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Abstract. As the world’s population continues to expand, maritime
transport is critical to ensure economic growth. To improve security and
safety of maritime transportation, the Automatic Identification System
(AIS) collects real-time data about vessels and their positions. While
a large portion of the AIS data is provided via an automatic tracking
system, some key fields, such as destination and draught, are entered
manually by the ship navigator and are thus prone to errors. To support
decision making in maritime industries, in this paper we propose a data-
driven vessel destination prediction algorithm based on heterogeneous
graph and machine learning models. We design the task as a multi-class
classification problem, where the destination port is the category to be
predicted given the vessel and origin information. Then, we use a link
prediction model in a weighted heterogeneous graph to predict the vessel
destination. Experimental comparison against baseline methods, such
as logistic regression and k-nearest neighbors, showed that our model
provides a robust performance, outperforming the baseline algorithms
by 9% and 33% in terms of accuracy and Fl-score, respectively. Thus,
heterogeneous graph models provide a powerful alternative to predict
port destination, and could support enhancing AIS data quality and
better decision making in maritime transportation industries.

Keywords: Destination prediction - Maritime transportation -
Machine learning - Graph model - Link prediction + AIS -
Heterogeneous graph

1 Introduction

Maritime shipping is one of the main pillars of freight transportation around the
world. Due to its economic and environmental advantages, 90% of commodity
shipment travels by the sea. With the expected world’s population increase of
3.3 billion people by the end of the century [35], maritime traffic will continue
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2 R. Gouareb et al.

to expand due to strong commodity needs. In turn, this expansion will lead
to high transportation demand and increased traffic congestion, collisions, and
accidents [18]. Thus, it is important to enhance available maritime data quality
and explore different solutions for decision-making in the maritime industry.

The Automatic Identification System (AIS) is an automatic tracking system
used by vessel traffic services and boats [19]. AIS uses a transceiver placed on
ships to transmit their data. As of December 2004, installing AIS aboard vessels
of a specific size and tonnage has become mandatory [20]. This regulation facili-
tated in the past two decades the collection of vessel information, including static
data, such as vessel size, in addition to voyage information, such as position and
destination. Since 2008, satellites equipped with receivers are able to receive AIS
signals sent by the transceivers and easily collect AIS data [45]. By automati-
cally sharing this information between ships and coastal authorities, the safety
of ship management can be improved [4]. AIS information can be divided into
three subcategories [1]. First, static data contain vessel-related information that
defines the vessel’s identity, such as MMSI and IMO, and are specified when the
ATS system is installed on the ship. Second, navigational data, such as position
coordinates, are transmitted automatically to track vessel movements every two
to ten seconds, depending on the type and speed of the vessel. Finally, voy-
age data give general information about the voyage, including destination port,
estimated time of arrival, and draught, and are entered manually before each
journey.

The quality of AIS data can vary depending on the class of AIS equipment,
that is, class A or class B. The choice of equipment is based on the type and size
of vessels and the type of voyages a ship makes [43]. Despite its tabular format,
AIS data is complex, requiring significant processing before it can be useful. For
example, voyages’ start and end flags are not readily available from the data.
Moreover, due to technical failures, such as instability of the signal transmission
rate, data transmission congestion [7], or environmental and human factors, it is
estimated that as much as 80% of AIS messages contain errors [2,49], resulting
in incorrect vessel name, Maritime Mobile Service Identity (MMSI) number,
International Maritime Organization (IMO) number, position, and speed over
ground [16], among others. Yang et al. [44] estimated that 40% of the data are
wrongly entered on purpose or involuntarily, while Wu et al. [42] estimated that
62% of AIS destinations are mistaken and not always updated. For some ports,
some studies showed that the accuracy of the reported destination information
can be as low as 4% [27].

To improve the quality of AIS data and support maritime shipping decision-
making, in this paper, we propose a link prediction algorithm in a heterogeneous
graph model to address the problem of predicting voyage destinations using
historical AIS data. Historical AIS data, such as latitude, longitude, and speed
over ground (SOG), are used to construct the voyages. The resulting segments
are used to create the navigation network, which is modeled as a heterogeneous
graph and used to train and validate the prediction models. We defined the
problem as a multi-label classification task. The algorithm’s goal is to predict
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one of the destination ports from a pre-defined list extracted from the navigation
network. Then, using the graph model, a link prediction algorithm is used to
predict the next port for a vessel.

The remainder of the paper is divided into the following sections. Section 2
summarizes previous and most recent research work related to AIS data, includ-
ing destination and trajectory predictions. Section 3 illustrates the data pre-
processing and voyages creation process and describes the data and the proposed
prediction models. Section 4 shows the results of prediction algorithms, followed
by Sect. 5 that illustrates limitations and potential extensions of this work and
concludes the study.

2 Related Work

Due to the high demand for shipping services [22], the development of maritime
industries, and the increase in maritime traffic, accidents, and collisions [23],
AIS data-driven solutions have received considerable attention from researchers.
Thus, several studies were conducted to investigate research questions in the field
of maritime traffic using historical AIS data. Examples of these studies include
the detection of abnormal ship behavior [48], prediction of vessel trajectory [32,
47], data analysis, such as outlier detection [5] and collision risk analysis [29],
and the application of machine learning algorithms [46] to improve the quality
of AIS data and enhance the performance of handling maritime processes.

AIS data were used to develop various destination prediction models using
both classic and deep learning-based machine learning approaches. Zhang
et al. [46] used a random forest-based model supported by historical AIS data
to create a destination prediction model based on similarities between trajecto-
ries. The data were labeled using a data clustering algorithm, the density-based
spatial clustering of applications with noise method [14]. Their results showed
better model accuracy when predicting cities rather than ports. Wang et al. [39]
also used a random forest-based model combined with a port frequency-based
decision strategy for destination prediction problems for ships. The authors high-
lighted different approaches used to pre-process and construct ship trajectories
from raw AIS data and noise filtering methods, such as the average and Kalman
filters and heuristic-based outlier detection methods. Lin et al. [24] used deep
learning models for destination and arrival time prediction for different ship
types. They proposed an incremental majority filter, which captures the most
frequently predicted port instead of the last predicted one.

Artificial neural networks was applied to trajectory prediction using AIS data
[25,33,37,38]. Chen et al. [7] highlighted the noise issue affecting the quality of
AIS data and proposed a method to predict trajectories using neural networks.
They followed a three-step pre-processing approach: i) organised the data, ii)
removed outliers and #7) normalised the data into data samples using cubic
spline interpolation and a moving average model. Their study is limited in the
number of trajectories and vessels used to validate the results (only two). Zhang
et al. [34] proposed an ensemble learning model for AIS trajectory prediction
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using a 200-segments sample from AIS data. They trained models on clusters
of patterns to improve the prediction accuracy, where each cluster represents
a boat trajectory. Similarly, Suo et al. [33] presented a real-time ship track
prediction model using different recurrent neural network (RNN) architectures
[13], focusing on the port of Zhangzhou in China. The authors showed that the
vanilla RNN had similar accuracy to that of long short-term memory (LSTM)
architecture [17], while the gated recurrent unit (GRU) [9] model outperformed
the LSTM in terms of computational time. Wang et al. proposed a trajectory
prediction model for multiple vessels simultaneously sharing the same area. The
authors used a generative adversarial network with attention and interaction
module [15]. They improved the accuracy compared to sequence to sequence,
plain GAN, and the Kalman models by a minimum of 20%.

More recently, graph-based models have been proposed to improve predic-
tive outcomes by representing data as a graph, such as the work in [26]. Carlini
et al. [6] presented a network analysis using an AIS dataset to build a set of
voyage graphs and capture the evolution of networks based on several topolog-
ical features. Another example of a graph-based method is the work proposed
by Magnusen et al. [26]. The authors represented the sea traffic in a graph,
where vertices represent sea areas that can be a turning or staying point, and
links are created by splitting a trajectory into several sub-trajectories. A port-
to-port trajectory is described in this work by a sequence of vertices used to
train a recurrent neural network model to predict destinations for oil tankers on
both port and regional levels. The proposed model achieved 41% accuracy when
predicting destination ports versus 87% predicting regions.

To the best of our knowledge, little attention has been given to heteroge-
neous graph methods for voyage destination prediction, despite being a power-
ful framework for modelling maritime navigation networks and capturing rela-
tions between heterogeneous entities, such as ports and vessels. Furthermore, the
graph modelling approach allows the destination prediction task to be designed
as a link prediction algorithm, which is also new and little explored.

3 Methods

This section describes the AIS data pre-processing, voyage creation algorithms,
the voyage destination prediction model, and the evaluation approach. We mod-
eled the destination prediction problem as a multi-classification problem to pre-
dict the destination port. Given a vessel, a departure port, and the list of des-
tination ports available in the network, the algorithm predicts the most likely
destination for the ship. We will first describe the cleaning, filtering, and orga-
nizing methods applied to AIS data. This process is critical, particularly as we
cannot use the destination information found in AIS messages as a validation
gold-standard [27,42]. Therefore, we propose a heuristic algorithm to create dif-
ferent voyages per vessel, and positional-based validated moored ports.
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3.1 AIS Dataset

In our experiments, voyage segments were created using the publicly available
historical AIS data from the Danish maritime authority website (www.dma.dk).
This dataset covers the region around Danish waters. Nevertheless, destination
ports can cover ports outside of the specified area. We have processed a snapshot
from January 2014 until March 2021 containing around 10TB. However, for
computational reasons, we are using a randomly generated sample containing
2757 tanker vessels, 58690 voyage samples, and 620 ports (see Table 1). We have
focused on ships of type tankers due to their high rate of data completion and
availability for most attributes.

Table 1. Statistics for the training and test sets.

Training | Test
Number of vessels 2399 1713
Number of unique source ports 539 413
Number of unique destination ports | 499 391
Number of segments 35214 11738
Median segments per vessel 3 2
Minimum segments per vessel 1 1
Maximum segments per vessel 5614 1897

3.2 AIS Pre-processing Approach

In this work, we define a vessel voyage segment as a voyage from a source port A
to a destination port B and describe every voyage by a unique id, departure date
and port, and arrival date and port. We used the attributes of AIS messages,
such as coordinates, speed, and navigational status (under way using engine, at
anchor, moored, etc.) to generate the voyages. Speed is used since ships will slow
down when approaching a port and then stop at the voyage destination.

AIS historical data offer numerous dynamic attributes related to voyages,
such as draught, estimated arrival time, and destination. However, as such data
are entered manually, human errors often occur. We defined vessel stops using dif-
ferent AIS attributes such as speed and position to determine the actual moored
ports to overcome this issue. Additionally, we used the World Port Index (WPI)
2019 database [40] to link vessel positions to the closest ports.

Draught is the only AIS data that provides information about the activity
of a ship in a port. If it increases, the boat is heavier and therefore loaded
commodities in the port. If it decreases, the boat unloaded in the last port.
While we cannot trust the value of the draught at every signal as it is entered
manually, every ship must have the correct value of draught when entering a
port. Thus, at every stop, we get the valid value of the draught related to the
previous voyage and correct the draught value if it is different.
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3.3 Voyage Creation

To generate port stops and construct voyages for every vessel, we calculated the
distance between every vessel stop position and ports listed in the WPI using
the Haversine Formula [8]. The port with the minimum distance to the vessel
position is defined as the closest (moored) port. Then, using the nearest defined
ports, we create the voyage following Algorithm 1. For each ship, we traverse
its positions. Based on the speed of the vessel at every position, we predefined
Vessel Moving. If the boat has stopped (VesselMoving = 0), we define the
current timestamp as the date and time of arrival and the nearest port as the
arrival port of the current voyage. Once the vessel starts moving away from the
current port (Vessel Moving = 1), we define it as the departure port of the next
voyage and set the departure date as the current timestamp.

To avoid ill-defined segments, e.g., as a result of ships travelling outside the
coverage area, an empirical 12 min no-signal threshold is defined (that is, twice
the maximum time span of shared static data). A voyage is then suppressed if
the time interval between two consecutive signals exceeds the defined threshold.

Algorithm 1. Voyage creation

For Each Vessel
VesselDeparted = 0
InPort =0
For Each VesselPosition
If VesselMoving == 0
If (VesselDeparted == 0) and (InPort == 0)
Assign DepartPort«—ClosestPort
InPort =1
Else If VesselDeparted == 1
Assign Arrival Port«—ClosestPort
Assign Arrival Date<TimeStamp
Vessel Departed = 0
Else If InPort ==
Assign DepartDate—TimeStamp
Vessel Departed = 1
InPort =0
EndFor
EndFor

3.4 Proposed Graph-Based Machine Learning Model

The heterogeneous graph abstraction proposed to model the maritime trans-
portation network is described in Fig.1. A heterogeneous graph is denoted by
G=(,& A R) where V and £ denote the node and link sets, respectively. Each
node v,p € V and each link e € £ is associated with a mapping function, where
o(v) : V — A and p(e) : £ — R represent the node mapping function and edge
mapping function, respectively. A graph is defined as heterogeneous if it contains
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more than one node type and/or more than one edge type. Therefore, A and R
denote the sets of node and edge types satisfying |A| + [R| > 2.

Figure la shows that nodes represent vessels (blue) and ports (yellow), while
edges w; define links between the vessel node v; and a destination port node p;
for a specific voyage. Vessel nodes are described by three features - length, width,
and MMSI - while port nodes’ features include port name, country, and region
id information. On the other hand, link features describe specific vessel voyage
information, including the departure port, month, draught, and cargo type. The
departure time is added as weights to the link to represent voyages of the same
vessel with the same source-destination occurring at different dates.

Figure 1b shows a real example of seven voyages related to three vessels and
three ports. The vessel with MMSI 255806151 is traveling in March (03) from
Kalundborg to Malmo with a cargo type of Category Y and a draught of value
60.1. Each node type is defined by different features. Port node Malmo is described
by the country SE, which represents Sweden and a region id 23860. Vessel node
564517000 is described by its length (183 m) and width (28 m). The weight
of each link is defined by the departure date of a voyage. For example, wl is
the weight of the link representing a voyage of the boat with MMSI 255806151
traveling on the 2020-10-02 to the Kiel port.

Following the methodology described in [12,28], we use word2vec [30] to per-
form link prediction task. To create a low dimensional representation of a node,
that is, a node embedding, random walks are computed using the heterogeneous
graph model. The node embedding shall ensure that the distance between nodes
is preserved in the embedding space. If two nodes are close to each other in the
graph, their closeness shall be maintained in the embedding space. The resulting
list of paths created by the random walk for a node is then provided to a word2vec
model to generate the node embedding for the respective nodes. Then, using the
vessel and destination node embeddings, link embedding is computed for the voy-
age segments. Negative voyage segments are randomly generated using possible
vessel-port connections available in the network to provide negative examples to
the learning algorithms. Link embeddings are similarly created for the negative
samples. Finally, link embedding is used to train the predictive model. The entire
destination prediction pipeline is shown in Fig. 2.

3.5 Experiments

We divided the data into training, dev, and validation sets (60% training, 20%
dev, and 20% validation), as shown in Table 1, where the test set statistics include
both dev and validation samples. Scikit-learn and Stellargraph were used to build
the machine learning models. We use the Stellar graph library [11] to create
the heterogeneous graph, and node and link embeddings. A k-nearest neighbors
(KNN) algorithm was used as the machine learning model for our graph-based
methodology (after an empirical comparison with other classic machine learning
models). The graph-based model was compared to different traditional machine
learning approaches (logistic regression, kNN, random forest, and Catboost [3,
10,31,41]) using only the vessel-, port- and voyage-related features, without the
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link embeddings. The experiments were conducted on a server with 40 Intel®)
Xeon® CPU E5-2690 v2 @ 3.00 GHz cores and 756 GB RAM.

564517000

wd

w5

w6

(b)

Fig.1. A heterogeneous graph with blue and yellow nodes referring to vessels and
ports respectively, and edges between vessels and destination ports. (a) Feature types
related to vessels, ports and voyages are shown for nodes p4 and v4, and for edge w6,
respectively. (b) A real example of seven voyages for three vessels and three ports.
(Color figure online)

4 Results

Macro-averaged results for the destination prediction models are presented in
Table 2. As we can notice, the graph-based machine learning model outperforms
all the classic models that do use graph-based features. It outperforms the best
baseline algorithm - random forest - with an increase in accuracy of approxi-
mately 3%, the precision almost doubled, going from 34% to 69%, and recall
and Fl-score improved by 7% and 23% respectively. While our best model is
able to predict the correct destination port nearly 70% correct, it is only able
to do so for around 1/3 of the ports in the network. If we only compare among
the baseline models, the random forest algorithm performs the best, with an
accuracy of 61%, precision of 34%, recall of 29%, and F1-score of 31%, followed
closely by Catboost. Surprisingly, the logistic regression, despite being a strong
classification method, performs the worst.

Lastly, we can verify the power that the graph-based features bring to the
model by comparing the performance of the kNN model (without graph-based
features) and our model, that is, a kNN enhanced with graph-based features.
As we can see from Table2, there is a significant increase in precision, more
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than doubling with a subsequent impact on the Fl-score (which is also almost
double). We believe that the addition of the topological features derived from
the heterogeneous graph are thus able to better characterise a voyage segment.

Table 2. Destination prediction models results

Model Accuracy | Precision | Recall | Fl1-score
Logistic regression |0.5574 0.2225 0.2211 ] 0.2217
kNN 0.5822 0.2995 0.2774 1 0.2880
Catboost 0.6036 0.3136 0.2620 | 0.2854
Random forest 0.6133 0.3369 0.2873 1 0.3101
Graph-based (ours) | 0.6472 0.6877 1 0.3604 | 0.5426

4.1 Comparison with AIS Manually Entered Destinations

To have a better reference, we compare the destination information available
in the AIS message with the destination derived by our voyage reconstruction
algorithm, which uses automatic AIS position and speed data, and an external
port database (WPI). Before comparing the datasets, we cleaned AIS destina-
tions by removing samples with meaningless or random destination values, such
as HERE WE GO AGAIN, HOME, etc. We also created various rules to link
AITS destination codes with WPI port names. We can cite examples of ports in
AIS data with values SEGOT and SE GBG destinations, both equivalent to
GOTEBORG in the generated voyage dataset.

The resulting comparison shows that we covered around 48% of AIS destina-
tion ports, which means that we generated the same AIS destination for almost
half of our data. As a comparison, the graph-based model is accurate in 65%
of its predictions. If we relax the matching process between AIS and the port
names of WPI, using a fuzzy search with a minimum similarity percentage of
90%, still only 55% of AIS destinations matches, which is a similar accuracy
to the worst baseline model. These can be explained by the high risk of errors
within manually entered AIS data.

AlS g Heterogenous | Node Link Classification
database graph | embeddings embeddings model

Fig. 2. Overview of the proposed graph-based voyage destination prediction model.
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4.2 Error Analysis

We present a summary of prediction results for our graph-based model in the
confusion matrix of Fig. 3. Due to the high number of ports available in the test
set, we show the results only for the 10 top destination ports. We added “Other
ports” to represent any port that is not in the list of ports displayed in the
confusion matrix. As we can notice, most of the confusions of the top ports are
with ports lower-destination ports (“Other ports”), e.g., Nysted, Rostock, etc.
Among the top ports, Karsto is confused often with Nykobing (MOR) (20%),
and Skudeneshavn with Karsto (22%) and Nykobing (MOR) (22%). We believe
this might be due to the fact that Skudeneshavn and Karsto are very close
geographically and also visited by the same boat 257144700 in Fig. 4.

RODBY HAVN 0 0o 0 0 ©0 03 0 0 0 o0 03
oRTH- 0 0o 0 0 0 0O 0 0O 0 0 14
wseo- 0 0 L1 0 O O 0 0 0 0 O [ o

rosTock - O 0 0 99 0 [ 0 0 ) 0 0 90

KaRsTO- 0 0 0 0 0 0 0 20 0 0 45
6
SKUDENESHAVN - 0 0 0 0 22 0 0 228 o 0 07

FLENSBURG - O 0 0 0 0 0 19 o0 0 0 [ 98

ESBERG - O 0 0 0 0 0 0 F2:68 0 0 [ 97

wrosnGmom- 0 0 O O 16 0 0 0 0o 0 95
Gewaaman- 0 0 O O 0 O O 0 O 0 2 -
sucenwan- 04 O 0 O O 04 04 0 04 0 24 [N

otherpots- 0.1 0.1 01 01 02 01 01 01 01 0 0.2 et
‘W o ‘o"* T S N Ne e
A R T NG

o o o P ‘“‘_o'o\“(’ P

Fig. 3. Link prediction confusion matrix for the top destination ports. “Other ports”
represent the remainder predictions.

Figure 4a shows an overview of the distribution of data related to the top 10
destination ports with the highest number of voyages in test set. We notice that
vessel with MMSI 219000737, during 2000 voyages, has been visiting Rodby Havn
port 50% of the time and Orth port the rest of the voyages. This means that
the probability of predicting the right port is 0.5. The dominant ports have little
diversity in terms of visiting boats. Only three of the five ports have been visited
by one to three boats. This explains why ports, such as Rodby Havn and Orth,
have such good performance as shown in Fig. 3. Figure 4b shows the distribution
of data in the test set related to the top destinations that a maximum number
of vessels has visited. We can see that for ports such as Skagen Haven, a much
higher confusion is found (see Fig.3), indicating that the algorithm is biased
towards the majority classes, having significantly better performance for ships
that always go to the same destination than for ships that make voyages to
different destinations.
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Fig. 4. Test set. (a) Number of port destinations per vessel for the top 10 destinations
with the maximum number of voyages. (b) Number of port destinations per MMSI for
top destinations shared by a maximum number of vessels.

5 Discussion

In this paper, we designed a novel method based on graph-based machine learn-
ing models to predict voyage destination. Such methods can be used to improve
AIS data quality and promote better decision making in the maritime trans-
portation. In addition to the usual tasks of cleaning and removing conflicting
data, and filling in missing information wherever is possible, we created voyage
segments by combining historical AIS data with a world port database (WPI).
In our experiments, we cover the region around Danish waters, nevertheless, the
methodology is readily applied to the world maritime transportation network.

In the proposed model, we organized AIS data by vessels and created voy-
ages based on a set of rules using different AIS attributes combined with the
WPI dataset. Then, voyages are abstracted using a heterogeneous undirected
graph, which is used to train a machine learning model that solves the voyage
destination port prediction problem as a multi-class classification based on a
link prediction algorithm. The graph-enriched model was compared to baseline
models that do not exploit the network properties, achieving significant perfor-
mance improvement upon them. While more complex graph-based models exist,
such as those based on graph neural networks, e.g., graph convolution neural
network [21] and graph attention network [36], the objective here is to demon-
strate that the topological features can contribute positively to the performance
of the predictive models. Their investigation is left for a future work.

To represent the time factor in the proposed model, we conducted two exper-
iments. First, the one presented in this paper, where time is added as a link prop-
erty, that is, new travels have a higher weight. Second, we evaluated a recurrent
model, where previous voyage features (time - n), e.g., previous voyage departure
and destination ports, are added to the current set of features. However, adding
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recurrent information did not make any significant change to the performance
of the models, only improved their complexity. Therefore, these results were not
presented in this paper, but they could still be relevant in a wider coverage
database.

Our work has some limitations. The AIS used only covers a region around
the Danish waters. The destination mentioned can be outside the covered region.
Therefore, we do not capture the position information of the ship at the final
destination. Using data covering the whole world and considering other types of
ships will increase the diversity of the data and improve the analysis of the ships’
behaviours. Moreover, enhanced learning models, such as graph neural networks,
as aforementioned, could be also analysed. Finally, some features, such as ships’
id, while might help to enhance the learning of ships’ behaviours, they open
the risk of overfitting. Therefore, more robust evaluation methods, such as a
cross-validation, could be employed.

To conclude, by approaching the voyage destination prediction problem as
a multi-class link prediction task, we have explored the possibility of using the
network features, such as link embeddings, in a graph-based model to improve
the predictive power of learning algorithms. Despite the significant performance
enhancement, voyage destination prediction remains as a challenge. Neverthe-
less, our results show that the performance of the graph-based predictive model
outperforms the manually entered AIS destination data. Therefore, they could
be used to augment AIS data quality and support data-driven maritime support
systems.
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