Skip to main content

IoHCT: Internet of Cultural Heritage Things Digital Twins for Conservation and Health Monitoring of Cultural in the Age of Digital Transformation

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 423))

Abstract

The Building Information Modeling (BIM) technique is gaining traction and has many applications, including asset management and new construction facilities. It has recently been used to preserve constructed heritage as part of the so-called Historical BIM (HBIM) field. A BIM model powered by Digital Twins (DT) is an ideal instrument for monitoring and inferring the behavior, deterioration of heritage structures, performance, collecting and classifying varied data that can co-exist in the model of an asset for artifact preservation. The value of the first original copy is directly proportional to the quality of the model multiplied by the intrinsic value of the original, if and only if the first original can be identified and validated. This paper emphasizes the necessity to explore the importance of heritage assets in the HBIM process and discuss a new framework integrating HBIM, DT, and blockchain technology to provide a more efficient and effective preventive conservation. On the other hand, digital copies are subject to further reproductions, and therefore, the value of an exact copy can never be considered equivalent to its original. So, a blockchain approach is suggested to credit, Identifying and authenticate the first original copy. Problems, challenges, and future trends have been proposed and presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhou, M., Geng, G., Wu, Z.: Digitization of cultural heritage. In: Digital Preservation Technology for Cultural Heritage. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28099-3_3

  2. Pieraccini, M., Guidi, G., Atzeni, C.: 3D digitizing of cultural heritage. J. Cult. Herit. 2(1), 63–70 (2001). ISSN: 1296-2074. https://doi.org/10.1016/S1296-2074(01)01108-6

  3. Fiorucci, M., Khoroshiltseva, M., Pontil, M., Traviglia, A., Del Bue, A., James, S.: Machine learning for cultural heritage: a survey. Pattern Recognit. Lett. 133, 102–108 (2020). ISSN: 0167-8655. https://doi.org/10.1016/j.patrec.2020.02.017

  4. Glaessgen, E., Starghl, D.: The digital twin paradigm for future NASA and US Air Force vehicles. In: Proceedings of 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 20th AIAA/ASME/AHS Adaptive Structures Conference and 14th AIAA (2012)

    Google Scholar 

  5. UNESCO-UIS, The UNESCO Framework for Cultural Statistics (FCS), UNESCO Institute for Statistics, PO Box 6128, Succursale Centre-Ville. Montreal, Quebec H3C 3J7 Canada (2009)

    Google Scholar 

  6. Nagakura, T., Sung, W.: AR Mail from Harbin, Proceedings of Siggraph 2017, Los Angeles (2017)

    Google Scholar 

  7. Kempter, E.D., Mezencio, D.L., De Matos Miranda, E., De Saa, D.P., Dias, U.: Towards a digital twin for heritage interpretation. In: Proceedings of the 25th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), vol. 2, pp. 183–191. © 2020 and published by the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong (2020)

    Google Scholar 

  8. Trapp, M., Semmo, A., Pokorski, R., Herrmann, C., Döllner, J., Eichhorn, M., Heinzelmann, M.: Communication of digital cultural heritage in public spaces by the example of roman cologne. In: Ioannides, M., Fellner, D., Georgopoulos, A., Hadjimitsis, D. (eds.) EuroMed 2010: Digital Heritage. Lecture Notes in Computer Science, vol. 6436, pp. 262–276. Springer Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16873-4_20

  9. Bekele, M., Pierdicca, R., Frontoni, E., Malinverni, E., Gain, J.: A survey of augmented, virtual, and mixed reality for cultural heritage. ACM J. Comput. Cult. Herit. 11(2) (2018). https://doi.org/10.1145/3145534

  10. Demetrescu, E., dAnnibale, E., Ferdani, D., Fanini, B.: Digital replica of cultural landscapes: an experimental reality-based workflow to create realistic, inter-active open world experiences. J. Cult. Herit. 41, 125–141 (2020). https://doi.org/10.1016/j.culher.2019.07.018

  11. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen, F.J., Flumerfelt, S., Alves, A. (eds.) Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches, pp. 85–113 (2016). https://doi.org/10.1007/978-3-319-38756-7_4

  12. Grieves, M.: Digital Twin: Manufacturing Excellence Through Virtual Factory Replication. White paper, Florida Institute of Technology, pp. 1–7 (2014)

    Google Scholar 

  13. Shafto, M., Conroy, M., Doyle, R., Glaessgen, E., Kemp, C., LeMoigne, J., et al.: NASA Technology Roadmap: Modeling, Simulation, Information Technology & Processing Roadmap, Technology Area 11, National Aeronautics and Space Administration (2012)

    Google Scholar 

  14. Boschert, S., Rosen, R.: Digital twin—the simulation aspect. In: Mechatronic Futures, pp. 59–74. Springer (2016)

    Google Scholar 

  15. Hernandez, L., Hernandez, S.: Application of digital 3D models on urban planning and highway design. WIT Trans. Built Environ. 33 (1997)

    Google Scholar 

  16. Ghosh, A.K., Sharif Ullah, A.M.M., Kubo, A.: Hidden Markov model-based digital twin construction for futuristic manufacturing systems. Artif. Intell. Eng. Des. Anal. Manuf. AI EDAM 33(3), 317–331 (2019)

    Google Scholar 

  17. Borth, M., Verriet, J., Muller, G.: Digital twin strategies for SoS: 4 challenges and 4 architecture setups for digital twins of SoS. In: IEEE SOSE 2019 in Anchorage (2019). https://doi.org/10.1109/SYSOSE.2019.8753860

  18. Schluse, M., Rossmann, J.: From simulation to experimentable digital twins. In: 2016 IEEE International Symposium, pp. 1–6 (2016)

    Google Scholar 

  19. Elfadaly, A., Attia, W., Qelichi, M.M., Murgante, B., Lasaponara, R.: Management of cultural heritage sites using remote sensing indices and spatial analysis techniques. Surv. Geophys. 39(6), 1347–1377 (2018). https://doi.org/10.1007/s10712-018-9489-8

  20. Klein, L.J., Bermudez, S.A., Schrott, A.G., Tsukada, M., Dionisi-Vici, P., Kargere, L., Marianno, F., Hamann, H.F., López, V., Leona, M.: Wireless sensor platform for cultural heritage monitoring and modeling system. Sensors 17, 1–21 (2017). https://doi.org/10.3390/s17091998

    Article  Google Scholar 

  21. Chianese, A., Piccialli, F.: Designing a smart museum: when cultural heritage joins IoT. In: Proceedings - 2014 8th International Conference on Next Generation Mobile Applications, Services and Technologies, NGMAST 2014, pp. 300–306 (2014). https://doi.org/10.1109/NGMAST.2014.21. ISSN: 2161-2889, ISBN: 9781479950737

  22. Perles, A., Pérez-Marín, E., Mercado, R., Damian Segrelles, J., Blanquer, I., Zarzo, M., Garcia-Diego, F.J.: An energy-efficient internet of things (IoT) architecture for preventive conservation of cultural heritage. Future Gener. Comput. Syst. 81, 566–581 (2018). ISSN 0167-739X. https://doi.org/10.1016/j.future.2017.06.030

  23. Pouryousefzadeh, S., Akbarzadeh, R.: Internet of Things (IoT) systems in future cultural heritage. In: 2019 3rd International Conference on Internet of Things and Applications (IoT), pp. 1–5 (2019). https://doi.org/10.1109/IICITA.2019.8808838

  24. Merchán, M.J., Merchán, P., Salamanca, S., Pérez, E., Nogales, T.: Digital fabrication of cultural heritage artwork replicas. In the search for resilience and socio-cultural commitment. Digit. Appl. Archaeol. Cult. Herit. 15, e00125 (2019). ISSN 2212-0548. https://doi.org/10.1016/j.daach.2019.e00125

  25. Rashideh, W.: Blockchain technology framework: current and future perspectives for the tourism industry. Tour. Manag. 80, 104125 (2020). ISSN 0261-5177. https://doi.org/10.1016/j.tourman.2020.104125

  26. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  27. Smola, A.J., Murata, N., Schölkopf, B., Müller, K.-R.: Asymptotically optimal choice of ε-loss for support vector machines. In: International Conference on Artificial Neural Networks, pp. 105–110. Springer (1998)

    Google Scholar 

  28. Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)

    Article  Google Scholar 

  29. Jang, J.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  30. Forests, R.: By Beo Breiman. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  31. Cha, Y.-J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civil Infrast. Eng. 32(5), 361–378 (2017)

    Google Scholar 

  32. Gibb, S., La, H.M., Louis, S.: A genetic algorithm for convolutional network structure optimization for concrete crack detection. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)

    Google Scholar 

  33. Dung, C.V., et al.: Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 99, 52–58 (2019)

    Article  Google Scholar 

  34. Finotti, R.P., de Souza Barbosa, F., Cury, A.A., Gentile, C.: A novel natural frequency-based technique to detect structural changes using computational intelligence. Proc. Eng. 199, 3314–3319 (2017). X International Conference on Structural Dynamics, EURODYN (2017)

    Google Scholar 

  35. Marrongelli, G., Finotti, R., Gentile, C., Barbosa, F.: An artificial intelligence strategy to detect damage from response measurements: application on an ancient tower. In: MATEC Web of Conferences, vol. 211, p. 21002. EDP Sciences (2018)

    Google Scholar 

  36. Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M.G., Moropoulou, A., Asteris, P.G.: Compressive strength of natural hydraulic lime mortars using soft computing techniques. Proc. Struct. Integr. 17, 914–923 (2019)

    Google Scholar 

  37. Eskandari-Naddaf, H., Kazemi, R.: ANN prediction of cement mortar compressive strength, influence of cement strength class. Constr. Build. Mater. 138, 1–11 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Darwish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Darwish, A., Hassanien, A.E. (2022). IoHCT: Internet of Cultural Heritage Things Digital Twins for Conservation and Health Monitoring of Cultural in the Age of Digital Transformation. In: Hassanien, A.E., Darwish, A., Snasel, V. (eds) Digital Twins for Digital Transformation: Innovation in Industry. Studies in Systems, Decision and Control, vol 423. Springer, Cham. https://doi.org/10.1007/978-3-030-96802-1_1

Download citation

Publish with us

Policies and ethics