4], we have proved by algebraic
means that Sd-graph isomorphism can be solved in FPT -time parameterized by
d, and then in [5] we have extended this approach to an XP -time algorithm for
the isomorphism problem of T -graphs parameterized by the size of T . We have
also considered in [5] the special case of isomorphism of proper T -graphs with a
purely combinatorial FPT -time algorithm.

New contribution. In this paper, we show that the graph isomorphism problem
for T -graphs can be solved in FPT -time parameterized by the size of T . Our
algorithm does not assume or rely on T -representations of the input graphs to
be given, and in fact it uses only some special properties of T -graphs.

Moreover, our result can be equivalently reformulated as an FPT -time algo-
rithm for testing isomorphism of chordal graphs of bounded leafage, where the
leafage of a chordal graph G can be defined as the least number of leaves of a
tree T such that G is a T -graph. Since there is only a bounded number of trees
T of a given number of leaves, modulo subdivisions, the correspondence of the
two formulations is obvious.
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Highly informally explaining our approach (which is different from [5]), we use
chordality and properties of assumed T -representations of input graphsG and G′

to efficiently compute their special hierarchical canonical decompositions into so-
called fragments (Section 2). Each fragment will be an interval graph, and the
isomorphism problem of interval graphs is well understood. Then we use some
classical group-computing tools (Section 3, Babai’s tower-of-groups approach) to
compute possible “isomorphisms” between the decompositions of G and of G′

(Section 4); each such isomorphism mapping between the fragments of the two
decompositions, and simultaneously between the neighborhood sets of fragments
in other fragments “higher up” in the decomposition.

We remark that the same problem has been independently and concurrently
solved by Arvind, Nedela, Ponomarenko and Zeman [2],3 using different means
(by reducing the problem to automorphisms of colored order-3 hypergraphs with
bounded sizes of color classes).

Statements marked with an asterisk (*) have proofs in the attached Ap-
pendix.

2 Structure and decomposition of T -graphs

In this section, we give a procedure to “extract” a bounded number of special
interval subgraphs (called fragments) of a T -graph G in a way which is invariant
under automorphisms and does not require a T -representation on input. Infor-
mally, the fragments can be seen as suitable “pieces” of G which are placed
on the leaves of T in some representation, and their most important aspects are
their simplicity and limited number. We use this extraction procedure repeatedly
(and recursively) to obtain the full decomposition of a T -graph.

Structure of chordal graphs. We now give several useful terms and facts
related to chordal graphs. A vertex v of a graph G is called simplicial if its
neighborhood corresponds to a clique of G. It is known that every chordal graph
contains a simplicial vertex and, by removing the simplicial vertices of a chordal
graph repeatedly, one obtains an empty graph.

A weighted clique graph CG of a graph G is the graph whose vertices are the
maximal cliques of G and there is an edge between two vertices in CG whenever
the corresponding maximal cliques have a non-empty intersection. The edges
in CG are weighted by the cardinality of the intersection of the correspond-
ing cliques.

A clique tree of G is any maximum-weight spanning tree of CG which may not
be unique. An edge of CG is called indispensable (resp. unnecessary) if it appears
in every (resp. none) maximum-weight spanning tree of CG. If G is chordal, every
maximum-weight spanning tree T of CG is also a T -representation of G, e.g. [22].

3 To be completely accurate, our paper was first time submitted to a conference at
the beginning of July 2021, and [2] appeared on arXiv just two weeks later, without
mutual influence regarding the algorithms.
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For a graph G and two vertices u 6= v ∈ V (G), a subset S ⊆ V (G) is called
a u-v separator (or u-v cut) of G if u and v belong to different components of
G − S. When |S| = 1, then S is called a cutvertex. S is called minimal if no
proper subset of S is a u-v separator. Minimal separators of a graph are the
separators which are minimal for some pair of vertices. Chordal graphs, thus
T -graphs, have linearly many minimal vertex separators [17].

A leaf clique of a T -graph G is a maximal clique of G which can be a leaf
of some clique tree of G (informally, it can be placed on a leaf of T in some
T -representation of G). We use the following lemma in our algorithm:

Lemma 2.1 (Matsui et al. [22]). A maximal clique C of a chordal graph G
can be a leaf of a clique tree if and only if C satisfies (1) C is incident to at
most one indispensable edge of CG, and (2) C is not a cutvertex in C′G which
is the subgraph of CG which includes all edges except the unnecessary ones. The
conditions can be checked in polynomial time.

Decomposing T -graphs. The overall goal now is to recursively find a unique
decomposition of a given T -graph G into levels such that each level consists of
a bounded number of interval fragments.

For an illustration, a similar decomposition can be obtained directly from a
T -representation of G: pick the interval subgraphs of G which are represented
exclusively on the leaf edges of T , forming the outermost level, and recursively in
the same way obtain the next levels. Unfortunately, this is not a suitable solution
for us, not only that we do not have a T -decomposition at hand, but mainly
because we need our decomposition to be canonical, meaning invariant under
automorphisms of the graph, while this depends on a particular representation.

The contribution of this section is to compute such a decomposition the right
canonical way. As sketched above, the core task is to canonically determine in
the given graph G one bounded-size collection of fragments which will form the
outermost level of the decomposition, and then the rest of the decomposition is
obtained in the same way from recursively computed collections of fragments in
the rest of the graph, which is also a T -graph4.

For a chordal graph G and a (fixed) collection Z1, Z2, . . . , Zs ⊆ G of distinct
cliques, we write Zi � Zj if there exists k ∈ {1, . . . , s} \ {i, j} such that Zj

separates Zi from Zk in G (meaning that there is no path from Zi \Zj to Zk \Zj

in G− Zj), and say that Zi � Zj is witnessed by Zk. Note that � is transitive,
and hence a preorder. Let Zi � Zj mean that Zi � Zj but Zj 6� Zi. We also
write Zi ≈ Zj if there exists k ∈ {1, . . . , s} \ {i, j} such that both Zi � Zj and
Zj � Zi hold and are witnessed by Zk. Note that Zj ≈ Zi is stronger than just
saying ‘Zi � Zj and Zj � Zi,’ and that Zi ∩ Zj then separates Zi∆Zj from Zk.

4 Since the requirement of canonicity of our collection does not allow us to relate this
collection to a particular T -representation of G, we cannot say whether the rest of
G (after removing our collection of fragments) would be a T1-graph for some strict
subtree T1 ( T , or only a T -graph again. That is why we speak about T -graphs for
the same T (or, we could say graphs of bounded leafage here) throughout the whole
recursion. In particular, we cannot directly use this procedure to recognize T -graphs.
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Lemma 2.2. (*) Let T be a tree with d leaves, and G be a T -graph. Assume that
Z1, . . . , Zs ⊆ G are distinct cliques of G such that one of the following holds:
a) for each 1 ≤ i ≤ s, the set Zi is a maximal clique in G, and for any 1 ≤ i 6=
j ≤ s, neither Zi � Zj nor Zi ≈ Zj is true, or
b) for each 1 ≤ i ≤ s, the set Zi is a minimal separator in G cutting off a
component F of G− Zi such that F contains a simplicial vertex of a leaf clique
of G, and that F is disjoint from all Zj, j 6= i.
Then s ≤ d.

Let Z ⊆ G be a minimal separator in G and F ⊆ G a connected component of
G−Z. Then Z is a clique since G is chordal, and whole Z is in the neighborhood
of F by minimality. We call a completion of F (in implicit G) the graph F+

obtained by contracting all vertices of G not in V (F ) ∪ Z into one vertex l (the
neighborhood of l is thus Z) and joining l with a new leaf vertex l′, called the
tail of F+. Since F determines Z in a chordal graph G, the term F+ is well
defined.

We call a collection of disjoint nonempty induced subgraphs (not necessarily
connected) X1, X2, . . . , Xs ⊆ G, such that there are no edges between distinct
Xi and Xj, a fragment collection of G of size s. We first give our procedure for
computing a fragment collection, and subsequently formulate (and prove) the
crucial properties of the computed collection and the whole decomposition.

Procedure 2.3 Let T be a tree with d leaves and no degree-2 vertex. Assume
a T -graph G on the input. We compute an induced (and canonical) fragment
collection X1, X2, . . . , Xs ⊆ G of G of size 0 < s ≤ 2d as follows:

1. List all maximal cliques in G (using a simplicial decomposition) and com-
pute the weighted clique graph CG of G. Compute the list L of all possible
leaf cliques of G by Lemma 2.1; in more detail, using [22, Algorithm 2] for
computation of the indispensable edges in CG.

2. For every pair L1, L2 ∈ L such that L1 � L2, remove L2 from the list. Let
L0 ⊆ L be the resulting list of cliques, which is nonempty since � is acyclic.

3. Let L1 :=
{

L ∈ L0 : ∀L′ ∈ L0 \ {L}. L 6≈ L′
}

be the subcollection of cliques
incomparable with others in ≈. By Lemma 2.2(a) we have |L1| ≤ d. If L1 6= ∅,
then output the following fragment collection of G: for each L ∈ L1, include
in it the set F ⊆ L of all simplicial vertices of L in the graph G.

4. Now, for each L ∈ L0 we have L′ ∈ L0 \ {L} such that L ≈ L′ (and so L∩L′

is a separator in G). For distinct L1, L2 ∈ L0 such that L1 ≈ L2, we call a
set Z ⊆ L1∩L2 a joint separator for L1, L2 if Z separates L1∆L2 from L\Z
for some (any) L ∈ L0 \ {L1, L2}. We compute the family Z of all inclusion-
minimal sets Z which are joint separators for some pair L1 ≈ L2 ∈ L0 as
above, over all such pairs L1, L2. This is efficient since all minimal separators
in chordal graphs can be listed in linear time. Note that no set Z ∈ Z contains
any simplicial vertex of G, and so V (G) 6⊆

⋃

Z.
5. Let C be the family of the connected components of G −

⋃

Z, and C0 ⊆ C
consist of such F ∈ C that F is incident to just one set ZF ∈ Z. Note that
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C0 6= ∅, since otherwise the incidence graph between C and Z would have a
cycle and this would in turn contradict chordality of G. Let Z0 := {ZF ∈
Z : F ∈ C0}. Moreover, by Lemma 2.2(b), |Z0| ≤ d.

6. We make a collection C′0 from C0 by the following operation: for each Z ∈
Z0, take all F ∈ C0 such that ZF = Z and every vertex of F is adjacent
to whole Z, and join them into one graph in C′0 (note that there can be
arbitrarily many such F for one Z). Remaining graphs of C0 stay in C′0
without change. Then, we denote by C1 ⊆ C′0 the subcollection of those
F ∈ C′0 such that the completion F+ of F (in G) is an interval graph.5

7. If C1 6= ∅, then output C1 as the fragment collection. (As we can show from
Lemma 2.2(b), |C1| ≤ d+ |Z0| ≤ 2d.)

8. Otherwise, for each graph F ∈ C′0, we call this procedure recursively on the
completion F+ of F (these calls are independent since the graphs in C′0 are
pairwise disjoint). Among the fragments returned by this call, we keep only
those which are subgraphs of F .6 We output the fragment collection formed
by the union of kept fragments from all recursive calls.

One call to Procedure 2.3 clearly takes only polynomial time (in some steps
this depends on G being chordal – e.g., listing all cliques or separators). Since the
possible recursive calls in the procedure are applied to pairwise disjoint parts of
the graph (except the negligible completion of F to F+), the overall computation
of Procedure 2.3 takes polynomial time regardless of d. Regarding correctness,
we are proving that s ≤ 2d, which is in the respective Steps 3 and 7 indicated
as a corollary of Lemma 2.2, except in the last (recursive) Step 8 where it can
be derived in a similar way from Lemma 2.2 applied to the final collection. We
leave the remaining technical details for the attached Appendix.

The last part is to prove a crucial fact that the collection X1, X2, . . . , Xs ⊆ G
is indeed canonical, which is precisely stated as follows:

Lemma 2.4. (*) Let G and G′ be isomorphic T -graphs. If Procedure 2.3 com-
putes the canonical collection X1, . . . , Xs for G and the canonical collection
X ′

1, . . . , X
′
s′ for G′, then s = s′ and there is an isomorphism between G and

G′ matching in some order X1, . . . , Xs to X ′
1, . . . , X

′
s.

Levels, attachments and terminal sets. Following Procedure 2.3, we now
show how the full decomposition of a T -graph G is completed.

For every fragment X of the canonical collection computed by Procedure 2.3,
we define the list of attachment sets of X in G − X as follows. If X = F is
obtained in Step 3, then it has one attachment set L \ F . Otherwise (Steps
6 and 7 ), the attachment sets of X = F are all subsets A of the corresponding
separator Z (of F ) such that some vertex of X has the neighborhood in Z equal
to A. Observe that the attachment sets of X are always cliques contained in the

5 Informally, F+
∈ C1 iff F has an interval representation (on a horizontal line) to

which its separator ZF can be “attached from the left” on the same line.
6 Note that, e.g., the separator and tail of F+ may also be involved in a recursively
computed fragment.
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completion X+, as defined above. Moreover, it is important that the attachment
sets of X form a chain by the set inclusion, since G is chordal, and hence they
are uniquely determined independently of automorphisms of X+.

Procedure 2.5 Given a T -graph G, we determine a canonical decomposi-
tion of G recursively as follows. Start with i = 1 and G0 := G.

1. Run Procedure 2.3 for Gi−1, obtaining the collection X1, . . . , Xs.
2. We call the special interval subgraphs X1, . . . , Xs fragments and their family
Xi := {X1, . . . , Xs} a level (of number i) of the constructed decomposition.

3. Let Gi := G −
(

V (X1) ∪ . . . ∪ V (Xs)
)

. Mark every attachment set of each
Xj in Gi as a terminal set. These terminal sets will be further refined when
recursively decomposing Gi; namely, further constructed fragments of Gi

will inherit induced subsets of marked terminal sets as their terminal sets.
4. As long as Gi is not an interval graph, repeat this from Step 1 with i← i+1.

Regarding this procedure, we stress that the obtained levels are numbered
“from outside”, meaning that the first (outermost) level is of the least index. The
rule is that fragments from lower levels have their attachment sets as terminal
sets in higher levels. As it will be made precise in the next section, an isomor-
phism between two T -graphs can be captured by a mapping between their canon-
ical decompositions, which relates pairwise isomorphic fragments and preserves
the incidence (i.e., identity) between the attachment sets of mapped fragments
and the terminal sets of fragments in higher levels. See also Figure 1.

3 Group-computing tools

We first recall the notion of the automorphism group which is closely related to
the graph isomorphism problem. An automorphism is an isomorphism of a graph
G to itself, and the automorphism group of G is the group Aut(G) of all auto-
morphisms of G. There exists an isomorphism from G1 to G2 if and only if the
automorphism group of the disjoint union H := G1⊎G2 contains a permutation
exchanging the vertex sets of G1 and G2. We work with automorphism groups
by means of their generators; a subset A of elements of a group Γ is called a set
of generators if the members of A together with the operation of Γ can generate
each element of Γ .

There are two related classical algebraic tools which we shall use in the next
section. The first one is an algorithm performing computation of a subgroup of
an arbitrary group, provided that we can efficiently test the membership in the
subgroup and the subgroup is not “much smaller” than the original group:

Theorem 3.1. (Furst, Hopcroft and Luks [15, Cor. 1]) Let Π be a per-
mutation group given by its generators, and Π1 be any subgroup of Π such that
one can test in polynomial time whether π ∈ Π1 for any π ∈ Π (membership
test). If the ratio |Π |/|Π1| is bounded by a function of a parameter d, then a set
of generators of Π1 can be computed in FPT-time (with respect to d).
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The second tool, known as Babai’s “tower-of-groups” procedure (cf. [6]),
will not be used as a standalone statement, but as a mean of approaching the
task of computation of the automorphism group of our object H (e.g., graph).
This procedure can be briefly outlined as follows; imagine an inclusion-ordered
chain of groups Γ0 ⊇ Γ1 ⊇ . . . ⊇ Γk−1 ⊇ Γk such that

– Γ0 is a group of some unrestricted permutations on the ground set of our H ,
– for each i ∈ {1, . . . , k}, we “add” some further restriction (based on the

structure of H) which has to be satisfied by all permutations of Γi,
– the restriction in the previous point is chosen such that the ratio |Γi−1|/|Γi|

is guaranteed to be “small”, and
– in Γk, we get the automorphism group of our object H .

Then Theorem 3.1 can be used to compute Γ1 from Γ0, then Γ2 from Γ1, and so
on until we get the automorphism group Γk.

Automorphism group of a decomposition. Here we are going to apply the
above procedure in order to compute the automorphism group of a special object
which combines the decompositions (cf. Procedure 2.5) of given T -graphsG1 and
G2, but abstracts from precise structure of the fragments as interval graphs.

Consider canonical decompositions of the graphs G1 and G2, as produced by
Procedure 2.5 in the form of level families X 1

1 , . . . ,X
1
ℓ and X 2

1 , . . . ,X
2
ℓ′ , respec-

tively. We may assume that ℓ = ℓ′ since otherwise we immediately answer ‘not
isomorphic’. A combined decomposition of H = G1 ⊎ G2 hence consists of the
levels Xi := X 1

i ∪ X
2
i for i = 1, . . . , ℓ and their respective terminal sets. More

precisely, let X := X1 ∪ . . .∪Xℓ. Let A[X ] for X ∈ Xk be the family of all termi-
nal sets in X (as marked by Procedure 2.5 and then restricted to V (X) ), and
specially Ai[X ] ⊆ A[X ] be those terminal sets in X which come from attachment
sets of fragments on level i < k. LetAk :=

⋃

X∈Xk
A[X ] and Ai

k :=
⋃

X∈Xk
Ai[X ]

for k = 1, . . . , ℓ, and let A := A1 ∪ . . . ∪ Aℓ.
Recall, from Section 2, the definition of the completion X+ of any X ∈ Xi

which, in the current context, is defined with respect to the subgraph of H
induced on the union U of vertex sets of Xi+1 ∪ . . . ∪ Xℓ (of the higher levels
fromX). This is, exactly, the completion ofX defined by the call to Procedure 2.3
on the level i which defined X as a fragment. Recall also the attachment sets of
X which are subsets of U (in X+) and invariant on automorphisms of X+.

The automorphism group of such a decomposition of H (Figure 1) acts on the
ground set X ∪A, and consists of permutations ̺ of X ∪A which, in particular,
map Xi onto Xi and Ai onto Ai for all i = 1, . . . , ℓ. Overall, we would like the
permutation ̺ correspond to an actual automorphism of the graph H , for which
purpose we introduce the following definition. A permutation ̺ of X ∪ A is an
automorphism of the decomposition (X ,A) of H if the following hold true;

(A1) for eachX ∈ Xi where i ∈ {1, . . . , ℓ}, we have ̺(X) ∈ Xi, and there is a graph
isomorphism from the completion X+ to the completion ̺(X)+ mapping the
tail of X+ to the tail of ̺(X)+ and the terminal sets in Aj [X ] to the terminal
sets in Aj [̺(X)] for each 1 ≤ j < i, and
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Xℓ

Aℓ

Xℓ−1

Aℓ−1

. . .

level ℓ

level ℓ−1

. . . levels ℓ− 3, . . . , 1

Fig. 1: An illustration of a (combined) canonical decomposition of the graph
H = G1 ⊎ G2 into ℓ levels, with the collections of fragments X (thick black
circles) and of terminal sets A (colored ellipses inside them). The arrows illus-
trate an automorphism of this decomposition: straight arrows show the possible
mapping between isomorphic fragments on the same level, as in (A1), and wavy
arrows indicate preservation of the incidence between attachment sets and the
corresponding terminal sets, as stated by condition (A2).

(A2) for every X ∈ Xi and A ∈ Ai
k where i ∈ {1, . . . , ℓ} and k ∈ {i+1, . . . , ℓ}, we

have that if A is an attachment set of the fragment X (so, A ⊆ X+), then
̺(A) ⊆ ̺(X)+ is the corresponding attachment set of the fragment ̺(X).

Notice the role of the last two conditions. While (A1) speaks about consis-
tency of ̺ with the actual graph H on the same level, (A2) on the other hand
ensures consistency “between the levels”. Right from this definition we get:

Proposition 3.2. (*) Let H = G1 ⊎G2 and its canonical decomposition (Proce-
dure 2.5) formed by families X and A be as above. A permutation ̺ of X ∪A is
an automorphism of this decomposition (X ,A) of H, if and only if there exists
a graph automorphism of H which acts on X and on A identically to ̺.

4 Main algorithm

We are now ready to present our main result which gives an FPT -time algo-
rithm for isomorphism of T -graphs (without need for a given decomposition).
The algorithm is based on Proposition 3.2, and so on efficient checking of the
conditions (A1) and (A2) in the combined decomposition of two graphs. Stated
precisely:
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Theorem 4.1. For a fixed tree T , there is an FPT-time algorithm that, given
graphs G1 and G2, correctly decides whether G1 ≃ G2, or correctly answers that
one or both of G1 and G2 are not T -graphs.7

We first state a reformulation of it as a direct corollary.

Corollary 4.2. (*) The graph isomorphism problem of chordal graphs G1 and
G2 is in FPT parameterized by the leafage of G1 and G2.

Theorem 4.1 now follows using Procedure 2.5, basic knowledge of automor-
phism groups and Proposition 3.2, and the following refined statement.

Theorem 4.3. (*) Assume two T -graphs G1 and G2, and their combined canon-
ical decomposition (Procedure 2.5) formed by families X and A in ℓ levels, as in
Section 3. Let s = max1≤i≤ℓ |Xi| be the maximum size of a level, and t be an up-
per bound on the maximum antichain size among the terminal set families A[X ]
over each X ∈ X . Then the automorphism group of the decomposition, defined
by (A1) and (A2) above, can be computed in FPT-time with the parameter s+ t.

Notice that, in our situation, the parameter s+ t indeed is bounded in terms of
|T |; we have s ≤ 2d and t ≤ d directly from the arguments in Lemma 2.2 and
Procedure 2.3. Due to space limits, we give only a sketch of the proof here.

Proof (sketch). First, we outline that the condition (A1) can be dealt with (in
Step 1 below) efficiently w.r.t. the parameter t: the arguments combine the known
and nice description of interval graphs via so-called PQ-trees [9,13], with an FPT -
time algorithm [4] for the automorphism group of set families with bounded-size
antichain (where the latter assumption is crucial for this to work).

Using the previous, we prove the rest as a commented algorithm outline:

1. For every level k ∈ {1, . . . , ℓ} of the decomposition of H = G1 ⊎ G2 we
compute the following permutation group Λk acting on Xk ∪ Ak.

a) We partition Xk into classes according to the isomorphism condition
(A1); i.e., X1, X2 ∈ Xk fall into the same class iff there is a graph iso-
morphism from X+

1 to X+
2 preserving the tail and bijectively mapping

Ai[X1] to Ai[X2] for all 1 ≤ i < k. We add the bounded-order symmetric
subgroup on each such class of Xk to Λk.

b) Now, for every permutation ̺ ∈ Λk of Xk and all X ∈ Xk, and for any
chosen isomorphism ιX : X+ → ̺(X)+ conforming to (A1), we add to
Λk the permutation of Ak naturally composed of partial mappings of the
terminal sets induced by the isomorphisms ιX over X ∈ Xk.

c) For everyX ∈ Xk, we compute generators of the automorphism subgroup
of X+ (preserving the tail) which maps Ai[X ] to Ai[X ] for every 1 ≤ i <
k, and we add to Λk the action of each such generator on A[X ] ⊆ Ak (as
a new generator of Λk). This part together with (a), as outlined above,
is a nontrivial algorithmic task [3] and we provide further details in the
attached Appendix.

7 The latter outcome (‘not a T -graph’) happens when some of the assertions assuming
a T -graph in Procedure 2.3 fails.
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2. We let Γ0 = Λ1 × . . .× Λℓ be the direct product of the previous subgroups.
Notice that Γ0 is formed by the permutations conforming to condition (A1).

3. Finally, we apply Babai’s tower-of-groups procedure [6] to Γ0 in order to
compute the desired automorphism group of the decomposition. We loop
over all pairs 1 ≤ i < j ≤ ℓ of levels and over all cardinalities r of terminal
sets in Aj , which is O(n3) iterations, and in iteration k = 1, 2 . . . compute:

* Γk ⊆ Γk−1 consisting of exactly those automorphisms which conform to
the condition (A2) for every component X ∈ Xi and every terminal set
A ∈ Ai

j such that |A| = r. Then Γk forms a subgroup of Γk−1 (i.e., closed
on a composition) thanks to the condition (A1) being true in Γk−1, and
so we can compute Γk using Theorem 3.1.

4. We output the group Γm of the last iteration k = m of Step 3 as the result.

Correctness of the outcome of this algorithm is self-explanatory from the
outline; Γm satisfies (A1) and (A2) for all possible choice of X and A.

We finish with a brief argument of why the computation in Step 3 via Theo-
rem 3.1 is indeed efficient. Observe that for all i, j, |Xi| ≤ s and the number of
A ∈ Ai

j such that |A| = r is at most st. By standard algebraic means (counting
cosets of Γk in Γk−1), we get that |Γk−1|/|Γk| is bounded from above by the order
of the subgroup “induced” on Xi times the order of the subgroup on considered
sets A of cardinality r. The latter number is at most s! · (st)! regardless of Γk−1,
and hence bounded in the parameter. ⊓⊔

5 Conclusions

We have provided an FPT -time algorithm to solve the isomorphism problem for
T -graphs with a fixed parameter |T | and for chordal graphs of bounded leafage.
There seems to be little hope to further extend this result for more general
classes of chordal graphs since already for split graphs of unbounded leafage the
isomorphism problem is GI-complete. Though, we may combine our result with
that of Krawczyk [20] for circular-arc graphs isomorphism to possibly tackle the
case of H-graphs for which H contains exactly one cycle.

On the other hand, an open question remains whether a similar decomposi-
tion technique as that in Section 2 can be used to solve the recognition problem
of T -graphs in FPT -time, since the currently best algorithm [11] works in XP -
time.
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A Additions to Section 2

The task here is to comment and add missing arguments to the computation
of a canonical decomposition of a T -graph. We start with an illustration of a
T -representation of a graph in Figure 2.

Fig. 2: A T -graph G shown by its T -representation (where T is drawn in thick
dashed black lines, and the subtrees shown in colored solid lines represent the
vertices of G). The picture also illustrates the first three (outermost) levels – in
order magenta, green, blue, of the canonical decomposition of G obtained using
Procedure 2.3. The rest of G is undistinguished in orange color. Notice that the
magenta and green levels have been obtained from Step 3 of the procedure, while
the blue level has come from Step 7.

The following observation will be useful in the coming proofs.

(*) If T is a tree with d leaves, and we mark d+1 vertices of T , then some path
in T contains 3 marked vertices.

This can be proved by successively removing unmarked leaves from T , until all
≤ d leaves of the remaining subtree of T are marked. However, then also some
internal vertex is marked, and it can be prolonged into a path ending in two
leaves which are marked, too.

Lemma 2.2. (*) Let T be a tree with d leaves, and G be a T -graph. Assume that
Z1, . . . , Zs ⊆ G are distinct cliques of G such that one of the following holds:
a) for each 1 ≤ i ≤ s, the set Zi is a maximal clique in G, and for any 1 ≤ i 6=
j ≤ s, neither Zi � Zj nor Zi ≈ Zj is true, or
b) for each 1 ≤ i ≤ s, the set Zi is a minimal separator in G cutting off a
component F of G− Zi such that F contains a simplicial vertex of a leaf clique
of G, and that F is disjoint from all Zj, j 6= i.
Then s ≤ d.
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Proof. Consider a T -representation of the graph G – as the intersection graph
of subtrees of a subdivision T ′ of T . Then every clique X of G must be repre-
sented such that the representatives of all vertices of X intersect in (at least)
one common node v[X ] ∈ V (T ′).

a) If s > d, then by observation (*) there exist 1 ≤ i < j < k ≤ s such that
the three (distinct) nodes v[Zi], v[Zj] and v[Zk] of T

′ lie on one path in this order.
Hence Zj separates Zi from Zk in G by basic properties of a T -representation
and maximality of the clique Zj . If Zi separates Zj from Zk, too, then Zi ≈ Zj .
Otherwise, we have Zi � Zj , and both cases lead to a contradiction.

b) For 1 ≤ i ≤ s and some component F of G − Zi, let Xi be a leaf clique
of G having a simplicial vertex in F . As in a), assuming s > d, we find nodes
v[Xi], v[Xj ] and v[Xk] of T

′ (of three distinct maximal leaf cliques Xi, Xj, Xk

of G) that lie on one path in this order. However, from the definition of a T -
representation (note that the node v[Xj ] disconnects v[Xi] from v[Xk] in T ′), we
get that Zi ∩Zk ⊆ Zj . From the assumption of minimality of our separators we
conclude that Zi = Zj = Zk. ⊓⊔

Additions to Procedure 2.3. We further comment on necessity of considering
the joint separators in Step 4 and subsequent steps of the procedure, which is the
more complicated side of the procedure. This is, though, unavoidable in cases
thatG contains arbitrarily many leaf cliques which are then mutually comparable
in ≈. Such a situation is illustrated in Figure 3.

We also add a bit of explanation to Step 7: |C1| ≤ d+ |Z0|. The part ≤ |Z0|
applies to those joined members of C1 which are fully adjacent to whole Z ∈ Z0,
i.e., as |C1 \ C0| ≤ |Z0|. The part ≤ d applies to the remaining members of C1,
precisely, as |C1 ∩C0| ≤ |Z0| which is an application of Lemma 2.2(b). An analo-
gous reasoning applies to the fragments collected from recursive calls in Step 8;
these satisfy the same properties with respect to the whole T -representation of
G as fragments directly obtained in Step 7. ⊓⊔

Lemma 2.4. (*) Let G and G′ be isomorphic T -graphs. If Procedure 2.3 com-
putes the canonical collection X1, . . . , Xs for G and the canonical collection
X ′

1, . . . , X
′
s′ for G′, then s = s′ and there is an isomorphism between G and

G′ matching in some order X1, . . . , Xs to X ′
1, . . . , X

′
s.

Proof. One may easily verify that every step of Procedure 2.3 takes into ac-
count only isomorphism-invariant properties of the graph G, does not consider
the input representation of G in any way and makes no arbitrary decisions.
Consequently, every step performed by the procedure for the input G has an
“isomorphic” step preformed for the input G′. This extends to possible recursive
calls as well, and the conclusion follows. ⊓⊔

B Additions to Section 3

For further details regarding automorphism groups, see e.g., [15]. Here we briefly
illustrate Babai’s “tower-of-groups” procedure on the concrete example of Babai [6]
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Fig. 3: A fragment of a T -representation of a graph G, where the branch to
the right is formed from a leaf edge of T . Notice that this branch carries many
maximal cliques (actually 7, but we can easily build many more there) which
all except one can be leaf cliques, and so Procedure 2.3 finds their minimal
separator consisting of the blue vertex and outputs the whole interval subgraph
as one fragment.

(to which our use in Section 4 is conceptually very similar): A d-bounded color
multiplicity graph is a graph G whose vertex set is arbitrarily partitioned into m
color classes V (G) = V1 ∪ . . . ∪ Vm such that Vi ∩ Vj = ∅ for all 1 ≤ i < j ≤ m.
The number m of colors is arbitrary, but for all 1 ≤ i ≤ m, the cardinality
|Vi|, called the multiplicity of Vi, is at most d. To compute the automorphism
group of such G, we start with Γ0 which freely permutes each color class of
G (formally, it is the product of the symmetric groups on each Vi). Then,
stepwise, we add the restrictions to preserve the edges between Vi and Vj for
(i, j) = (1, 2), (1, 3), . . . , (1,m), (2, 3), . . . , (m − 1,m). The last group Γk for
k =

(

m
2

)

is the automorphism group of G and the total runtime is in FPT with
the parameter d.

We return in a closer detail to the crucial correspondence between automor-
phisms of T -graphs and automorphisms of our special decompositions as defined
in Section 3. Recall that a permutation ̺ of X ∪ A is an automorphism of the
decomposition of H if the following hold true;

(A1) for eachX ∈ Xi where i ∈ {1, . . . , ℓ}, we have ̺(X) ∈ Xi, and there is a graph
isomorphism from the completion X+ to the completion ̺(X)+ mapping the
tail of X+ to the tail of ̺(X)+ and the terminal sets in Aj [X ] to the terminal
sets in Aj [̺(X)] for each 1 ≤ j < i, and

(A2) for every X ∈ Xi and A ∈ Ai
k where i ∈ {1, . . . , ℓ} and k ∈ {i+1, . . . , ℓ}, we

have that if A is an attachment set of the fragment X (so, A ⊆ X+), then
̺(A) ⊆ ̺(X)+ is the corresponding attachment set of the fragment ̺(X).

In regard of (A2) we remark that the words ‘corresponding attachment set’ refer
to the fact that attachment sets of X are uniquely determined in the graph
isomorphism to ̺(X).
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Proposition 3.2. (*) Let H = G1 ⊎G2 and its canonical decomposition (Proce-
dure 2.5) formed by families X and A be as above. A permutation ̺ of X ∪A is
an automorphism of this decomposition (X ,A) of H, if and only if there exists
a graph automorphism of H which acts on X and on A identically to ̺.

Proof. In the ‘only if’ direction, we consider a permutation ̺ of X ∪A satisfying
conditions (A1) and (A2), i.e., an automorphism ̺ of the considered decomposi-
tion ofH . We take the mapping π on V (H) which is composed of all isomorphism
bijections from X ∈ X to ̺(X) claimed by (A1). Then π indeed is a permutation
of V (H) since ̺ is a permutation on X , and π respects all edges of E(H) which
belong to some X ∈ X . All remaining edges of H are between some fragment
X ∈ Xi and one of its attachments (“higher up” in the decomposition) which
coincides with some terminal set A ∈ Aj where j > i, by the way we decom-
posed H . Condition (A2) ensures that those edges of H are preserved as well by
π, and hence π is an automorphism of H . See Figure 1.

In the ‘if’ direction, by recursive application of Lemma 2.4, we get that

– any automorphism of G1 (or of G2, up to symmetry) preserves the fragments
and the levels of the decomposition of G1 and, consequently, it preserves also
the terminal sets by their incidence with attachments of the fragments;

– if G1 ≃ G2, we have an isomorphism ι : G1 → G2 preserving the fragments
and the levels between G1 and G2, and then ι can be composed with any
automorphism of G2 from the previous point.

Consequently, for every graph automorphism σ of H we get an induced permuta-
tion on X ∪A, which indeed is an automorphism of the decomposition according
to the conditions (A1) and (A2) – simply because σ was a graph automorphism.

⊓⊔

C Automorphisms of set families (or of hypergraphs)

In order to efficiently compute with terminal sets introduced by Procedure 2.5,
we give the following technical result from [4].

Let U and U ′ be set families over finite ground sets Z and Z ′ (with no
additional structure), respectively. A bijection π from U to U ′ is called an iso-
morphism if and only if there exists a related bijection ζ from Z to Z ′ such that
π and ζ together preserve the incidence relation ∈, i.e., for all U ∈ U and z ∈ Z
we have z ∈ U ⇐⇒ ζ(z) ∈ π(U). This is essentially the same concept as that
of an isomorphism between hypergraphs (Z,U) and (Z,U ′), but notice that we
primarily focus on the mapping between the sets of U and U ′, and not on the
mapping between the elements of Z and Z ′. An isomorphism π from U to U is
an automorphism of U .

For any set family U , we call a cardinality Venn diagram of U the vector
(

ℓU ,U1
: ∅ 6= U1 ⊆ U

)

such that ℓU ,U1
:= |LU ,U1

| where LU ,U1
=

⋂

A∈U1
A \

⋃

B∈U\U1
B. That is, we record the cardinality of every internal cell of the Venn

diagram of U . Let π(U1) = {π(A) : A ∈ U1} for U1 ⊆ U .
The following is a straightforward but crucial observation:
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Proposition C.1. For a set family U over Z, a permutation π of U is an au-
tomorphism of U if and only if the cardinality Venn diagrams of U and of π(U)
are the same, meaning that ℓU ,U1

= ℓU ,π(U1) for all ∅ 6= U1 ⊆ U .
The latter condition can be tested in time O(m2) where m = |U|+ |Z|.

Notice that the problem of computing the automorphism group of such set
family U is GI-complete in general – we can take U as the set of edges of a graph
as 2-element subsets. Nevertheless, we can compute the group efficiently in the
special case of our terminal sets which have bounded-size antichains:

Proposition C.2. ([5, Algorithm 2 and Lemma 5.9]) Let U be a set family
over a finite ground set Z such that the maximum size of an antichain in U is d
(i.e., there are no more than d sets in U pairwise incomparable by the inclusion).
Then the automorphism group of U can be computed in FPT-time with respect
to d.

To give a brief sketch of a proof here, we observe the following [4, Lemma 5.7]:
If a permutation π on U fails to be an automorphism of U , then there is a
subfamily U2 ⊆ U witnessing this failure such that U2 is an antichain in the
inclusion. Together with the bound |U2| ≤ d on antichains, this is enough to
make Babai’s tower-of-groups machinery work in FPT -time.

D Automorphisms of Interval Graphs with Marked Sets

The task here is to argue that the algorithm given in Theorem 4.3 computes
efficiently in Step 1, items (a) and (c), before finishing the full proof in the
next section. Recall that the task is to compute the automorphism group of
an interval graph G (which is easy in the basic setting [13]), but under an
additional constraint that a given set family A ⊆ 2V (G) (recall the terminal
sets) is preserved by the automorphisms – that each set from A is mapped into
a set from A.

The latter problem is generally GI-hard since G may be chosen as a clique
and A as the edge set of an arbitrary graph H , but the crucial restriction in
our case is that the maximum size of an antichain of sets in A is bounded
(cf. Proposition C.2). Then we obtain:

Lemma D.1. Let G be an interval graph and m > 0 an integer. Let A1, . . . ,Am

be families (in general multisets) of subsets of V (G) (terminal or marked sets
of G) such that, for A := A1 ∪ . . . ∪Am,

– every set A ∈ A induces a clique of G, and
– the maximum size of an antichain in A equals t (i.e., there are no more than

t sets in A pairwise incomparable by the inclusion).

Denote by Γ1 the group consisting of those automorphisms σ of G such that,
for each i ∈ {1, . . . ,m}, σ preserves the set family Ai. Then one can in FPT-
time with the parameter t (but independently of m) compute the group Γ of
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permutations of A which is the action of Γ1 on A. In more detail, a permutation
τ of A belongs to Γ , if and only if there exists an automorphism ̺ of G such that,
for every i ∈ {1, . . . ,m} and all A ∈ Ai, we have τ(A) ∈ Ai and τ(A) = ̺(A).

Proof (sketch). All interval representations of an interval graph, or equivalently
all its clique paths (recall the clique trees of chordal graphs from Section 2), can
be represented by one suitable data structure called the PQ-tree [9]. A PQ-tree
T is a rooted ordered tree whose internal nodes are labelled as either P-nodes
or Q-nodes, where the children of a P-node can be arbitrarily reordered, while
the order of the children of a Q-node can only be reversed. The leaves of T hold
maximal cliques of our interval graph G. The following fact is crucial [9, 13]:

(*) For every interval graph G one can in linear time construct a PQ-tree T
(with leaves in a bijection with the maximal cliques of G), such that the
permissible reorderings of T are in a one-to-one correspondence with all
interval representations of G.

In particular, this means that every automorphism of G can be represented as
a permissible reordering of T (though, not the other way round).

Every node p of a PQ-tree T of G can be associated with a subgraph of G
formed by the union of all cliques of the descendant leaves of p – this subgraph
belongs to p. Then for a node p we define the inner vertices of p as those vertices
of G which belong to p and to at least two child nodes of p, but they do not
belong to any sibling node of p. (In the case of a P-node, the inner vertices of p
belong to all child nodes of p, but this is generally not true for Q-nodes.)

The first step is to reduce the tree T into a small subtree which is “essential”
for the sets of A. Precisely, call a node p of T clean if the inner vertices of p are
disjoint from

⋃

A. The subtree rooted at p is then clean if p and all descendants
of p in T are clean. Observe that the number of non-clean subtrees at the same
depth of T is always bounded from above by t. Indeed, since every set A ∈ A
induces a clique in G, at most one of the considered non-clean subtrees can be
caused by the same set A, and the witnessing sets of the non-clean subtrees
form an antichain. Now, for every node q of T , we use [13] to determine the
isomorphism class of the subgraph belonging to the PQ-tree formed by q and its
clean subtrees. We store this information as an annotation of q and discard the
clean subtrees. Let the resulting reduced tree be denoted by T ′ ⊆ T .

We show that the automorphisms of the reduced tree T ′ (with the aforemen-
tioned annotation) can be handled using the tools from Section C. By (*), we
can in a canonical (i.e., automorphism-invariant) way decompose the vertex set
of G into layers; where layer i is formed by the inner vertices of the nodes of
T which are at depth i. In the subsequent argument, we show that structure of
the tree T ′ can now be “replaced” by suitably chosen sets added to the terminal
set family A. For each node q of T ′ we, essentially, add the set Bq formed by
the vertices of the subgraph of G belonging to q in T ′. This does not increase
the maximum antichain size, since Bq in an incomparable subfamily can be re-
placed by any set of A contained in Bq. We also keep the annotation of q as an
annotation of the set Bq. Moreover, for a Q-node q, we annotate the order of
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the children of q (in a reversible way). Finally, we can use Proposition C.2 to
compute the (annotation-preserving) automorphism group of the resulting set
family, which coincides with the desired permutation group Γ when restricted
onto A.

Since the previous claims are interesting on their own, we leave the full de-
tailed description for a separate paper [3]. ⊓⊔

Corollary D.2. Let, for j = 1, 2, Gj be a connected interval graph, m > 0 an
integer, t a parameter, and A1

j , . . . ,A
m
j families of subsets of V (Gj), all as in

Lemma D.1 for each j ∈ {1, 2}. Then one can in FPT-time with the parameter
t decide whether there exists an isomorphism from G1 to G2 bijectively mapping
Ai

1 to Ai
2 for all 1 ≤ i ≤ m.

Proof. We simply consider the interval graph G formed as the disjoint union of
G1 and G2, compute the respective permutation group on A1 ∪A2 exactly as in
Lemma D.1 and check whether some permutation exchanges A1 with A2. ⊓⊔

We, moreover, remark that the condition in Step 1 of Theorem 4.3 – namely
that we require the isomorphisms/ automorphisms to preserve the tail of X+,
can easily be respected in Lemma D.1 by introducing a separate family of a
single set with the tail(s).

E Additions to Section 4

We finish with the skipped detailed arguments for Section 4.

Corollary 4.2. (*) The graph isomorphism problem of chordal graphs G1 and
G2 is in FPT parameterized by the leafage of G1 and G2.

Proof. Let the promised leafage of G1 and G2 be at most d. We exhaustively
try all trees T1, T2, . . . without degree-2 vertices and with at most d leaves; their
total number depends only on d (exponentially). For each such Ti sequentially,
we call the algorithm of Theorem 4.1 with T = Ti, and if we ever get an answer
about G1 ≃ G2, we output it and quit. If all answers are that G1 or/and G2 are
not Ti-graphs, then the promise of leafage ≤ d is violated. ⊓⊔

Theorem 4.3. (*) Assume two T -graphs G1 and G2, and their combined canon-
ical decomposition (Procedure 2.5) formed by families X and A in ℓ levels, as in
Section 3. Let s = max1≤i≤ℓ |Xi| be the maximum size of a level, and t be an up-
per bound on the maximum antichain size among the terminal set families A[X ]
over each X ∈ X . Then the automorphism group of the decomposition, defined
by (A1) and (A2) above, can be computed in FPT-time with the parameter s+ t.

Proof. We refer to the algorithm outline in the main paper. Correctness of Steps 1
and 2 with respect to the condition (A1) is self-evident. Regarding efficiency of
computation in Step 1 we refer to Lemma D.1 and Corollary D.2. The rest of
these steps follows by standard computation with groups (which are represented
by their sets of generators, as usually).



Isomorphism Testing for T -graphs in FPT 21

Correctness of Step 3 is again self-evident – we stepwise ensure that the
resulting subgroup Γm satisfies by all its members the condition (A2), which
together with aforementioned (A1) imply that Γm indeed is the automorphism
group of the given decomposition of H .

We now add more details to justification of proper and efficient use of Theo-
rem 3.1 is Step 3. In particular, this meas to show that the ratio |Γk−1|/|Γk| is
bounded in the parameters s, t in order to claim runtime in FPT. For the latter,
consider any two permutations ̺, σ ∈ Γk−1 which mutually agree on mapping of
all fragments and terminal sets considered by Step 3 in the current iteration k.
Hence the composed permutation σ−1 ◦ ̺ is identical on the elements currently
considered by Step 3, and the condition (A2) in the current iteration k is auto-
matically true for σ−1 ◦ ̺, meaning that σ−1 ◦ ̺ ∈ Γk. Consequently, such ̺ and
σ belong to the same coset of the subgroup Γk in Γk−1 by the definition. It is
well known that the number of these cosets equals |Γk−1|/|Γk| which we would
like to estimate.

Now, how many permutations in Γk−1 are there that pairwise disagree on
mapping of all components and terminal sets considered by Step 3? In iteration
k of Step 3 we have at most s components to be mapped on level i′, at most
t terminal sets of cardinality r in every fragment (since these sets form an an-
tichain). This gives a possibility of at most s! ·(st)! distinct mappings, and hence
|Γk−1|/|Γk| ≤ s! · (st)! as needed by Theorem 3.1. ⊓⊔

Finally, regarding the overall FPT -runtime of the whole algorithm composed
of Procedures 2.3, 2.5, and Lemma D.1 and Theorem 3.1. The first two proce-
dures run in polynomial time regardless of our parameters, and the latter two
algorithms take each FPT -time with respect to parameters which are bounded
by functions of the “master” parameter equal to the number of leaves of our
fixed tree T .
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