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Abstract

We consider the problem of controlling the spread of harmful items in networks, such as the conta-
gion proliferation of diseases or the diffusion of fake news. We assume the linear threshold model of
diffusion where each node has a threshold that measures the node resistance to the contagion. We study
the parameterized complexity of the problem: Given a network, a set of initially contaminated nodes,
and two integers k and `, is it possible to limit the diffusion to at most k other nodes of the network
by immunizing at most ` nodes? We consider several parameters associated to the input, including: the
bounds k and `, the maximum node degree ∆, the treewidth, and the neighborhood diversity of the net-
work. We first give W [1] or W [2]-hardness results for each of the considered parameters. Then we give
fixed-parameter algorithms for some parameter combinations.

Keywords: Parameterized Complexity, Contamination minimization, Threshold model

1 Introduction

The problem of controlling the spread of harmful items in networks, such as the contagion proliferation of
diseases or the diffusion of fake news, has recently attracted much interest from the research community.
The goal is to try to limit as much as possible the spreading process by adopting immunization measures.
One such a measure consists in intervening on the network topology either blocking some links so that they
cannot contribute to the diffusion process [28] or by immunizing some nodes [14]. In this paper we focus on
the second strategy: Limit the spread to a small region of the network by immunizing a bounded number of
nodes in the network. We study the problem in the linear threshold model where each node has a threshold,
measuring the node resistance to the diffusion [27]. A node gets influenced/contaminated if it receives the
item from a number of neighbors at least equal to its threshold. The diffusion proceeds in rounds: Initially
only a subset of nodes has the item and is contaminated. At each round the set of contaminated nodes
is augmented with each node that has a number of already contaminated neighbors at least equal to its
threshold.

In the presence of an immunization campaign, the immunization operation on a node inhibits the con-
tamination of the node itself. Thus, given a network and a subset of its nodes, called spreader set, that has
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the malicious item to be diffused to the other nodes in the network, at each round the set of contaminated
nodes is augmented only with the nodes for which the number of already contaminated neighbors is at least
equal to the node threshold.

Under this diffusion model, we perform a broad parameterized complexity study of the following prob-
lem: Given a network, a spreader set, and two integers k and `, is it possible to limit the diffusion to at most
k other nodes of the network by immunizing at most ` nodes?

1.1 Influence diffusion: Related Work

During the past decade the study of spreading processes in complex networks have experienced a particular
surge of interest across many research areas from viral marketing, to social media, to population epidemics.
Several studies have focused on the problem of finding a small set of individuals who, given the item to
be diffused, allow its diffusion to a vast portion of the network, by using the links among individuals in
the network to transmit the item itself to their contacts [32]. Threshold models are widely adopted by
sociologists to describe collective behaviours [24] and their use to study of the propagation of innovations
through a network was first considered in [27]. The linear threshold model has then been widely used in the
literature to study the problem of influence maximization, which aims at identifying a small subset of nodes
that can maximize the influence diffusion [4, 6, 7, 9, 13, 27].

Recently, some attention has been devoted to the important issue of developing strategies for reducing
the spread of negative things through a network. In particular several studies considered the problem of
what structural changes can be made to the network topology in order to block negative diffusion processes.
Contamination minimization in linear threshold model by blocking some links has been studied in [16, 28].
Strategies for reducing the spread size by immunizing/removing nodes has been considered in several paper.
As an example [2, 33] consider a greedy heuristic that immunize nodes in decreasing order of out-degree.

When all the node thresholds are 1, the immunization can be obtained by a (multi)cut of the network.
Some papers dealing with this problem are [5, 25, 26] in case of edge cuts and [19] in case of node cuts.

1.2 Parameterized Complexity

Parameterized complexity is a refinement to classical complexity theory in which one takes into account
not only the input size, but also other aspects of the problem given by a parameter p. We recall that a
problem with input size n and parameter p is called fixed parameter tractable (FPT) if it can be solved in
time f(p) · nc, where f is a computable function only depending on p and c is a constant.

We study the parameterized complexity of the studied problem, formally defined in Section 2. We
consider several parameters associated to the input: the bounds k and `, the number ζ related to ini-
tially contaminated nodes, and some parameters of the underlying network: The maximum degree ∆,
the treewidth tw [35], and the neighborhood diversity nd [31]. The two last parameters, formally de-
fined in Sections 3.4 and 3.5 respectively, are two incomparable parameters of a graph that can be viewed
as representing sparse and dense graphs respectively [31]; they received much attention in the literature
[1, 3, 4, 7, 8, 10, 13, 18, 23, 20, 21, 30].
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(a) DG[1] = {v1, v5}, DG[2] = {v1, v3, v5},
DG[3] = {v1, v2, v3, v4, v5, v6}, DG[4] = DG = V

(b) X = {v1, v4, v5}, DG[X] = {v1, v5} �= X

DG,{v3} = {v1, v5}
(c) X ′ = {v1, v5}, DG[X ′]=X

′={v1, v5}, Y (X ′) = {v3}

Figure 1: A graph G (node thresholds appear in red). (a) The diffusion process in G. (b) An example of X whose
G[X] includes nodes not influeced. (c) An example of immunizing set Y (X ′) = {v3}, which enables to confine the
diffusion to X ′ = {v1, v5}.

1.3 Road Map

In Section 2, we formally define the studied immunization problem and summarize our findings. In Section
3, we give hardness results for the considered parameters. In Section 4, we give fixed-parameter algorithms
for some parameter combinations.

2 Problem statement

Denote by G = (V,E, t) a undirected graph where V is the nodes set, E is the set of edges, and t : V → N
is a node threshold function. We use n and m to denote the number of nodes and edges in the graph,
respectively. The degree of a node v is denoted by dG(v). The neighborhood of v is denoted by ΓG(v) =
{u ∈ V |(u, v) ∈ E}. In general, the neighborhood of a set V ′ ⊆ V is denoted by ΓG(V ′) = {u ∈
V |(u, v) ∈ E, v ∈ V ′, u /∈ V ′}. The graph induced by a node set V ′ in G is denoted G[V ′] = (V ′, E′, t′)
where E′ = {(u, v) : u, v ∈ V ′, (u, v) ∈ E} and t′(v) = t(v) for each v ∈ V ′.

Given the network and a spreader set S, after one diffusion round, the influenced nodes are all those
which are influenced by the nodes in S, that is, have a number of neighbors in S at least equal to their
threshold. Noticing that nodes in S are already contaminated and cannot be immunized, we can then model
the diffusion process as in a graph which represents the network except the spreader set. Namely, we
consider the graph G = (V,E, t) where: V is the set of nodes of the network excluding those in the
spreader set, E ⊆ V × V is the edge set, and t is the threshold function t : V → N with t(v) equal to the
original threshold of the node v in the network decreased by the number of its neighbors in S.

Definition 1. The diffusion process in G = (V,E, t) in the presence of a set Y ⊆ V of immunized nodes is
a sequence of node subsets DG,Y [1] ⊆ . . . ⊆ DG,Y [τ ] ⊆ . . . ⊆ V with

– DG,Y [1] = {u|u ∈ V − Y, t(u) = 0}, and

– DG,Y [τ ] = DG,Y [τ − 1] ∪
{
u|u ∈ V − Y,

∣∣ΓG(u) ∩ DG[τ − 1]
∣∣ ≥ t(u)

}
.

The process ends at τ∗ such that DG,Y [τ∗] = DG[τ∗ + 1]. We set DG,Y = DG,Y [τ∗].

We omit the subscript Y when no node is immunized, that is, DG = DG,∅. Moreover, we assume
that for the input graph it holds DG = V ; indeed, we could otherwise remove all the nodes that cannot be
influenced, since they are irrelevant to the immunization problem. In particular, each remaining node v ∈ V
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has t(v) ≤ dG(v), otherwise it could not be influenced. An example is given in Fig.1 (a). We are now
ready to formally define our problem.

INFLUENCE-IMMUNIZATION BOUNDING (IIB): Given a graph G = (V,E, t) and bounds k
and `, is there a set Y such that |Y | ≤ ` and |DG,Y | ≤ k?

For a given set Y we are partitioning the nodes into three subsets: The set DG,Y which contains the nodes
that get influenced, the immunizing set Y , which has the property that, if all its nodes are immunized then
the diffusion process is circumscribed to DG,Y , and the set V −Y −DG,Y of the nodes that, by immunizing
Y , are not influenced.
We will refer to the nodes in the above subsets as influenced, immunized and safe, respectively.

In some cases it will be easier to deal with a different formulation of IIB that starts from the set of nodes
to which one wants to confine the diffusion. Given a set X ⊆ V , we define the immunizing set Y (X) of X
as the set that contains all the nodes in V −X that can be influenced in one round by those in DG[X], that
is, the nodes that get influenced in X when X is isolated from the rest of the graph, namely

Y (X) = {u|u ∈ V −X, |ΓG(u) ∩ DG[X]| ≥ t(u)}. (1)

By the above definitions, we have

DG[X] = DG,Y (X) = DG[V−Y (X)] ⊆ X; (2)

hence, the influenced, immunized and safe node sets are DG[X], Y (X), V − Y (X)− DG[X].
For someX , some nodes inG[X] may be not influenced, even though they would in the whole graphG (see
Fig.1 (b)). However, it is easy to see that for each X the set X ′ = DG[X] ⊆ X is such that DG[X′] = X ′ and
Y (X ′) = {u|u ∈ V −X ′, |ΓG(u) ∩ DG[X′]| ≥ t(u)} = Y (X). In the following, we will refer as minimal
to a set X such that DG[X] = X (see Fig.1 (c)).

Fact 1. (IIB equivalent) 〈G, k, `〉 is a YES instance iff there is a minimal X ⊆ V s.t.

|X| = |DG[X]| ≤ k and |Y (X)| ≤ `. (3)

2.1 Summary of results

In this paper we prove that INFLUENCE-IMMUNIZATION BOUNDING is:

i) W[1]-hard with respect to any of the parameters k, tw or nd

ii) W[2]-hard with respect to the pairs (`, ∆), or (`, ζ);

iii) FPT with respect to any of the pairs (k, `), (k, ζ), (k, tw), (∆, tw), (k, nd), (`, nd),

where tw and nd denote the tree width and the neighborhood diversity of the input graph and ζ = |{v|v ∈
V, t(v) = 0}| is the number of nodes with threshold 0.
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3 Hardness

In this section we give W [1] or W [2] hardness results for the considered parameters.

3.1 Parameter k

Theorem 1. IIB is W [1]-hard with respect to k.

Proof. We give a reduction from the CUTTING AT MOST k VERTICES WITH TERMINAL (CVT-k) problem
studied in [19]: Given a graph H = (V (H), E(H)), s ∈ V (H), and two integers k and `, is there a set
XH ⊆ V (H) such that s ∈ XH , |XH | ≤ k, and |ΓH(XH)| ≤ `?

To this aim, construct the instance 〈G, k − 1, `〉 of IIB where G = H[V (H) − {s}] and t(v) = 0 for
each node v ∈ ΓH(s) and t(v) = 1 for each node v ∈ V (H)− {s} − ΓH(s).

Suppose 〈G, k−1, `〉 admits a solution. By (3), there exists a minimal set X such that |X| = |DG[X]| ≤
k − 1 and |Y (X)| ≤ `. Noticing that ΓH(s) ⊆ X ∪ Y (X), one gets that for XH = X ∪ {s} it holds
ΓH(X ∪ {s}) = Y (X). Hence XH = X ∪ {s} satisfies the inequalities |XH | ≤ k and |ΓH(XH)| ≤ ` and
is a solution to CVT-k.

Suppose now XH = X ∪ {s} is a minimum size solution to CVT-k. Then H[XH ] is connected,
otherwise the connected component containing s would be a smaller solution. Recalling that inG all thresh-
olds are at most 1, we have that all the nodes in the connected component of a node with threshold 0 get
influenced. Hence,

Y (X) = {u| u ∈ V −X, |ΓG(u) ∩ DG[X]| ≥ t(u)}
= {u| u ∈ V −X, t(u) = 0} ∪ {u| u ∈ V −X, |ΓG(u) ∩X| ≥ 1}
= ΓH({s} ∪X).

As a consequence, X is a solution to IIB. The theorem follows, since Theorem 3 in [19] proves that the
latter problem is W [1]-hard whit respect to k.

The same reduction, recalling that Theorem 5 in [19] proves that CVT-k is W [1]-hard with respect to `,
also gives that IIB is W [1]-hard with respect to `; however, a stronger result is given in the next section.

3.2 Parameters ζ and `

Theorem 2. IIB is W [2]-hard with respect to the pair of parameters ζ, the number of nodes with threshold
0, and `.

Proof. We give a reduction from HITTING SET (HS), which is W [2]-complete in the size of the hitting set:
Given a collection {S1, . . . , Sm} of subsets of a set A = {a1, . . . , an} and an integer h > 0, is there a set
H ⊆ A such that H ∩ Si 6= ∅, for each1 i ∈ [m] and |H| ≤ h?

Given an instance 〈{S1, . . . , Sm}, A = {a1, . . . , an}, h〉 of HS, we construct an instance 〈G,n+ 1, h〉
of IIB. The graph G = (V,E, t) has node set

V = I ∪A ∪ S,
1For a positive integer a, we use [a] to denote the set of the first a integers, that is [a] = {1, 2, . . . , a}.
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where I = {v0, . . . , vh} is a set of h + 1 independent nodes, A = {a1, . . . , an} is the ground set, and
S = {s1, . . . , sm} (each sj represents the set Sj), edge set

E = {(vi, aj) | vi ∈ I, aj ∈ A} ∪ {(aj , st) | aj ∈ A, st ∈ S, aj ∈ St},

and threshold function defined by

t(v) =


0 if v ∈ I
1 if v ∈ A
|St| = dG(st) if v = st ∈ S.

Trivially, DG[1] = I , DG[2] = I∪A, and DG[3] = I∪A∪S = V . We prove now that 〈{S1, . . . , Sm}, A, h〉
is a YES instance of HS iff 〈G,n+ 1, h〉 is a YES instance of IIB.

Suppose first there exists H ⊆ A such that |H| ≤ h and H ∩ St 6= ∅, for each t ∈ [m]. If we consider
in G the set of nodes Ỹ ⊆ A corresponding to the elements of H then each node st ∈ S is connected with
a node in Ỹ . Consequently, if all the nodes in Ỹ are immunized, then the number of influenced neighbors
of st cannot reach its threshold t(st) = dG(st). Hence, no node in S can get influenced. Let then Y be the
set obtained by padding Ỹ with nodes in A − Ỹ , so to have |Y | = h. Clearly, DG,Y = I ∪ (A − Y ) with
|DG,Y | = n+ 1.

Assume now there exists a solution Y of IIB. We notice that:

a) I ⊆ DG,Y ∪ Y (having all the nodes in I threshold 0, they are immunized or influenced);

b) If there exists vi ∈ I ∩ Y , we can update Y to Y ′ = Y ∪ {a} − {vi}, for any a ∈ A− Y
(this implies that DG,Y ′ ⊆ DG,Y ∪ {vi} − {a}).

c) If there exists st ∈ S ∩ Y we can update Y to Y ′=Y ∪ {a}−{st}, for any a ∈ A ∩ St
(this implies that DG,Y ′ ⊆ DG,Y − {a}).

Using a) and iterating b) and c), we can assume that Y consists of at most h nodes in A. As a consequence
I ∪ (A−Y ) ⊆ DG,Y . If we assumed that S∩DG,Y 6= ∅, then we would have |DG,Y | ≥ |I|+ |A−Y |+ |S∩
DG,Y | > h+ 1 + (n− |Y |) ≥ n+ 1. Being S ∩DG,Y = ∅ implies each node in S has some neighbor in Y .
Hence, the set H of elements corresponding to the h nodes in Y satisfies H ∩St 6= ∅, for each t ∈ [m].

3.3 Parameters ∆ and `

Theorem 3. IIB is W [2]-hard with respect to the pair of parameters ∆, the maximum node degree, and `.

Given an instance 〈{S1, . . . , Sm}, A = {a1, . . . , an}, h〉 of HS, we construct an instance 〈G, k, `〉 of
IIB, where the maximum node degree is 3. We start the construction of G by inserting the nodes in
A ∪ W ∪ U ∪ S where A = {a1, . . . , an} is the ground set and S = {s1, . . . , sm} (each sj represents
the set Sj), while W and U are two auxiliary sets, of at most nm nodes each, that will be used to keep the
degree bounded and, at the same time, simulating a complete bipartite connection between A and S. We
then add the following expansion, reduction and path gadgets.
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Figure 2: (a) The expansion gadget. (b) The reduction gadget. (c) The graph G.

Expansion gadgets. For each i ∈ [n], if the sets containing ai are exactly Si1 , Si2 , . . . , Siδi then we encode
this relationships with a gadget, which includes four new nodes for each sij , for j ∈ [δi]. Namely, we add
δi nodes {wi,i1 , wi,i2 , . . . wi,iδi} and the edges (ai, wi,i1) and (wi,ij , wi,ij+1) for j ∈ [δi − 1].

Reduction gadgets. For each j ∈ [m], if Sj = {aj1 , aj2 , . . . , ajγj } then we encode this relationships with a
gadget. Namely, we add γj−1 nodes {uj1,j , uj2,j , . . . , ujγj−1,j} and the edges (wjr+1,j , ujr,j), (ujr,j , ujr+1,j),
for r ∈ [γj − 2] and (wj1,j , uj1,j), (wjγj ,j , ujγj−1,j) and (ujγj−1,j , sj). The reduction gadget is presented in
Fig.2 (b).

Path gadgets. A path Pj of p = n + 2nm nodes departs from each sj ∈ S. See Fig.2 (c). Notice
that, by construction the degree of nodes is upper bounded by 3. We set now the thresholds of the nodes in
G as: t(v) = 0 for each node v ∈ A, t(v) = 2 for each node v ∈ U and t(v) = 1 for all the remaining
nodes.

Lemma 1. 〈{S1, . . . , Sm}, A, h〉 is a YES instance of HS iff 〈G, p, h〉 is a YES instance of IIB.

Proof. Suppose that there exists H ⊆ A such that |H| ≤ h and H ∩ Sj 6= ∅ for each j ∈ [m]. Consider in
G the set of nodes Y corresponding to the elements of H . Since H ∩ Sj 6= ∅, for each j ∈ [m], we have
that each node sj ∈ S is connected, through a reduction gadget, with a node in wi,j such that ai ∈ Sj ∩ Y .
Consequently, if all the nodes in Y are immunized, then at least one node in the reduction gadget associated
to sj cannot reach the threshold and consequently sj will not be influenced. Hence, no node in S as well
as in the associated path gadgets can get influenced. We have |Y | ≤ h and |DG,Y | < p, where the last
inequality follows noticing that p = n+ 2nm is greater than the number of nodes that remain in G once we
eliminate the nodes in S and in the path gadgets.

Assume now there exists a solution Y to IIB such that |Y | ≤ h and |DG,Y | ≤ p. Without loss of
generality, we can assume that Y ⊆ A. Indeed, if Y contains either of the nodes wi,ij , ui,ij , sij or a node
in the path Pij , for some i ∈ [n], we could replace such a node by ai ∈ A without increasing neither the
size of Y nor DG,Y . Hence, we have that Y consists of at most h nodes in A. We argue that the set H ⊆ A
of the elements corresponding to the nodes in Y satisfies H ∩ Sj 6= ∅, for each j ∈ [m]. Indeed, assume
by contradiction that there is a set Sj such that H ∩ Sj = ∅. This implies that in G the node sj will be
influenced. Indeed, sj is connected through gadgets, to all the nodes in Sj . Moreover each node in Sj
belongs to A − Y and has threshold 0. It follows that sj and, as a consequence, all the p nodes on the
associated path get influenced and we obtain the desired contradiction because this violate the bound on the
size of DG,Y .
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3.4 Graphs of bounded treewidth

Definition 2. A tree decomposition of a graph G = (V,E) is a pair (T, {Wu}u∈V (T )), where T is a tree in
which each node u is assigned a node subset Wu ⊆ V such that:
1.
⋃
u∈V (T )Wu = V .

2. For each edge e = (v, w) ∈ E, there exists u in T such that Wu contains both v and w.
3. For each v ∈ V , the set Tv = {u ∈ V (T ) : v ∈Wu}, induces a connected subtree of T .

The width of a tree decomposition (T, {Wu}u∈V (T )) of a graph G, is maxu∈V (T ) |Wu| − 1. The treewidth
of G, denoted by tw(G), is the minimum width of a tree decomposition of G.

Theorem 4. IIB is W [1]-hard with respect to the treewidth of the input graph.

In order to prove Theorem 4, we present a reduction from MULTI-COLORED CLIQUE (MQ): Given a
graph G = (V,E) and a proper vertex-coloring c : V → [q] for G, does G contain a clique of size q?
Given an instance 〈G, q〉 of MQ, we construct an instance 〈G′ = (V ′, E′), k, `〉 of IIB. We denote by
n′ = |V ′| the number of nodes in G′. For a color c ∈ [q], we denote by Vc the class of nodes in G of color c
and for a pair of distinct c, d ∈ [q], we let Ecd be the subset of edges in G between a node in Vc and one in
Vd.

Our goal is to guarantee that any solution of IIB in G′ encodes a clique in G and vice-versa. Following
some ideas in [4], we construct G′ using the following gadgets:

Parallel-paths gadget: A parallel-paths gadget of size h, between nodes x and y, consists of h disjoint
paths each made up by a connection node which is adjacent to both x and y. In order to avoid cluttering, we
draw such a gadget as an edge with label h (cf. Fig. 3 (a)).

Selection gadgets: The selection gadgets encode the selection of nodes (node-selection gadgets) and edges
(edge-selection gadgets):

Node-selection gadget: For each c ∈ [q], we construct a c-node-selection gadget which consists of a
node xv for each v ∈ Vc; these nodes are referred as node-selection nodes. We then add a guard node
gc that is connected to all the other nodes in the gadget; thus the gadget is a star centered at gc.

Edge-selection gadget: For each c, d ∈ [q] with c 6= d, we construct a {c, d}-edge-selection gadget
which consists of a node xu,v for every edge (u, v) ∈ Ecd; these nodes are referred as edge-selection
nodes. We then add a guard node gcd that is connected to all the other nodes in the gadget; thus the
gadget is a star centered at gcd.

Overall there are n node-selection nodes with q guard nodes and m edge-selection nodes with
(
q
2

)
guard

nodes (cf. Fig. 3 (b)).

Validation gadgets: We assign to every node v ∈ V (G) two unique identifier numbers, low(v) and
high(v), with low(v) ∈ [n] and high(v) = 2n− low(v). For every pair of distinct c, d ∈ [q], we construct
two validation gadgets. One between the c-node-selection gadget and the {c, d}-edge-selection gadget and
one between the d-node-selection gadget and the {c, d}-edge-selection gadget. We describe the validation
gadget between the c-node-selection and {c, d}-edge-selection gadgets. It consists of two nodes. The first
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Figure 3: (a) Parallel-paths gadget. (b) Representation of the graph G′ for a trivial instance of the MQ
problem 〈G = (V1 ∪ V2, E1,2), 2〉.

one is connected to each node xv, for v ∈ Vc, by parallel-paths gadgets of size high(v), and to each edge-
selection node xu,v, for (u, v) ∈ Ecd and v ∈ Vc, by parallel-paths gadgets of size low(v). The other node is
connected to each node xv, for v ∈ Vc, by parallel-paths gadgets of size low(v), and to each edge-selection
node xu,v, for (u, v) ∈ Ecd and v ∈ Vc, by parallel-paths gadgets of size high(v). Overall, there are q(q−1)
validation gadgets, each composed by two nodes.

Black-hole gadget: We add a set B of |B| = (n − q)(2nq − 2n + 1) +
(
m−

(
q
2

))
(4n + 1) indepen-

dent nodes and a complete bipartite graph between nodes in B and the guard nodes.
To complete the construction, we specify the thresholds of the nodes in G′

t(x) =



0 if x is a selection node
1 if x is a connection node or x ∈ B
dG′(x)− 2n+ 1 if x is a validation node
|Vc| if x = gc is a guard node for some c ∈ [q]

|Ecd| if x = gcd is a guard node for some c, d ∈ [q]

The complete construction of G′ for an instance of the MQ problem appears in Fig. 3 (b).

Lemma 2. 〈G, q〉 is a YES instance of MQ if and only if 〈G′, k, `〉, where k = (n − q)(2nq − 2n + 1) +(
m−

(
q
2

))
(4n+ 1) and ` = q +

(
q
2

)
is a YES instance of IIB.

Proof. We first notice that a node v can belong to the desired clique only if {v}∪ΓG(v) contains at least one
node from each color class. Hence, we can remove from G all the nodes that do not satisfy such a property,
since they are irrelevant to the problem.
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Suppose that K = (V (K), E(K)) is a multi-colored clique in G of size q. Let C denote the set of
connection nodes and XK = {xv : v /∈ V (K)} ∪ {xu,v : (u, v) /∈ E(K)}. We set

X = XK ∪ {c ∈ C : ΓG′(c) ∩XK 6= ∅}.

We show that
Y = {xv : v ∈ V (K)} ∪ {xu,v : (u, v) ∈ E(K)}

is the immunizing set of X , i.e., Y = Y (X). Notice that |Y | = q +
(
q
2

)
.

We first observe that DG′[X] = X. Indeed, nodes in {xv : v /∈ V (K)} ∪ {xu,v : (u, v) /∈ E(K)} have
threshold 0 and their neighbors in C have threshold 1. Now we can easily evaluate the size of X . Indeed X
is composed by:

• n − q nodes in the set of node-selection nodes and their (n − q)2n(q − 1) neighbors in C. Indeed,
each node-selection node is connected with q − 1 validation pair and, for each node xu, we have
low(u) + high(u) = 2n.

• m −
(
q
2

)
nodes in the set of edge-selection nodes and their (m −

(
q
2

)
)4n neighbors in C. Indeed,

each edge-selection node is connected with two validation pair and for each node xu,v we have that
low(u) + high(u) = low(v) + high(v) = 2n.

Overall the set X has size

k = (n− q)(2nq − 2n+ 1) +

(
m−

(
q

2

))
(4n+ 1). (4)

It remains to show that Y = Y (X). First of all, we observe that Y ⊆ Y (X) because all the nodes in Y
belongs to V ′ − X and have threshold 0, hence, by (1), each node in Y belongs to Y (X). We show now
that for any v ∈ V ′ −X it holds |ΓG′(v) ∩X| < t(v).

• Each guard node g has a neighbor in Y and its threshold is equal to the number of its neighbors
belonging to its selection gadget. Hence, |ΓG′(g) ∩ DG′[X]| < t(g).

• For each b ∈ B, it holds |ΓG′(b) ∩X| = 0 < t(b) = 1.

• Consider now the validation nodes. Knowing that K is a multi-colored clique, we have that for each
validation pair there is exactly one node u and one edge (u, v) such that xu, xu,v ∈ Y . Hence, both
nodes have exactly low(·) + high(·) = 2n neighbors which do not belong to X . Since the threshold
of each validation node x is t(x) = dG′(x)− 2n+ 1, then |ΓG′(x) ∩X| = dG′(x)− 2n < t(x).

• Finally, for each connection node c /∈ X, we have |ΓG′(c) ∩X| = 0 < t(c) = 1.

Assume now there exists a solution Y to IIB such that |Y | ≤ ` = q +
(
q
2

)
and

|DG′,Y | ≤ k = (n− q)(2nq − 2n+ 1) +

(
m−

(
q

2

))
(4n+ 1). (5)

Noticing that k < |B| + 1 and all the nodes in B get influences as soon as a guard node is, we have
that the immunization of Y saves all the guard nodes. Noticing that the number of guard nodes is exactly

10



q +
(
q
2

)
and each guard node is connected to a separate set of selection nodes, we have that |Y | = q +

(
q
2

)
and each node in Y can save one guard node. Recalling that the thresholds of guard nodes is equal to the
number of neighbors belonging to the corresponding selection gadget, we have that in order to save a guard
node there are two options: Put the guard node in Y or put in Y one of its neighbors, belonging to the
corresponding selection gadget. Without loss of generality, we can assume that Y does not include any
guard node. Indeed, if Y contains a guard node we could replace such a node by one of its selection node
neighbors without increasing neither the size of Y nor of DG′,Y .

We can then assume that Y is composed by exactly q node-selection nodes and
(
q
2

)
edge-selection nodes.

Let VY ⊆ V be a set of q nodes in G, defined by VY = {v ∈ V : xv ∈ Y }. We argue that G[VY ] is a clique.
By contradiction suppose that G[VY ] is not a clique. There are two nodes u, v ∈ VY such that (u, v) /∈ E.
Let c, d respectively the colors of v and u. Let xw,z the node in G′ which save the guard gcd associated
to the pair c, d. Since (u, v) /∈ E we have that w 6= u or z 6= v or both. Without loss of generality, we
can assume that w 6= u. Consider now the validation pair between the c-node- and {c, d}-edge-selection
gadgets. Recalling that Y contains exactly one node for each selection gadget, we have that both the nodes
in the validation pair have all the neighbors influenced, except for the connections of the nodes xu and xw,z .
Since w 6= u, we have that one of the vertices in the validation pair will get influenced. This is because for
any w 6= u either high(w) + low(u) < 2n or low(w) + high(u) < 2n. That is, there is a validation node
x having less than 2n not influenced neighbors, while all the remaining neighbors get influenced. Recalling
that the threshold of x is dG′(x)− 2n+ 1, we have that x get influenced.

Hence, |DG′,Y | = k + 1. Indeed k are due to non immunized selection nodes and their connection
neighbors (see (4)) plus at least one validation node. This contradicts (5).

Lemma 3. G′ has treewidth O(q2).

Proof. We show now that G′ admits a tree decomposition of width O(q2). The complete bipartite network
defined by the guard nodes and the nodes in B has treewidth q+

(
q
2

)
. Let A be the set of the guard nodes of

size q+
(
q
2

)
and b1, b2, . . . , bn̂ the nodes in B. The decomposition tree has A as root and A∪ bi as children.

Then we can add to this network the q+
(
q
2

)
trees, rooted on the guard nodes and containing both selections

and connection nodes, without increasing the treewidth. Finally we can add all O(q2) validation nodes,
getting a tree decomposition of width O(q2) for G′.

3.5 Graphs of bounded neighborhood diversity

Given a graphG = (V,E), two nodes u, v ∈ V are said to have the same type if ΓG(v)\{u} = ΓG(u)\{v}.
The neighborhood diversity of a graph G, introduced by Lampis in [31] and denoted by nd(G), is the
minimum number nd of sets in a partition V1, V2, . . . , Vnd, of the node set V , such that all the nodes in Vi
have the same type, for i ∈ [nd]. The family {V1, V2, . . . , Vnd} is called the type partition of G.
Notice that each Vi induces either a clique or an independent set in G. Moreover, for each Vi, Vj in the type
partition, we get that either each node in Vi is a neighbor of each node in Vj or no node in Vi has a neighbor
in Vj . Hence, between each pair Vi, Vj , there is either a complete bipartite graph or no edges at all.

Theorem 5. IIB is W[1]-hard with respect to the neighborhood diversity of the input graph.

In order to prove Theorem 5, we use a reduction from MULTI-COLORED CLIQUE (MQ), defined in
Section 3.4. As before, we refer to Vc as a color class of G and to Ecd as the set of edges between nodes
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Figure 4: An overview of the reduction. Each circle represents a bag. The number inside a bag is the number of
nodes of the bag. The threshold of nodes in a bag is displayed in red.

in the color classes Vc and Vd. Here we will use the fact that MQ remains W[1]-hard even if each color
class has the same size and for each distinct colors c, d ∈ [q], the set Ecd has the same size [11]. We then
denote by r+ 1 the size of each color class Vc and by s+ 1 the size of each set Ecd, in particular we use the
following notation

Vc = {vc0, vc1, . . . , vcr}, Ecd = {ecd0 , . . . , ecds } c, d ∈ [q], c 6= d (6)

and refer to vci and ecdj as the i-th node in Vc and the j-th edge in Ecd, respectively.
Let 〈G, q〉 be an instance of MQ. We describe a reduction from 〈G, q〉 to an instance 〈G′, k, `〉 of IIB

such that nd(G′) is O(q2). The reduction runs in time poly(|G|).
In order to present the reduction we introduce some gadgets that are used in the construction ofG′. They

are inspired by those used in [13]. The rationale behind the construction is the following. First, we create
two sets of gadgets (Selection and Multiple gadgets), which encode in G′ the selection of nodes and edges
as part of a potential multicolored clique in G. Then we create another set of gadgets (Incidence gadgets)
that is used to check whether the selected sets of nodes and edges actually represent a multicolored clique
in G. Our goal is to guarantee that any solution of IIB in G′ encodes a clique in G and vice-versa.

In the following we call bag an independent set of nodes of a graph sharing all neighbors. So, a connec-
tion between two bags points out a complete bipartite graph among the nodes in the bags. Fig. 4 shows the
gadgets we are going to introduce and how they are connected.

Selection Gadget. For each c ∈ [q], the selection gadget Lc consists of three bags: Lc-neg and Lc-pos
of r nodes each, and Lc-guard of ` + 1 nodes (the value `, representing an upper bound on the number
of nodes to be immunized, will be determined later). The bag Lc-guard is connected to both Lc-neg and
Lc-pos. We set the threshold of each node g in Lc-guard to t(g) = r + 1 and the threshold of each node v
in Lc-neg∪Lc-pos to t(v) = 0. The selection gadget Lc is connected to the rest of the graph G′ using only
nodes from Lc-neg ∪ Lc-pos.
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Multiple Gadget. For each c, d ∈ [q] with c 6= d, we create a multiple gadget Mcd consisting of six
bags: Lcd-pos and Lcd-neg of 2rs nodes each, Lcd-guard of ` + 1 nodes, Mcd-pos and Mcd-neg of s + 1
nodes each, and Mcd-guard of ` + 1 nodes. Mcd-guard is connected to the bags Mcd-pos and Mcd-neg.
Mcd-pos is connected to Lcd-pos, and Mcd-neg is connected to Lcd-neg. Finally, the bag Lcd-guard is con-
nected to both Lcd-pos and Lcd-neg. The rest of graphG′ is connected only to the bags Lcd-pos and Lcd-neg.
We set the threshold of each g ∈ Mcd-guard to t(g) = s + 1. For each node v ∈ Lcd-pos ∪ Lcd-neg, we
set the threshold t(v) = 0. Let Mcd-pos = {x0, . . . , xs} and Mcd-neg = {y0, . . . , ys}; we set thresholds
t(xi) = t(yi) = 2ri+ 1. Finally, for each g ∈ Lcd-guard, we set the threshold t(g) = 2rs+ 1.

Incidence Gadget. For each pair of distinct c, d ∈ [q], we construct two incidence gadgets: Ic:cd (con-
nected with the gadgets Lc and Mcd) and Id:cd (connected with the gadgets Ld and Mcd). In the following
we present the gadget Ic:cd which has the same structure of the gadget Id:cd. The incidence gadget Ic:cd has
three bags Ic:cd-pos and Ic:cd-neg of s+1 nodes each, and Ic:cd-guard of `+1 nodes. We connect Ic:cd-guard
to Ic:cd-pos and Ic:cd-neg. Furthermore, we connect Ic:cd-pos to Lc-pos and Lcd-pos. Similarly, we connect
Ic:cd-neg to Lc-neg and Lcd-neg. We set the threshold of each g ∈ Ic:cd-guard to t(g) = s+1. Recalling that
there are s+ 1 edges in the set Ecd, and that there are s+ 1 nodes in Ic:cd-pos and Ic:cd-neg, we create one-
to-one correspondences between Ecd and Ic:cd-pos and between Ecd and Ic:cd-neg. Namely, for each j =
0, . . . s, we associate the j-th edge ecdj in Ecd (cfr. (6)) to a node uj ∈ Ic:cd-pos and to a node wj ∈ Ic:cd-neg
(with uj 6= uj′ and wj 6= wj′ , for j 6= j′). Moreover, if the endpoint of ecdj of color c is the ith node vci of Vc
(cfr. (6)) then we set t(uj) = i+ 1 + 2rj, t(wj) = r − i+ 1 + 2r(s− j).
It is worth observing that the nodes in Ic:cd-pos (respectively, Ic:cd-neg) have different thresholds. Indeed,
the numbers i+ 1 + 2rj (respectively, r− i+ 1 + 2r(s− j)) are all different, for 0 ≤ i ≤ r and 0 ≤ j ≤ s.

Black-hole Gadget. Finally we add a gadget, which will force the immunizing set Y to contain a specific
number of nodes for selection (r nodes) and multiple gadgets (2rs nodes). We add a bag B of |B| =
qr+

(
q
2

)
(2r+3)s nodes and connect it to the guard bags in all the selection, multiple and incidence gadgets.

For each v ∈ B, we set t(v) = 1.

Lemma 4. 〈G, q〉 is a YES instance of MQ iff 〈G′, k, `〉 is a YES instance of IIB, where k = qr+
(
q
2

)
(2r+3)s

and ` = qr +
(
q
2

)
2rs.

The proof of Lemma 4 will follow by Claims 1, 2 proved below.

Claim 1. If 〈G, q〉 is a YES instance of MQ then 〈G′, k, `〉 is a YES instance of IIB.

Proof. Let K = (V (K), E(K)) be a multicolored clique of G. We will show how to select nodes to be
added to the immunizing set Y according to the nodes in K. First of all notice that, all the nodes in the bags
Lc-pos, Lc-neg, Lcd-pos, and Lcd-neg belong to Y ∪ DG′,Y , as they all have threshold zero.

For each c ∈ [q], if the unique node of color c in K is vci , the i-th node in Vc, then we add i nodes of
Lc-neg and r− i nodes of Lc-pos to Y . For each pair of distinct c, d ∈ [q], if the unique edge with endpoints
of colors c and d in K is ecdj , then we add 2rj nodes of Lcd-neg and 2r(s − j) nodes of Lcd-pos to Y .
Overall, |Y | = ` = qr +

(
q
2

)
2rs. We now prove that |DG′,Y | = k = qr +

(
q
2

)
(2r + 3)s.

Consider the diffusion process in V (G′)−Y . At the first round, all non immunized nodes with threshold
zero are influenced; hence DG′,Y [1] contains: i nodes of Lc-pos, for all c ∈ [q] and r − i nodes of Lc-neg,
2rj nodes of Lcd-pos, 2r(s− j) nodes of Lcd-neg, for all c, d ∈ [q] with c 6= d.
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We claim that, at the second round, the additional influenced nodes (in the neighborhood of DG′,Y [1]) are
exactly: s nodes inMcd-pos∪Mcd-neg, s nodes in Ic:cd-pos∪Ic:cd-neg, and s nodes in Id:cd-pos∪Id:cd-neg,
for each pair of distinct c, d ∈ [q]. Indeed, let Mcd-pos = {x0, . . . , xs} and Mcd-neg = {y0, . . . , ys}. Since
at the end of the first round the nodes in Mcd-pos have 2rj influenced neighbors in Lcd-pos and the nodes in
Mcd-neg have 2r(s− j) influenced neighbors in Lcd-neg, recalling that t(xj) = t(yj) = 2rj + 1, we have
that nodes x0, . . . , xj−1 in Mcd-pos and nodes y0, . . . , ys−j−1 in Mcd-neg get influenced. Overall s nodes
in Mcd-pos ∪Mcd-neg are influenced at the second round.
Consider now the incidence gadgets. Since there are 2rj + i influenced nodes in Lc-pos ∪ Lcd-pos that are
in neighborhood of the nodes in Ic:cd-pos, recalling that the thresholds of nodes in Ic:cd-pos are:

t(uj) = 2rj + i+ 1 > 2rj + i and

t(uh) = 2rh+ h′ + 1 for each 0 ≤ h ≤ s, h 6= j, and 0 ≤ h′ ≤ r,

we have

t(uh) ≤ 2rh+ r + 1 ≤ 2r(j − 1) + r + 1 = 2rj − r + 1 ≤ 2rj + i if h < j

t(uh) ≥ 2rh+ 1 ≥ 2r(j + 1) + 1 > 2rj + 2r + 1 > 2rj + i if h > j.

Hence, nodes u0, . . . , uj−1 in Ic:cd-pos are influenced at the second round.
We now make a similar analysis for the nodes in Ic:cd-neg. Since there are r − i + 2r(s − j) influenced
nodes in Lc-neg∪Lcd-neg that are in neighborhood of the nodes in Ic:cd-neg, recalling that the threshold of
nodes in Ic:cd-pos are:

t(wj) = 2r(s− j) + r − i+ 1 > 2r(s− j) + r − i and

t(wh) = 2r(s− h) + r − h′ + 1 for some 0 ≤ h′ ≤ r,

we have

t(wh) ≥ 2r(s− h) + 1 ≥ 2r(s− j) + 2r + 1 > 2r(s− j) + r − i for h < j

t(wh) ≤ 2r(s− h) + n+ 1 ≤ 2r(s− j)− r + 1 ≤ 2r(s− j) + r − i for h > j.

Hence, nodes wj+1, . . . , ws in Ic:cd-neg are influenced at the second round. Overall, we have that s nodes
in Ic:cd-pos ∪ Ic:cd-neg are influenced at the second round.
Using exactly the same argument we can show that s nodes in Id:cd-pos ∪ Id:cd-neg are influenced at the
second round.

Finally, the nodes in Lc-guard (resp. Lcd-guard) have r (resp. 2rs) influenced neighbors at the end of
the first round and since all of them have threshold r + 1 (resp. 2rs + 1), we have that none of them gets
influenced at the second round.

We notice now that only the nodes in Mcd-guard and Ic:cd-guard have neighbors in DG′,Y [2]. However,
they cannot be influenced (indeed, each of them has threshold s + 1 but it has only s influenced neighbors
in DG′,Y [2] – in Mcd-pos ∪Mcd-neg or in Ic:cd-pos ∪ Ic:cd-neg). We have that DG′,Y [3] = DG′,Y [2] and the
diffusion process stops.

Summarizing, DG′,Y contains: r influenced nodes for each of the q nodes in the clique K (those that
are influenced in the selection gadgets Lc for c ∈ [q]), 2rs + s influenced nodes for each of the

(
q
2

)
edges
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in K (those in the multiple gadgets Mcd, for c, d ∈ [q]) and 2s influenced nodes, for each of the
(
q
2

)
edges

in K (those in the incidence gadgets Ic:cd and Id:cd, for distinct c, d ∈ [q]). Hence, the set DG′,Y contains
k = qr +

(
q
2

)
(2r + 3)s nodes.

Let Y be an immunizing set such that |Y | ≤ ` = qr+
(
q
2

)
2rs and |DG′,Y | ≤ k = qr+

(
q
2

)
(2r+ 3)s. In

the following we derive some useful constraints on the nodes contained in Y and DG′,Y .

Proposition 1. For distinct c, d ∈ [q], no node in Lc-guard, Lcd-guard, Ic:cd-guard, Id:cd-guard, Mcd-guard
can be in DG′,Y .

Proof. Since the threshold of each v ∈ B is t(v) = 1, it is sufficient that at least one guard node g ∈
Lc-guard ∪ Lcd-guard ∪ Ic:cd-guard ∪ Id:cd-guard ∪ Mcd-guard is influenced to influence the whole B.
However this cannot be since |B|+ 1 = k + 1 > |DG′,Y |.

Proposition 2. For distinct c, d ∈ [q], both Y and DG′,Y contain
(1) exactly r nodes of (Lc-pos ∪ Lc-neg),
(2) exactly 2rs nodes of (Lcd-pos ∪ Lcd-neg),
(3) a multiple of 2r nodes of Lcd-pos and Lcd-neg.

Proof. First of all consider that all the nodes in Lc-pos, Lc-neg, Lcd-pos and Lcd-neg have threshold zero,
and so all of them are in Y ∪ DG′,Y . We claim that at most r of the nodes of (Lc-pos ∪ Lc-neg) can be in
DG′,Y . Indeed, if DG′,Y contains at least r + 1 nodes in (Lc-pos ∪ Lc-neg) then each node g ∈ Lc-guard
(recall t(g) = r + 1) either is influenced (i.e., g ∈ DG′,Y ) or is immunized (i.e., g ∈ Y ). By Proposition 1,
no node in Lc-guard can be influenced. On the other hand, it cannot occur that all the nodes in Lc-guard are
immunized, since |Lc-guard| = `+ 1 > |Y |.
Using the same argument we can prove that at most 2rs of the nodes of (Lcd-pos ∪ Lcd-neg) can be in
DG′,Y . Assume on the contrary that |DG′,Y ∩ (Lcd-pos ∪ Lcd-neg)| ≥ 2rs + 1. Having each node in
Lcd-guard threshold 2rs+ 1, we have that either the node is influenced or it must be immunized. However,
by Proposition 1 we know that the nodes in Lcd-guard are not influenced; moreover they cannot all be
immunized since |Lcd-guard| = `+ 1 > |Y |.

This allows to say that Y contains at least r nodes of (Lc-pos ∪ Lc-neg) and at least 2rs nodes of
(Lcd-pos ∪ Lcd-neg). However, if there exists a c ∈ [q] or a pair of distinct c, d ∈ [q] such that Y contains
strictly more than r nodes of (Lc-pos∪Lc-neg) or 2rs nodes of (Lcd-pos∪Lcd-neg), then |Y | > qr+

(
q
2

)
2rs

and this is not possible. Hence, (1) and (2) follow.
To prove (3) we proceed by contradiction. Suppose that DG′,Y contains 2ra + z nodes of Lcd-pos,

where a < s and 0 < z < 2r. By (2) we have that DG′,Y contains 2r(s − a) − z nodes of Lcd-neg. Write
Mcd-pos = {x0, . . . , xs} and Mcd-neg = {y0, . . . , ys}. Recalling that the nodes in Mcd-pos are neighbors
of those in Lcd-pos, the nodes in Mcd-neg are neighbors of those in Lcd-neg and t(xi) = t(yi) = 2ri + 1,
we have that nodes x0, . . . , xa ofMcd-pos and nodes y0, . . . , ys−a−1 ofMcd-neg get influenced. Since these
s+1 influenced nodes are neighbors of each node g ∈Mcd-guard, whose threshold is t(g) = s+1, we have
that either g is influenced or it is immunized. By Proposition 1, no node inMcd-guard can be influenced. On
the other hand, it cannot occur that all the nodes in Mcd-guard are immunized, since |Mcd-guard| = `+ 1 >
|Y |.

Claim 2. If 〈G′, k, `〉 is a YES instance of IIB then 〈G, q〉 is a YES instance of MQ.
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Proof. Being 〈G′, k, `〉 a YES instance of IIB, there exists an immunizing set Y of size at most ` = qr +(
q
2

)
2rs such that |DG′,Y | ≤ k = qr +

(
q
2

)
(2r + 3)s.

We proceed by identifying the clique K of G according to the number of nodes that are in Lc-neg ∩ Y
for each c ∈ [q] and in Lcd-neg ∩ Y , for each distinct c, d ∈ [q] . Namely, we select:

– the node vci ∈ Vc, such that |Lc-neg ∩ Y | = i, for some 0 ≤ i ≤ r, and
– the edge ecdj ∈ Ecd such that |Lcd-neg ∩ Y | = 2rj, for some 0 ≤ j ≤ s.

The above selection is correct since, by Proposition 2, we know that |Y ∩ (Lc-pos ∪ Lc-neg)| = r and
|Y ∩ (Lcd-pos ∪ Lcd-neg)| = 2rs (in particular, Y contains a multiple of 2r nodes of both Lcd-pos and
Lcd-neg).

Let V (K) be the set of the q selected nodes and E(K) be the set of the
(
q
2

)
selected edges. We argue

that K = (V (K), E(K)) is a clique. By contradiction assume there are two distinct colors c, d ∈ [q] such
that vci ∈ V (K) and ecdj ∈ E(K) but vci is not an endpoint of ecdj . Consider the incidence gadget Ic:cd.
Let Ic:cd-pos = {u0, . . . , us} and Ic:cd-neg = {w0, . . . , ws}. Assume that vch is the endpoint of color c
of ecdj . Recall that nodes uj and wj represent the edge ecdj and that, by the construction of G′, it holds
t(uj) = 2rj+h+1 and t(wj) = 2r(s−j)+r−h+1. Since the nodes of Ic:cd-pos have 2rj+ i influenced
neighbors (those in DG′,Y ∩(Lc-pos∪Lcd-pos)) and the nodes of Ic:cd-neg have 2r(s−j)+r− i influenced
neighbors, (those in DG′,Y ∩ (Lc-neg∪Lcd-neg)) by an analysis similar to that in the proof of Lemma 1, we
have that nodes u0, . . . , uj−1 in Ic:cd-pos and nodes wj+1, . . . , ws in Ic:cd-neg all get influenced. It remains
to analyze the nodes uj and wj . We will prove that at least one of them gets influenced: If h < i then
t(uj) = 2rj+h+ 1 ≤ 2rj+ i and t(wj) = 2r(s− j) + r−h+ 1 > 2r(s− j) + r− i and uj is influenced;
if h > i then t(uj) = 2rj + h+ 1 > 2rj + i and t(wj) = 2n(s− j) + n− h+ 1 ≤ 2r(s− j) + r − i and
wj is influenced. This allows to say that if vch ∈ ecdj then s+ 1 nodes among those in Ic:cd-pos and Ic:cd-neg
are influenced. As a consequence, each node g ∈ Ic:cd-guard, whose threshold is t(g) = s+ 1, must either
be influenced or immunized. By Proposition 1, no node in Ic:cd-guard can be influenced. On the other hand,
it cannot occur that all the nodes in Ic:cd-guard are immunized, since |Ic:cd-guard| = `+ 1 > |Y |.

Lemma 5. G′ has neighborhood diversity O(q2).

Proof. Since each bag in G′ is a type set in the type partition of G′ and, since for each c ∈ [q], there are
three bags in Lc and, for each c, d ∈ [q] with c 6= d there are six bags in Mcd, and three bags in both Ic:cd
and Id:cd, we have that the neighborhood diversity of G′ is 3q + 12

(
q
2

)
.

4 FPT Algorithms

In this section, we present FPT algorithm for several pairs of parameters.

4.1 Parameters k and `

Theorem 6. IIB can be solved in time 2k+`(k + `)O(log(k+`)) · nO(1).

Proof. The fixed parameter tractability of IIB with respect to k + ` can be proved by the arguments used
in Theorem 1 in [19] for the problem CUTTING AT MOST k VERTICES WITH TERMINAL. For sake of
completeness, the complete proof is given in the following.
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Let 〈G, k, `〉 be the input instance of IIB. Consider a random labelling of the nodes of G, where each
node is independently assigned either 0 or 1 with equal probability. Let now H = G[V1] be the graph
induced by the set V1 of nodes having label 1. Consider the set DH of influenced nodes when we run the
diffusion process on H . If |DH | ≤ k and |Y (DH)| ≤ ` then (3) holds for X = DH and we can answer YES.

We estimate now the number of needed iterations of random labelling. Suppose G contains a set X
satisfying (3). For such a set, it holds |X| = |DG[X]| ≤ k and |Y (X)| ≤ `, then a random labelling
identifies a solution of IIB if and only if all the nodes in X are labelled 1 and all the nodes in Y (X) are
labelled 0, that is,

X ⊆ V1 and Y (X) ∩ V1 = ∅.

Indeed, in such a case the above procedure identifies DH = X as a solution. This happens with probability
2−(|DH |+|Y (DH)|) ≥ 2−(k+`). Hence, the algorithm requires time 2k+`nO(1).

A derandomization of the above process can be done using universal sets. A (n, i)-universal set is a col-
lection of binary vectors of length n such that for each set of i indices, each of the 2i possible combinations
of values appears in some vector of the set. To run the algorithm, it suffices to try all labellings induced by
a (n, k + `)-universal set. Naor et al. [18] give a construction of (n, i)-universal sets of size 2iiO(log i) log n
that can be listed in linear time.

4.2 Parameters k and ζ

Theorem 7. IIB can be solved in time O(ζ3kn5), where ζ = |{v ∈ V | t(v) = 0}|.

Proof. Let 〈G, k, `〉 be the input instance of IIB. Suppose v1, . . . vζ are the nodes in G having threshold 0
and let ∆ denote the maximum degree of a node in G. Consider the graph G′ = (V ′, E′) obtained from
G by adding the internal nodes and the edges of a ∆-ry tree whose leaves are v1, . . . vζ . Assume 〈G, k, `, 〉
is a YES instance of IIB. We notice that in G, the solution set X (cfr. (3)) can be disconnected but any of
its connected components must include at least one node of threshold 0. Hence, in G′ the nodes in X are
now connected through a path in the ∆-ry tree. This implies that there exists X ′ ⊆ V ′ such that: X ⊆ X ′,
(X ′−X) ⊆ V ′−V , andG′[X ′] is connected. In particular, if s is the root of tree, we can assume that s ∈ X ′.
In the worst case, all the paths within the ∆-ry tree go through the root s, hence |X ′| ≤ |X| log∆ ζ + 1.

Let k′ = k log∆ ζ + 1. We use the following result [29, Lemma 2]: There are at most 4k
′
∆k′ connected

subgraphs that contain s and have order at most k′. Furthermore, these subgraphs can be enumerated in
O(4k

′
∆k′(|V ′|+ |E′|)) time. We can then apply the result in [29] to enumerate all the connected subgraphs

of G′ of size up to k′. For each candidate set X ′ (the node set of the current connected subgraph) one has to
determine whether X ′ ∩ V is a solution according to (3), which can be done in O(n2) time.

4.3 Parameters k (or ∆) and Treewidth

In this section we present a dynamic programming algorithm which exploiting the tree decomposition of a
graph G enables to solve a minimization version of IIB, namely the

INFLUENCE DIFFUSION MINIMIZATION (IDM): Given a graph G = (V,E, t) and a budget
`, find a set Y such that |Y | ≤ ` and |DG,Y | is minimized.

We use the rooted tree decomposition named nice tree decomposition.

17



Definition 3. A tree decomposition (T, {Wu}u∈V (T )) is nice if conditions 1. and 2. hold:
1. Wr = ∅ for r the root of T and Wv = ∅ for every leaf v of T .
2. Every non-leaf node of T is of one of the following three types:

Introduce: a node u with exactly one child u′ such that Wu = Wu′ ∪ {v} for a node v /∈Wu′ .

Forget: a node u with exactly one child u′ such that Wu′ = Wu ∪ {v} for a node v /∈Wu.

Join: a node u with two children u1, u2 such that Wu = Wu1 = Wu2

Lemma 6. [17] If a graph G admits a tree decomposition of width at most tw, then it admits a nice tree
decomposition of width at most tw. Moreover, given a tree decomposition (T, {Wu}u∈V (T )) of G of width
at most tw, one can compute in time O(tw2 max{|V (T )|, |V (G)|}) a nice tree decomposition of G of width
at most tw that has at most O(tw|V (G)|) nodes.

Consider a graph G = (V,E) with treewidth tw and nice tree decomposition (T, {Wu}u∈V (T )). Let T
be rooted at node r and denote by T (u) the subtree of T rooted at u, for any node u of T . Moreover, denote
by W (u) the union of all the bags in T (u), i.e., W (u) =

⋃
v∈T (u)Wv. We will denote by su = |Wu| the

size of Wu.
We are going to recursively compute the solution of IDM. The algorithm exploits a dynamic program-

ming strategy and traverses the input tree T in a breadth-first fashion. Moreover, in order to be able to
recursively reconstruct the solution, we calculate optimal solutions under different hypothesis based on the
following considerations:
– Fix a node u in T, for each node v ∈ Wu we have three cases: v gets influenced, v is immunized, or v is
safe. We are going to consider all the 3su combinations of such states. We denote each combination with a
vector C of size su indexed by the elements of Wu, where the element indexed by v ∈Wu denotes the state
influenced (0), immunized (1), safe (2) of node v. The configuration C = ∅ denotes the vector of length 0
corresponding to an empty bag. We denote by Cu the family of all the 3su possible state vectors of the su
nodes in Wu.
– Let U be a subset of V (G). Let us first notice that by 3) of Definition 2, all the edges between nodes
in V − W (u) and W (u) connect a node in V − W (u) with a node in Wu (the bag corresponding to
the root of T (u)). We are going to consider all the possible contribution to the diffusion process, of
nodes in V − W (u); that is, for each v ∈ Wu, we consider all the possible residual thresholds among
t(v), t(v)− 1, . . . ,max{0, t(v)− k} (recall that at most k nodes belong to X and can therefore reduce the
threshold of v). We notice that, for each node v, it is possible to bound the number of residual thresholds
by the value min{t(v), k}. Moreover, since no node with t(v) > dG(v) can be influenced and can be then
purged from G in a preprocessing step, we can assume that in G it holds (maxv∈V t(v)) ≤ ∆. Hence, we
will have up to µsu threshold combinations, where µ = min{k,∆}. We will denote each possible threshold
combination with a vector T , indexed by the su elements in Wu, where the element indexed by v belongs
to {max{0, t(v) − k}, . . . , t(v)} and denotes the residual threshold of v ∈ Wu. The configuration T = ∅
denotes the vector of length 0 corresponding to an empty bag. We denote by Tu the family of all the possible
threshold combinations of nodes in Wu.

The following definition introduces the values that will be computed by the algorithm in order to keep
track of all the above cases:
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Definition 4. For each node u ∈ T, each j = 0, . . . , `, C ∈ Cu and T ∈ Tu we denote by Xu(j, C, T ) the
minimum number of influenced nodes one can attain in G[W (u)] by immunizing at most j nodes in W (u),
where the states and the thresholds of nodes in Wu are given by C and T .

Considering that the root r of a nice tree decomposition has Wr = ∅, we have that the solution of the
IDM instance 〈G, `〉 can be obtained by computing Xr(`, ∅, ∅).

Claim 3. For each u ∈ T , the computation of Xu(j, C, T ), for each j ∈ {0, . . . , `}, state configuration
C ∈ Cu, and threshold configuration T ∈ Tu comprises O(`3twµtw) values, where µ = min{k,∆}, each
of which can be computed recursively in time O(2tw + `).

Proof. We show now how use a bottom–up strategy to compute all the values of Xu(j, C, T ), for each
u ∈ T , j = 0, . . . , `, state configuration C ∈ Cu, and threshold configuration T ∈ Tu. By Definition 4, we
know that such values are O(`3twµtw), where µ = min{k,∆}.
For each leaf u ∈ T and for each j = 0, . . . , ` we have Xu(j, ∅, ∅) = 0.
For any internal node u, we show how to compute each values Xu(j, C, T ), for each j = 0, . . . , `, C ∈ Cu,
and T ∈ Tu in time O(2tw + `).

We have three cases to consider according to the type of u (cf. Definition 3):

1) u is an introduce node: In this case u has exactly one child u′ and we have that Wu = Wu′ ∪ {v} for
some node v /∈ Wu′ . For a given node u ∈ V (T ) (introducing a node v ∈ V ) and state configuration
C, we denote by Su(C) the set of influenced nodes (according to the configuration C) that belongs to
Wu ∩ ΓG(v) . Given a threshold configuration T associated to a set of nodes W , and a set of nodes
S ⊆ W we denote by T (S) the configuration obtained starting from T and decreasing by one the
threshold of each node in S. In the following we assume w.l.o.g. that the element indexed by v is
the last element of the vectors C and T . We have that for each j = 0, . . . , `, each C ∈ Cu and each
T ∈ Tu.

Xu(j, C=[C′, c], T =[T ′, t]) =



minS⊆Su(C),|S|=t
(
Xu′(j, C′, T ′(Su(C)−S))

)
+1,

if c = 0 AND t ≤ |Su(C)|
Xu′(j − 1, C′, T ′),

if c = 1 AND j > 1

Xu′(j, C′, T ′),
if c = 2 AND t > |Su(C)|

+∞, otherwise.

(7)

It is worth to observe that the size of Su(C) is bounded by tw and for this reason the above value can
be computed in time O(2tw)

2) u is a forget node: In this case u has exactly one child u′ and we have that Wu′ = Wu ∪ {v} for some
node v /∈Wu. We have for each j = 0, . . . , `, each C ∈ Cu, and each T ∈ Tu

Xu(j, C, T ) = minc∈{0,1,2}{Xu′(j, C′ = [C, c], T ′ = [T ,max{0, t(v)− |Su(C)|}])} (8)
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Algorithm 1: IIB-k(G, k, `)
Input: A graph G = (V,E, t), integers k, ` and a type partition V1, . . . , Vnd of G.

1 foreach f = 1, . . . , k do
2 foreach f = (f1, f2, . . . , fnd) such that

∑nd
i=1 fi = f do

3 foreach i ∈ [nd] do let Xi = {vi,1, . . . , vi,fi} ⊆ Vi
4 Set X =

⋃nd
i=1Xi

5 if |Y (X)| ≤ ` then return YES

6 return NO

3) u is a join node: In this case u has exactly two child u1, u2 such that Wu = Wu1 = Wu2 . We have for
each j = 0, . . . , `, each C ∈ Cu, and each T ∈ Tu

Xu(j, C, T ) = min0≤a≤j−I(C){Xu1(a+ I(C), C, T ) + {Xu2(j − a, C, T )}, (9)

where I(C) denotes the number of immunized nodes in the configuration state C.

By induction on the tree, we can prove that the recursive formula presented in (7)-(9) coincides with the
definition of Xu(·, ·, ·); hence, the algorithm is correct.

Hence, using [17, Lemma 18], we have that the desired value Xr(`, ∅, ∅)) can be computed in time
O(tw|V |(2tw + `)`3twµtw). Standard backtracking techniques can be used to compute the optimal set X
and Y (X) in the same time.
As a consequence we have that IDM is FPT with respect to tw and ∆ or k.

Theorem 8. IDM is solvable in time O(tw|V |(2tw + `)`3twµtw), where µ = min{k,∆}.

4.4 Graphs of bounded neighborhood diversity

We present FPT algorithms for IIB with respect to both the pairs (k, nd) and (`, nd).
Let {V1, V2, . . . , Vnd} be the type partition of G. Below, we assume that the nodes of each Vi =

{vi,1, . . . , vi,|Vi|} are sorted in non-decreasing order of thresholds, e.g. t(vi,j) ≤ t(vi,j+1).

Parameters nd and k. We consider all the nd-ples (f1, . . . , fnd) such that
∑nd

i=1 fi ≤ k. For each one,
we construct a candidate set as detailed in Algorithm IIB-k below.

Theorem 9. Algorithm IIB-k solves IIB in time O(n2 2k+nd−1)

Proof. We first show Algorithm IIB-k outputs YES iff there exists X satisfying (3).
If the output is YES then trivially the current set X has X ≤ k and |Y (X)| ≤ `.
Let now X̃ be a minimal set satisfying (3), that is, X̃ = DG[X̃], |X| ≤ k, and |Y (X)| ≤ `. Let

X̃i = X̃ ∩ Vi for each i ∈ [nd]. Consider the iteration of the algorithm when f = (f1, f2, . . . , fnd) with
fi = |X̃i|, for i ∈ [nd]. The algorithm selects a set X =

⋃nd
i=1Xi such that |Xi| = fi and t(v) ≤ t(w) for

each v ∈ Xi and w ∈ Vi −Xi, for each i ∈ [nd]. We show that the algorithm outputs YES on X .
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Algorithm 2: IIB-`(G, k, `)
Input: A graph G = (V,E, t), integers k, ` and a type partition V1, . . . , Vnd of G.

1 foreach h = 1, . . . , ` do
2 foreach h = (h1, h2, . . . , hnd) such that

∑nd
i=1 hi = h do

3 foreach i ∈ [nd] do let Yi = {vi,1, . . . , vi,hi} ⊆ Vi
4 Set Y =

⋃nd
i=1 Yi

5 if |DG,Y | ≤ k then return YES

6 return NO

Fix any i ∈ [nd]. Knowing that |X̃i| = |Xi| = fi, we have that if X̃i 6= Xi, then there exists u ∈ X̃i −Xi

and v ∈ Xi − X̃i such that t(v) ≤ t(u). W.l.o.g assume that u is the node with maximum threshold in
X̃i −Xi. Since X̃ = DG[X̃], we have that u has at least t(u) neighbors in X̃ . Furthermore, since v, u ∈ Vi
we have that u and v have the same neighbors. Hence, v has at least t(u) ≥ t(v) neighbors in X̃ . As a
consequence, since v /∈ X̃ we have v ∈ Y (X̃). Consider X̃ ′ = X̃ −{u}∪ {v}. By (i) in Proposition 3 (see
Appendix) we have that X̃ ′ = DG[X̃′] with |X̃ ′| = |X̃| and |Y (X̃ ′)| = |Y (X̃)|.

Hence, trading each node in X̃i −Xi for one in Xi − X̃i, for each i such that X̃i 6= Xi, we can prove
that |Y (X)| = |Y (X̃)| ≤ `. Therefore, the algorithm returns YES.

We now evaluate the running time. Fix f ∈ [k], for each (f1, . . . , fnd) with
∑nd

i=1 fi = f , one needs
time O(f) to get X and O(n2) to get Y (X), moreover the number of all possible such nd-ple is

(
f+nd−1

f

)
.

Summing on all f we get
∑

f∈[k]

(
f+nd−1

f

)
< 2k+nd−1 and the theorem holds.

Parameters nd and `. An idea similar to that in Algorithm 1 can be used to prove IIB is FPT with respect
to nd and `.

Proposition 3. Fix i ∈ [nd].

(i) Let X = DG[X] and Y = Y (X) be its immunizing set. Set umax = arg maxu∈X∩Vi t(u). If there
exists v ∈ Y ∩ Vi such that t(v) ≤ t(umax) then X ′ = X −{umax} ∪ {v} satisfies X ′ = DG[X′] and
|Y (X ′)| = |Y |.

(ii) Let Y be an immunizing set. Set vmax = arg maxv∈Y ∩Vi t(v). If there exists u ∈ DG,Y ∩Vi such that
t(u) ≤ t(vmax) then setting Y ′ = Y − {vmax} ∪ {u} it holds |DG,Y ′ | ≤ |DG,Y |.

Proof. Let us prove (i). Consider X ′ = X − {umax} ∪ {v} and the diffusion process in G[X ′]. We have
that v is influenced at a round which is at most equal to that in which umax is influenced during the diffusion
process in G[X] (recall t(v) ≤ t(umax) and that v and umax have the same neighbors). Furthermore, since
all the neighbors of v and umax have the same number of neighbors in X ′ as in X we have that all the nodes
in X ′ are influenced, that is X ′ = DG[X′], and umax ∈ Y (X ′). This allows to say that |Y (X ′)| = |Y |.
Let us prove now (ii). If we consider the diffusion process in G[V − Y ′] we have that no node outside
DG,Y −{u}, except eventually for node vmax, can be influenced. Hence, DG,Y ′ ⊆ DG,Y −{u}∪{vmax}.

Theorem 10. Algorithm IIB-` solves IIB in time O(n2 2`+nd−1)
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Proof. Given h ≤ `, Algorithm IIB-`(G, k, `) considers all the possible nd-ples (h1, h2, . . . , hnd) with∑nd
i=1 hi = h; for each h = (h1, h2, . . . , hnd) we construct the set Y =

⋃nd
i=1 Yi where Yi consists of the

first (e.g. with the smallest thresholds) hi nodes in Vi. We then consider the diffusion process in G and the
set DG,Y of influenced nodes when the elements of Y are immunized. If |DG,Y | ≤ k then we answer YES.
In case no h gives a set Y such that |DG,Y | ≤ k, we answer NO.

If Algorithm IIB-nd-` returns YES then the set Y constructed by algorithm IIB-` has size at most ` and
we know that |DG,Y | ≤ k.

Assume now that there exists Ỹ such that |Ỹ | = h ≤ ` and |DG,Ỹ | ≤ k. Assume w.l.o.g. that no smaller
solution exists, that is, for any Y such that |DG,Y | ≤ k it holds |Y | ≥ h.

Define Ỹi = Y (X̃) ∩ Vi and let |Ỹi| = hi, for i ∈ [nd]. Clearly,
∑nd

i=1 hi = h. Consider the nd-ple
h = (h1, h2, . . . , hnd) and the set Y =

⋃nd
i=1 Yi constructed at line 4 of algorithm IIB-nd-`. Recall that

|Yi| = hi and t(v) ≤ t(w) for each v ∈ Yi and w ∈ Vi − Yi.
Since |Ỹi| = |Yi| = hi, we have that if Ỹi 6= Yi, for some i, then there are v ∈ Ỹi − Yi and u ∈ Yi − Ỹi such
that t(u) ≤ t(v). W.l.o.g select u as the node with minimum threshold in Yi − Ỹi and v as the node with
maximum threshold in Ỹi − Yi. By the fact that v ∈ Ỹ and Ỹ is minimal, we know that v must have at least
t(v) neighbors in DG,Ỹ (otherwise, Ỹ − {v} would be a smaller solution). Furthermore, since v, u ∈ Vi
we have that they have the same neighbors. As a consequence, also u has at least t(v) ≥ t(u) neighbors in
DG,Ỹ . Knowing that u 6∈ Ỹ , we have that u ∈ DG,Ỹ . Set Y ′ = Ỹ − {v} ∪ {u}. By (ii) in Proposition 3 we
have that DG,Y ′ satisfies DG,Y ′ ≤ DG,Ỹ ≤ k. Hence, Y ′ is also a solution.

Starting from Y ′, we then can repeat the above reasoning until we get Y r = Y , the immunizing set
considered in the algorithm for the tuple h. Hence, |DG,Y | ≤ k.

Now we evaluate the running time of the algorithm. For each fixed h ∈ [`], the number of all the possible
nd-ples (h1, h2, . . . , hnd) such that

∑nd
i=1 hi = h is

(
h+nd−1

h

)
≤
(
`+nd−1

h

)
. Noticing that for each choice of

(h1, . . . , hnd), one needs time O(h) to construct Y and O(n2) to obtain DG,Y and that

∑
h∈[`]

(
`+ nd− 1

h

)
< 2`+nd−1,

the desired result follows.

5 Conclusion

We introduced the influence immunization problem on networks under the threshold model and analyzed
its parameterized complexity. We considered several parameters and showed that the problem remains in-
tractable with respect to each one. We have also shown that for some pairs (e.g., (ζ, `) and (∆, `)) the
problem remains intractable.
On the positive side, the problem was shown to be FPT for some other pairs: (k, `), (k, ζ), (k, tw), (∆, tw), (k, nd),
and (`, nd).
It would be interesting to asses the parameterized complexity of IIB with respect to the remaining pairs of
parameters; in particular with respect to k and ∆.
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