Skip to main content

Constructing Provably Robust Scale-Free Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13197))

Abstract

Scale-free networks have been described as robust to random failures but vulnerable to targeted attacks. We show that their degree sequences admit realizations that are, in fact, provably robust against any vertex removal strategy. We propose an algorithm that constructs such realizations almost surely, requiring only linear time and space. Our experiments confirm the robustness of the networks generated by this algorithm against adaptive and non-adaptive vertex removal strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For an example of such an implementation, see Algorithm 1.2.1 in [22].

  2. 2.

    This notion of scaling integer sequences refers to ranks rather than frequencies. Therefore, the scaling factor is one less than the exponent in the corresponding power-law distribution [24].

  3. 3.

    Suppose that a BFS of depth two starts from the vertex \(v_1\), where the neighbors of \(v_1\) are \(v_2, v_3, \dots , v_{d_1-2}\), respectively with degrees \(d_2-3, d_3-3, \dots , d_{d_1-2}-3\). This hypothetical scenario provides an upper bound of \(\sum _{i=2}^{d_1-2}(d_i-3)\le \sum _{i=1}^{d_1} d_i\) for the number of visited edges in any BFS of depth two, starting from any vertex in \(G_{\textsf {res}}\). Therefore, \(|F_e(G_{\textsf {res}})|\le 2 \sum _{i=1}^{d_1} d_i\) follows by an application of the union bound.

  4. 4.

    In \(G_{\textsf {res}}\) we fix a vertex order \(v_1, v_2, \dots , v_n\) and assume for any edges \(e,e'\) that \(e\le e'\) holds if and only if \(f(e)\le f(e')\), where \(f(\{v_i, v_j\}):=(n-1)\max \{i,j\}+\min \{i,j\}\).

  5. 5.

    We consider the variant of GND where removing each vertex has a unit cost, and the goal is to dismantle the network at the lowest possible cost. The implementation we use for this variant of GND was written by Petter Holme in the Python programming language and is publicly available from https://github.com/pholme/gnd.

References

  1. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  2. Alon, N.: Explicit expanders of every degree and size. Combinatorica 41(4), 447–463 (2021). https://doi.org/10.1007/s00493-020-4429-x

    Article  MathSciNet  MATH  Google Scholar 

  3. Apostol, T.M.: Introduction to analytic number theory. In: Undergraduate Texts in Mathematics, p. 55. Springer, New York (1976)

    Google Scholar 

  4. Asano, T.: An \(\cal{O} (n \log \log n)\) time algorithm for constructing a graph of maximum connectivity with prescribed degrees. J. Comput. Syst. Sci. 51(3), 503–510 (1995)

    Article  Google Scholar 

  5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Shimon, S., Krivelevich, M.: Vertex percolation on expander graphs. Eur. J. Comb. 30(2), 339–350 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bollobás, B.: Extremal Graph Theory, dover edition edn., p. 100. Dover Publications, Mineola (2004)

    Google Scholar 

  8. Chungphaisan, V.: Construction of Hamiltonian graphs and bigraphs with prescribed degrees. J. Comb. Theory B 24(2), 154–163 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Doyle, J.C., et al.: The ‘robust yet fragile’ nature of the internet. Proc. Natl. Acad. Sci. (PNAS) 102(41), 14497–14502 (2005)

    Article  Google Scholar 

  10. Erdős, P.L., Hartke, S.G., Van Iersel, L., Miklós, I.: Graph realizations constrained by skeleton graphs. Electron. J. Comb. 24(2), P2.47 (2017)

    Google Scholar 

  11. Friedman, J.: A proof of alon’s second eigenvalue conjecture. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 720–724. Association for Computing Machinery, New York (2003)

    Google Scholar 

  12. Frieze, A., Karoński, M.: Introduction to Random Graphs. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  13. Gao, P., Greenhill, C.: Uniform generation of spanning regular subgraphs of a dense graph. Electron. J. Comb. 26(4), P4.28 (2019)

    Google Scholar 

  14. Gao, P., Wormald, N.: Uniform generation of random regular graphs. SIAM J. Comput. 46(4), 1395–1427 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a linear graph. I. J. Soc. Ind. Appl. Math. 10(3), 496–506 (1962)

    Google Scholar 

  16. Hasheminezhad, R., Boudourides, M., Brandes, U.: Scale-free networks need not be fragile. In: Proceedings of the 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 332–339. IEEE (2020)

    Google Scholar 

  17. Havel, V.: Poznámka o existenci konečnỳch grafŭ (Czech) [A remark on the existence of finite graphs]. Časopis pro pěstování matematiky 080(4), 477–480 (1955)

    Article  Google Scholar 

  18. Havil, J.: Gamma: Exploring Euler’s Constant, pp. 117–118. Princeton University Press, Princeton (2003)

    Google Scholar 

  19. Horvát, S., Modes, C.D.: Connectedness matters: construction and exact random sampling of connected networks. J. Phys. Complexity 2(1), 015008 (2021)

    Google Scholar 

  20. Klau, G.W., Weiskircher, R.: Robustness and resilience. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 417–437. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31955-9_15

    Chapter  Google Scholar 

  21. Kleitman, D., Wang, D.: Algorithms for constructing graphs and digraphs with given valences and factors. Discret. Math. 6(1), 79–88 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kocay, W.L., Kreher, D.L.: Graphs, algorithms, and optimization. In: Discrete Mathematics and its Applications, 2nd edn. CRC Press, Boca Raton (2017)

    Google Scholar 

  23. Kundu, S.: The \(k\)-factor conjecture is true. Discret. Math. 6(4), 367–376 (1973)

    Article  MathSciNet  Google Scholar 

  24. Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: definition, properties, and implications. Internet Math. 2(4), 431–523 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lountzi, A.: Expander Graphs and Explicit Constructions. Master’s thesis, Uppsala University, Algebra and Geometry (2015)

    Google Scholar 

  26. Rao, S.B.: A survey of the theory of potentially P-graphic and forcibly P-graphic degree sequences. In: Rao, S.B. (ed.) Combinatorics and Graph Theory. LNM, vol. 885, pp. 417–440. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0092288

    Chapter  Google Scholar 

  27. Ren, X.L., Gleinig, N., Helbing, D., Antulov-Fantulin, N.: Generalized network dismantling. Proc. Natl. Acad. Sci. 116(14), 6554–6559 (2019)

    Google Scholar 

  28. Schneider, C.M., Moreira, A.A., Andrade, J.S., Jr., Havlin, S., Herrmann, H.J.: Mitigation of malicious attacks on networks. Proc. Natl. Acad. Sci. (PNAS) 108(10), 3838–3841 (2011)

    Article  Google Scholar 

  29. Tyshkevich, R.I., Chernyak, A.A., Chernyak, Z.A.: Graphs and degree sequences. I. Cybernetics 23(6), 734–745 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wormald, N.C.: Generating random regular graphs. J. Algorithms 5(2), 247–280 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouzbeh Hasheminezhad .

Editor information

Editors and Affiliations

A Appendix: Omitted Proofs

A Appendix: Omitted Proofs

Lemma 1. Let \((d_1,d_2,\dots , d_n)\) be an extremely scaling integer sequence with scaling factor \(\gamma \). If \(\gamma <7\) and \(d_n\ge 3\), then \(\sum _{i=1}^n (d_i-3)\in \varTheta (n)\) and there exists a constant \(\kappa \in (0,1)\) such that \(\sum _{i=1}^{d_1} d_i\in O(n^\kappa )\).

Proof

Note that Definition 1 and the assumptions of the lemma imply that \(\gamma \in (1,7)\) and \(d_n\ge 3\) are constants. Moreover, based on Definition 1 we have

$$\begin{aligned} -0.5 < d_i-n^{\frac{1}{\gamma }}d_n i^{-\frac{1}{\gamma }}\le 1.5, \end{aligned}$$
(1)

for all \(i\in \{1,2,\dots , n\}\). Let \(\zeta (z)\) be the Euler’s generalized constant defined for \(z\in (0,1)\)[18]. It is shown in [3] that

$$\begin{aligned} \sum _{i=1}^t i^{-\frac{1}{\gamma }}=\frac{t^{1-\frac{1}{\gamma }}}{1-\frac{1}{\gamma }}+\zeta (\frac{1}{\gamma }) + O(t^{-\frac{1}{\gamma }}). \end{aligned}$$
(2)

Let \(\alpha :=\frac{1}{n}\sum _{i=1}^{n}(d_i-n^{\frac{1}{\gamma }}d_n i^{-\frac{1}{\gamma }})\). From (1), we know that \(\alpha \in (-0.5,1.5]\). Thus, we can conclude from (2) that

$$\begin{aligned} \sum _{i=1}^n (d_i-3) = n^{\frac{1}{\gamma }}d_n\sum _{i=1}^n i^{-\frac{1}{\gamma }}-3n+\alpha n = (\frac{\gamma }{\gamma -1}d_n-3+\alpha )n+o(n)\in \varTheta (n). \end{aligned}$$
(3)

In the last step of the derivation above, we used the fact that \(\frac{\gamma }{\gamma -1}d_n\) is a constant strictly larger than 3.5. Using (1) and (2), we have

$$\begin{aligned} \sum _{i=1}^{d_1} d_i\le n^{\frac{1}{\gamma }}d_n\sum _{i=1}^{d_1}i^{-\frac{1}{\gamma }}+1.5d_1\le (d_1+0.5)\sum _{i=1}^{d_1}i^{-\frac{1}{\gamma }}+1.5d_1\in O(d_1^{2-\frac{1}{\gamma }}). \end{aligned}$$
(4)

From (1), we know that \(d_1\in O(n^\frac{1}{\gamma })\). Therefore, \(\sum _{i=1}^{d_1} d_i\in O(n^\kappa )\), where \(\kappa :=\frac{2}{\gamma }-\frac{1}{\gamma ^2}=\frac{\gamma ^2-(\gamma -1)^2}{\gamma ^2}\in (0,1)\) is a constant. This concludes the proof.    \(\square \)

Lemma 2. Let \((d_1,d_2, \dots , d_n)\) be a non-increasing integer sequence with even sum. If there exists \(k\in \{0,1,\dots , d_n\}\) such that \(\sum _{i=1}^{d_1} (d_i+k)\le \sum _{i=d_1+1}^{n} (d_i-k)\) and nk is even, then \((d_1-k, d_2-k, \dots , d_n-k)\) is graphical.

Proof

Based on the lemma’s assumptions, \(D_{k}:=(d_1-k,d_2-k, \dots , d_n-k)\) is a non-increasing sequence of non-negative integers. Based on a sufficient and necessary condition for graphicality proposed in [7], \(D_{k}\) is graphical if and only if the following conditions are satisfied: (I) \(\sum _{i=1}^n(d_i-k)\) is even, and (II) \(2\sum _{i=1}^t (d_i-k)\le \sum _{i=1}^n (d_i-k) + \sum _{i=1}^t \min \{d_i-k, t-1\}\) for all \( t\in \{1,\dots , n-1\}\).

Note that condition (I) is satisfied since \(\sum _{i=1}^n d_i\) and nk are both even under lemma’s assumptions. If \(t\ge d_{1}-k+1\), then condition (II) is equivalent to \(\sum _{i=1}^t (d_i-k)\le \sum _{i=1}^n (d_i-k)\), which is trivial since \(D_k\) has non-negative elements.

Therefore, it suffices to show that the inequality in condition (II) is satisfied for all \(t\in \{1,\dots , d_1-k\}\). For all such t, we know due to the assumptions of the lemma that \(\sum _{i=1}^{t}(d_i-k)\le \sum _{i=1}^{d_1}d_i\) and \(\min \{d_i-k, t-1\}\ge 0\) for all \(i\in \{1,\dots , t\}\). Therefore, it suffices to show that \(2\sum _{i=1}^{d_1}d_i\le \sum _{i=1}^n (d_i-k)\), but this is just the rearranged form of \(\sum _{i=1}^{d_1} (d_i+k)\le \sum _{i=d_1+1}^n (d_i-k)\), which was assumed in the statement of the lemma. This concludes the proof.    \(\square \)

Lemma 3. Let \(G_{\textsf {reg}}\) be a random k-regular graph with n vertices, where \(k\in \mathbb {N}\) is constant. Furthermore, let \(G_{\textsf {res}}\) be a graph with the same vertices as \(G_{\textsf {reg}}\). If \(E(G_{\textsf {res}})\in O(n)\), then there exists a constant \(C>0\) such that

$$ \mathsf {Pr}\left[ |E(G_{\textsf {res}})\cap E(G_{\textsf {reg}})|\ge \frac{n^{1-\kappa }}{\log n}\right] \le \frac{C\log n}{n^{1-\kappa }}, $$

for any \(\kappa \in (0,1)\).

Proof

Let m denote the number of edges in \(G_{\textsf {res}}\), where \(e_1, e_2, \dots , e_m\) is an arrangement of them. Moreover, let \(X=\sum _{i=1}^{m} X_i\), where \(X_i=1\) if \(e_i\in E(G_{\textsf {reg}})\) and \(X_i=0\) otherwise. It is easy to verify that \(X=|E(G_{\textsf {res}})\cap E(G_{\textsf {reg}})|\).

The argument in the proof of Lemma 2.4 in [13] implies that \(\mathbb {E}[X_i]=\frac{k}{n-1}\) for all \(i\in \{1,2,\dots , n\}\), and thus by linearity of expectation \(\mathbb {E}[X]=\frac{mk}{n-1}\). Since \(m\in O(n)\) and \(k\in \mathbb {N}\) is constant, we can derive that \(\mathbb {E}[X]\le C\) for some constant \(C > 0\). Since X is by definition non-negative, Markov’s inequality implies that

$$ \mathsf {Pr}\left[ X\ge \frac{n^{1-\kappa }}{\log n}\right] \le \frac{C\log n}{n^{1-\kappa }}. $$

Since \(X=|E(G_{\textsf {res}})\cap E(G_{\textsf {reg}})|\), the above derivation completes the proof.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hasheminezhad, R., Brandes, U. (2022). Constructing Provably Robust Scale-Free Networks. In: Ribeiro, P., Silva, F., Mendes, J.F., Laureano, R. (eds) Network Science. NetSci-X 2022. Lecture Notes in Computer Science(), vol 13197. Springer, Cham. https://doi.org/10.1007/978-3-030-97240-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97240-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97239-4

  • Online ISBN: 978-3-030-97240-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics