Skip to main content

A Feature and Classifier Study for Appliance Event Classification

  • Conference paper
  • First Online:
Book cover Sustainable Energy for Smart Cities (SESC 2021)

Abstract

The shift towards advanced electricity metering infrastructure gained traction because of several smart meter roll-outs during the last decade. This increased the interest in Non-Intrusive Load Monitoring. Nevertheless, adoption is low, not least because the algorithms cannot simply be integrated into the existing smart meters due to the resource constraints of the embedded systems. We evaluated 27. features and four classifiers regarding their suitability for event-based NILM in a standalone and combined feature analysis. Active power was found to be the best scalar and WaveForm Approximation the best multidimensional feature. We propose the feature set \(\left[ P,\textit{cos}\,\varPhi ,TRI,WFA\right] \) in combination with a Random Forest classifier. Together, these lead to \(F_1\)-scores of up to 0.98 on average across four publicly available datasets. Still, feature extraction and classification remains computationally lightweight and allows processing on resource constrained embedded systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, K., et al.: BLUED: a fully labeled public dataset for event-based non-intrusive load monitoring research. In: Proceedings of the 2nd KDD Workshop on Data Mining Applications in Sustainability (SustKDD), vol. 7. ACM (2012)

    Google Scholar 

  2. Anderson, K.D., Berges, M.E., Ocneanu, A., Benitez, D., Moura, J.M.: Event detection for Non Intrusive load monitoring. IECON Proceedings (Industrial Electronics Conference), pp. 3312–3317 (2012). https://doi.org/10.1109/IECON.2012.6389367

  3. Batra, N., et al.: NILMTK: an open source toolkit for non-intrusive load monitoring. In: Proceedings of the 5th International Conference on Future Energy Systems, pp. 265–276. ACM (2014)

    Google Scholar 

  4. Davies, P., Dennis, J., Hansom, J., Martin, W., Stankevicius, A., Ward, L.: Deep neural networks for appliance transient classification. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019)

    Google Scholar 

  5. De Baets, L., Ruyssinck, J., Develder, C., Dhaene, T., Deschrijver, D.: Appliance classification using vi trajectories and convolutional neural networks. Energy Build. 158, 32–36 (2018)

    Article  Google Scholar 

  6. Faustine, A., et al.: UNet-NILM: a deep neural network for multi-tasks appliances state detection and power estimation in NILM. In: Proceedings of the 5th International Workshop on Non-Intrusive Load Monitoring (2020)

    Google Scholar 

  7. Gao, J., Giri, S., Kara, E.C., Bergés, M.: Plaid: a public dataset of high-resolution electrical appliance measurements for load identification research. In: proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings (2014)

    Google Scholar 

  8. Gao, J., Kara, E.C., Giri, S., Bergés, M.: A feasibility study of automated plug-load identification from high-frequency measurements. In: IEEE Global Conference on Signal and Information Processing (GlobalSIP) (2015)

    Google Scholar 

  9. GitHub: Xgboost - extreme gradient boosting (2020). https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions. List of Machine Learning Challenge Winners based on XGBoost

  10. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992)

    Article  Google Scholar 

  11. Hart, P.: The condensed nearest neighbor rule (CORRESP). IEEE Trans. Inf. Theory. 14(3), 515–516 (1968)

    Article  Google Scholar 

  12. Hassan, T., Javed, F., Arshad, N.: An empirical investigation of VI trajectory based load signatures for non-intrusive load monitoring. IEEE Trans. Smart Grid 5(2), 870–878 (2013)

    Article  Google Scholar 

  13. Huber, P., Calatroni, A., Rumsch, A., Paice, A.: Review on deep neural networks applied to low-frequency NILM. Energies 14(9), 2390 (2021). https://doi.org/10.3390/en14092390

    Article  Google Scholar 

  14. Jorde, D., Kriechbaumer, T., Jacobsen, H.A.: Electrical appliance classification using deep convolutional neural networks on high frequency current measurements. In: IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) (2018)

    Google Scholar 

  15. Kahl, M., Haq, A.U., Kriechbaumer, T., Jacobsen, H.A.: WHITED - A worldwide household and industry transient energy data set. In: 3rd International Workshop on Non-Intrusive Load Monitoring (2016)

    Google Scholar 

  16. Kahl, M., Kriechbaumer, T., Haq, A.U., Jacobsen, H.A.: Appliance classification across multiple high frequency energy datasets. In: IEEE International Conference on Smart Grid Communications (SmartGridComm) (2017)

    Google Scholar 

  17. Kahl, M., Ul Haq, A., Kriechbaumer, T., Jacobsen, H.A.: A comprehensive feature study for appliance recognition on high frequency energy data. In: Proceedings of the 8th ACM International Conference on Future Energy Systems (2017)

    Google Scholar 

  18. Kelly, J., Knottenbelt, W.: The UK-dale dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Sci. Data 2, 150007 (2015)

    Article  Google Scholar 

  19. Kim, J.G., Lee, B.: Appliance classification by power signal analysis based on multi-feature combination multi-layer LSTM. Energies 12(14), 2804 (2019)

    Article  Google Scholar 

  20. Kolter, J.Z., Johnson, M.J.: REDD: a public data set for energy disaggregation research. In: Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, vol. 25, pp. 59–62 (2011)

    Google Scholar 

  21. Kolter, Z., Jaakkola, T., Kolter, J.Z.: Approximate inference in additive factorial HMMs with application to energy disaggregation. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, pp. 1472–1482 (2012). http://people.csail.mit.edu/kolter/lib/exe/fetch.php?media=pubs:kolter-aistats12.pdf

  22. Kriechbaumer, T., Jacobsen, H.A.: BLOND, a building-level office environment dataset of typical electrical appliances. Sci. Data 5, 180048 (2018)

    Article  Google Scholar 

  23. Lam, H.Y., Fung, G., Lee, W.: A novel method to construct taxonomy electrical appliances based on load signatures. IEEE Trans. Consum. Electron. 53(2), 653–660 (2007)

    Article  Google Scholar 

  24. Liang, J., Ng, S.K., Kendall, G., Cheng, J.W.: Load signature study-part i: basic concept, structure, and methodology. IEEE Trans. Power. Deliv. 25, 551–560 (2010)

    Article  Google Scholar 

  25. Makonin, S., Popowich, F., Bajic, I.V., Gill, B., Bartram, L.: Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring. IEEE Trans. Smart Grid (2015). https://doi.org/10.1109/TSG.2015.2494592

    Article  Google Scholar 

  26. Sadeghianpourhamami, N., Ruyssinck, J., Deschrijver, D., Dhaene, T., Develder, C.: Comprehensive feature selection for appliance classification in NILM. Energy Build.? 151, 98–106 (2017)

    Article  Google Scholar 

  27. Völker, B., Pfeifer, M., Scholl, P.M., Becker, B.: Annoticity: a smart annotation tool and data browser for electricity datasets. In: Proceedings of the 5th International Workshop on Non-Intrusive Load Monitoring, pp. 1–5 (2020)

    Google Scholar 

  28. Völker, B., Pfeifer, M., Scholl, P.M., Becker, B.: FIRED: A fully labeled high-frequency electricity disaggregation dataset. In: Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (2020)

    Google Scholar 

  29. Wang, A.L., Chen, B.X., Wang, C.G., Hua, D.: Non-intrusive load monitoring algorithm based on features of v–i trajectory. Elect. Power Syst. Res. 157, 134–144 (2018)

    Article  Google Scholar 

  30. Weiss, M., Helfenstein, A., Mattern, F., Staake, T.: Leveraging smart meter data to recognize home appliances. In: IEEE International Conference on Pervasive Computing and Communications (2012)

    Google Scholar 

  31. Wild, B., Barsim, K.S., Yang, B.: A new unsupervised event detector for non-intrusive load monitoring. In: 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 73–77 (2015)

    Google Scholar 

  32. Yang, C.C., Soh, C.S., Yap, V.V.: A systematic approach in appliance disaggregation using k-nearest neighbours and naive bayes classifiers for energy efficiency. Energy Effic. 11(1), 239–259 (2018)

    Article  Google Scholar 

  33. Zoha, A., Gluhak, A., Imran, M.A., Rajasegarar, S.: Non-intrusive load monitoring approaches for disaggregated energy sensing: a survey. Sensors 12(12), 16838–16866 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Völker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Völker, B., Scholl, P.M., Becker, B. (2022). A Feature and Classifier Study for Appliance Event Classification. In: Afonso, J.L., Monteiro, V., Pinto, J.G. (eds) Sustainable Energy for Smart Cities. SESC 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 425. Springer, Cham. https://doi.org/10.1007/978-3-030-97027-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97027-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97026-0

  • Online ISBN: 978-3-030-97027-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics