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Abstract. Template attacks model side-channel leakage information us-
ing Gaussian multivariate distributions. They have been quite successful
in directly reconstructing individual bits of 8-bit parallel buses and reg-
isters from power traces. However, extending their use directly to larger
word sizes, such as 32-bit buses, becomes impractical. Here we show that
it is possible to use an LDA-based stochastic model to independently
build templates for just byte fragments of such a word, to predict the
exact values of its four member bytes, instead of only overall Hamming
weights. We demonstrate this technique to reconstruct the arbitrary-
length inputs of SHA3-512 and some other Keccak sponge functions im-
plemented on a 32-bit Cortex-M4 device. The quality of these templates
was high enough such that remaining errors in their predictions could be
eliminated via belief propagation on a factor-graph network (SASCA).
In our experiments, we already reliably recovered SHA3-512 inputs up to
719 bytes long (10 invocations of the permutation), and reconstructing
even longer inputs should be just a matter of making longer recordings.
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1 Introduction

1.1 Motivation and Background

Since the National Institute of Standards and Technology (NIST) standardized
Secure Hash Algorithm 3 (SHA-3) [13] in 2015, several variants of Differen-
tial Power Analysis (DPA) [18,17,9] have been used to reconstruct the keys in
Keccak-based message authentication codes (MAC-Keccak). These attacks re-
quire multiple accesses to the SHA-3(K‖M) function, with a known and varying
message M , and their recorded power traces, to recover the fixed and unknown
key K.

Later, in 2020, two different approaches for single-trace recovery strategies
appeared. Kannwischer et al. [7] used Soft Analytical Side-Channel Analysis
(SASCA) [19] to recover a 128 or 256-bit secret S used in Keccak-f [1600](S‖M),
given known message M , based on simulated noisy Hamming-weight information
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of intermediate values in this permutation. They concluded that their method
was very successful on a simulated 8-bit or 16-bit device, but the situation was
not yet clear on 32-bit devices, where they successfully recovered 128-bit keys
only under some conditions, such as a lower noise level, but not 256-bit keys.
They also suggested their SASCA approach may reach a higher success rate with
a leakage model bearing more information than just Hamming weights.

We introduced the other approach in [21]. On an ATxmega256A3U [1] 8-
bit device, we used an enumeration procedure based on 600 rank tables for the
intermediate bytes. Each rank table lists all 256 candidate bytes in descending
order of probability, as predicted by LDA-based stochastic-model templates. This
enumeration technique could reconstruct a complete intermediate state from a
single trace and then invert it to determine all Keccak-f [1600] input and output
bits. By repeating the same procedure on every invocation of Keccak-f [1600] in
the absorbing stage of the Keccak sponge function, we can recover arbitrary-
length SHA3-512 inputs.

Therefore, encouraged by both these results, we now target a more ambitious
goal, namely to reconstruct the complete arbitrary-length input of SHA-3 or
SHAKE functions implemented on a 32-bit device, from a single trace. To achieve
this target, we will have to figure out how to practically build templates for a
32-bit bus that can obtain far more information about a 32-bit state than just
the Hamming weight.

Choudary and Kuhn [3] used template attacks based on Linear Discriminant
Analysis (LDA) to directly recover from a single load instruction the exact value
of a byte, and not just its Hamming weight. They also looked at extending their
method to states with more than 8 bits. However, directly building templates
for a 32-bit value is not practical this way.

1.2 Contributions and Paper Structure

We introduce the fragment template attack, to extract information about indi-
vidual bits from power traces that observe activity on 32-bit parallel data buses.
To achieve this, we apply the LDA technique to project the data onto subspaces
where the projected data are only related to a fragment (e.g., a byte or a nib-
ble) of the full 32-bit word, and then independently build templates for these
fragments, to enable us to reconstruct their values independently and within a
reasonable run time.

We built fragment templates for intermediate states in the Keccak-f [1600]
permutation implemented on a 32-bit device, the STM32F303RCT7 CPU on a
ChipWhisperer-Lite board [14]. We found that the resulting estimates are good
enough for a SASCA attack, i.e. to error-correct the template-attack information
with the help of a loopy belief-propagation factor graph based on the structure
of the rounds of the Keccak-f [1600] permutation.

In this paper, we first introduce and review some of the prior work that
our technique is based on (Section 2), namely the LDA-based stochastic model
templates and SASCA. Section 3 then explains our methodology, including how
we build fragment templates and our modification of a previous use of SASCA
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against Keccak, and how to combine the results from multiple invocations of
Keccak-f [1600] in the absorbing stage of a Keccak sponge function to calculate
full arbitrary-length inputs. The evaluation of our experiments in Section 4 shows
how parameters such as the number of rounds observed and the number of known
bits at the input of Keccak-f [1600] affect the success probability of our attack.

2 Preliminaries and Notation

2.1 LDA-based Templates on Keccak

The template attack with stochastic models. Following the original tem-
plate attack (TA) introduced by Chari et al. [2], the “stochastic” model F9

by Schindler et al. [15], and the use of Fisher’s Linear Discriminant Analy-
sis (LDA) by Standaert and Archambeau [16] for dimensionality reduction of
traces, Choudary and Kuhn [3] combined these into an LDA-based template
profiling stage for a F9 model as follows. Firstly, record the traces and group
them according to the target byte value b ∈ {0, . . . , 255}, where trace xb,t ob-
served target value b, with t ∈ {1, . . . , nb} enumerating the traces in that group.
When building a template for a target byte b, treat each member bit (b[0] to
b[7]) as an independent variable, and then use a multivariate linear regression to
calculate for each point in time coefficients c0 to c7 and a constant c8 to predict
the expected values of samples as x̄b =

∑7
l=0(b[l] · cl) + c8, the F9 stochastic

model. We write

x̄b =

7∑

l=0

(b[l] · cl) + c8

to represent the expected vector of an entire m-sample trace, where c0, . . . , c8 ∈
Rm. From these, build two covariance matrices, B representing the signal, and
Σ representing the noise, as

B =
1∑
b nb

∑

b

nb(x̄b − x̄)(x̄b − x̄)T,

Σ =
1∑
b nb

∑

b

nb∑

t=1

(xb,t − x̄b)(xb,t − x̄b)
T,

where x̄ is the average of all 256 expected vectors x̄b.

Dimensionality reduction. In the LDA step, project the m-sample traces
xb,t onto the m′ largest eigenvectors of Σ−1B, to obtain dimensionality-reduced
m′-sample traces xb,t,proj, where m′ � m, and the signal-to-noise ratio in the
new subspace is larger. Likewise, the expected traces x̄b as well as the attack
trace xa can be projected into the same subspace as x̄b,proj,xa,proj ∈ Rm′

.
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With all these traces projected into the new subspace, we now can build a
pooled covariance matrix

S =
1∑
b nb

∑

b

nb∑

t=1

(xb,t,proj − x̄b,proj)(xb,t,proj − x̄b,proj)
T,

such that the probability density of the attack trace xa,proj can be modelled as

f(xa,proj|x̄b,proj,S)

=
1√

(2π)m′ |S|
exp

(
−1

2
(xa,proj − x̄b,proj)

TS−1(xa,proj − x̄b,proj)

)
.

Having this likelihood calculated for all 256 values b, we can sort them in de-
scending order to generate a rank table of all candidates, or we can normalize
these likelihoods to build a probability table.

If the originally recorded trace length and sampling frequency are very high,
prior sample selection or resampling steps are needed to make the above LDA
matrix operations feasible. Like in [21], we therefore used sample-rate reduction
and sample selection based on multivariate linear regression as initial dimension-
ality reduction steps before applying LDA compression (see Section 4.2).

Template attack on an 8-bit implementation of Keccak. In [21] we
used the above LDA-based template attack already to recover 600 interme-
diate bytes from single invocations of the Keccak-f [1600] permutation on an
ATxmega256A3U 8-bit microcontroller. This permutation is the sequence of five
steps (θ, ρ, π, χ, ι), which iterate for 24 rounds. We reuse here the same notation
for the intermediate states αΩ , α′Ω , βΩ and β′Ω between these steps, defined for
the Ωth round as

Input
θ−→ α0

ρ,π−−→ α′0
χ−→ β0

ι−→ β′0
θ−→ α1

ρ,π−−→ · · · χ−→ β23
ι−→ Output.

We use three variables, i, j ∈ Z5, h ∈ Z8 to label the 200 bytes of these states,
where “∈ Zn” shall imply arithmetic modulo n. For example, the first byte in
the first lane of α′0 is α′0[0, 0, 0], and its least significant bit is α′0[0, 0, 0][0]. In
addition to this bytewise notation, we also use a bitwise notation with bit index
k ∈ Z64 and a “ˆ” on the variable, as in α̂′0[i, j, k] = α′0[i, j, h][l] for k = 8×h+ l
and l ∈ {0, . . . , 7}.

Given an attack trace, in [21] we used 600 templates to generate the rank
table for each of the 200 intermediate bytes in each of the three states α′0, β0 and
α1, so that all the correct candidates in α′0 can be found through the three-level
enumeration.

2.2 Soft Analytical Side-Channel Analysis on Keccak

Belief propagation and SASCA. Veyrat-Charvillon et al. [19] introduced
SASCA, which is an inference technique for template attacks on cryptographic
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algorithms based on the belief-propagation algorithm [10, Chapter 26]. The idea
behind SASCA is that all the probability information available to the attacker
is represented as a factor graph, where there are two types of nodes called “vari-
able”, representing the intermediate states of the cryptographic algorithm, and
“factor”, representing how these intermediate states depend on each other and
on the observed traces. Each of these nodes is only connected to nodes of the
respective other type (i.e., the factor graph is a bipartite graph), and informa-
tion can flow through these connections. The factor graph therefore reflects the
mathematical structure of the cryptographic algorithm, which then influences
the updating of the probability estimates of the variables accordingly during the
execution of the belief-propagation or sum-product message-passing algorithm.

While the variable nodes represent the intermediate values in the crypto-
graphic algorithm, we can separate the factor nodes into two subtypes, “obser-
vation factors” and “constraint factors”. Observation factors fm(xn) represent
observed probabilities of the values of their only connected variable xn, here usu-
ally from a template-based likelihood. Constraint factors fm(xm) are connected
to more than one variable (xn1 , . . . , xnkm

) = xm (where N (m) = {n1, . . . , nkm}
shall denote the set of indices of these variables) with a mathematical equation
as the constraint. The information flow can be thought of as messages passed
between variable nodes xn and factor nodes fm, which in practice are stored in
a table, and from which the marginal probabilities of all the candidate values
of each variable can be calculated. On a connection, the information flow is bi-
directional, where a message from a variable xn to a factor fm is denoted as
qn−→m, and a message from a factor fm to a variable xn as rm−→n. Each of these
messages is a function of a value ξ of xn. The probability of a candidate xn = ξ
in message qn−→m is:

qn−→m(xn = ξ) =
∏

m′ 6=m
rm′−→n(xn = ξ),

which means the probability passing from a variable to a factor is the product
of the probabilities of the same candidate in all the messages r passing from
all other factors connected to this variable. Meanwhile, the probability of a
candidate xn = ξ in the message rm−→n is:

rm−→n(xn = ξ) =
∑

w


fm(xn = ξ,xm\xn = w)

∏

n′∈N (m)\n
qn′−→m(xn′ = wn′)


 ,

where

fm(xm = v) =

{
1, constraint holds with xm = v,

0, otherwise.

In other words, the probability passed from factor fm to variable xn is the sum of
the product of the probabilities of the candidates in the messages q passed from
the other variables xn′ connected to factor fm, where these candidates combined
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with the candidate xn = ξ match the constraint in fm. For the special case of
an observation factor this reduces to:

rm−→n(xn = ξ) = fm(xn = ξ),

where fm(xn) is the probability table observed from the templates, instead of a
constraint function. To obtain the final probability Pn of candidates xn = ξ, we
need the product

Zn(xn = ξ) =
∏

m

rm−→n(xn = ξ)

of the probabilities in all the messages r passed to the same variable xn and then
normalize the result as

Pn(xn = ξ) =
Zn(xn = ξ)∑
ξ′ Zn(xn = ξ′)

.

This is how the probabilities can be updated recursively through a tree struc-
ture. The algorithm terminates on tree-shaped factor graphs once the number of
steps has reached the diameter of the tree. However, in most SASCA networks
of cryptographic algorithms, the factor graph is less likely to be a tree struc-
ture. Instead, it probably features loops, which means that this recursive belief
propagation will not terminate to output exact probabilities.

MacKay describes an easy solution [10, Chapter 26] called loopy belief prop-
agation (loopy-BP). The main idea is to initialize all the values in the table for
all messages q with one, then alternatingly update all the messages in the table
for r and then q, with renormalization when the probability values become too
small. Then terminate when a steady state has been reached.

Apply loopy belief propagation to Keccak. Kannwischer et al. [7] demon-
strate how they use loopy-BP given noisy Hamming-weight information of in-
termediate values. Their simulated attacks targeted the secret first 128 or 256
bits of the input of a Keccak-f [1600] permutation, with the remaining input bits
being known. They first introduce a bitwise (i.e., ξ ∈ {0, 1}) loopy-BP network.
In this case, many constraint factors and variables in the bit permutation step ρ
and π are no longer needed: firstly, we can simply connect the output of step θ
to the input of step χ following the permutation rules of the two steps instead,
and secondly, step ι XORs some round constant in the first lane, so we only
need to swap the output probabilities corresponding to 0 and 1 of step χ there.
Therefore, we only need to include one of the two states αΩ and α′Ω in the factor
graph, and one of βΩ and β′Ω .

As for the most complicated step, θ, the corresponding equation is

α̂Ω [i, j, k] =

4⊕

j=0

β̂′Ω−1[i− 1, j, k]⊕
4⊕

j=0

β̂′Ω−1[i+ 1, j, k − 1]⊕ β̂′Ω−1[i, j, k].
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input C0 D0 α′
0 β0 C1 D1 α′

1 β1

θ′0 θ′′0 θ′1 θ′′1

θ′′′0 θ′′′1χ0 χ1

Fig. 1. The loopy-BP graph structure for the Keccak-f permutation, showing the node
relations for the first two rounds. Variable nodes are in circles, constraint factors in
squares. Observation factors are not shown here. Each state variable shown here actu-
ally represents 1600 or 320 single-bit variable nodes, respectively.

If we directly designed a constraint factor following this equation, it would con-
nect to 12 variables. Instead, Kannwischer et al. [7, Fig. 1] separated it into three
equations

ĈΩ [i, k] =

4⊕

j=0

β̂′Ω−1[i, j, k], (θ′)

D̂Ω [i, k] = ĈΩ [i− 1, k]⊕ ĈΩ [i+ 1, k − 1], (θ′′)

α̂Ω [i, j, k] = D̂Ω [i, k]⊕ β̂′Ω−1[i, j, k], (θ′′′)

where Ĉ and D̂ are additional 320-bit intermediate states (which we will also
refer to as C and D bytewise). They then use these three substeps of θ to build
the constraint factors in their graph.1

For step χ, they suggest to combine the five-bit input and output in a row
(where j and k are fixed) into a single constraint factor node, instead of con-
necting these ten bits with five separate nodes connecting to three input bits
and one output bit. They claim this will increase the efficiency of information
transmission from β̂ to α̂′ nodes. Fig. 1 shows the resulting factor graph.

They terminate the loopy-BP procedure if the total entropy of all the vari-
ables drops to 0, or if the probabilities in the network no longer change, or after
50 iterations.

They simulated attacks on devices with 8, 16, or 32-bit words, of which their
leakage model provides noisy Hamming weights. They state that the bitwise
factor graph is not suitable for processing Hamming weights because marginal-
ization will discard the information in the joint distribution of the bits in the
target word, leading to bad attack performance. Therefore, they developed a
“clustering” technique to deal with Hamming-weight information, which com-
bines e.g. eight bits into one variable (i.e., ξ ∈ Z256).

1 β̂′[i, j, k], Ĉ[i, k], D̂[i, k], α̂[i, j, k] here are equivalent to I, P, T, O, respectively in [7].
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3 Our Attack Strategy

At a high level, our attack has three main steps. We first split each 32-bit target
word into several fragments and build a set of templates targeting each fragment
independently. We use these profiled fragment templates to generate a probabil-
ity table for every fragment in the words of the intermediate states that we target
in an invocation of the Keccak-f [1600] permutation. Secondly, we marginalize
these probability tables for fragments into binary probability tables for each bit.
We then feed these, as well as the known bits in the capacity part of the input,
into the loopy-BP network for error correction. Recall that the capacity input
has all 0 bits in the first invocation in a Keccak sponge function, and in later
invocations it is the same as the capacity output of the previous invocation.
The third step is to calculate the complete input and output of this invocation.
Repeat this for each invocation. In the end, by XORing consecutive rate parts,
we find the complete padded input of the Keccak sponge function.

3.1 Template Attack on Word Fragments

If we were to directly apply an LDA-based stochastic-model template [3] on
each intermediate 32-bit word, we first would use multivariate linear regression,
treating the 32 member bits as independent variables, to calculate the expected
value for each candidate. We could then build templates for these candidates,
to which the attack traces can be compared. However, with 232 candidates,
this approach is neither efficient nor practical. Therefore, we instead separate
an intermediate word into fragments, here four bytes, and independently build
templates for each. We hope that by limiting the candidate set to just the values
of one fragment f at a time, treating the values of the other fragments as noise,
based on the resulting per-fragment inter-class scatter Bf and total (pooled)
intra-class scatter Σf , the LDA can project the traces onto different subspaces,
where each projection maximizes the signal-to-noise ratio for just one byte at a
time.

More specifically, applying the LDA procedure directly on an intermediate
32-bit word, of value v, the matrices B and Σ would be

B =

232−1∑

v=0

nv(x̄v − x̄)(x̄v − x̄)T

/
232−1∑

v=0

nv,

Σ =

232−1∑

v=0

nv∑

t=1

(xv,t − x̄v)(xv,t − x̄v)
T

/
232−1∑

v=0

nv,

where x̄v is the expected value of traces corresponding to v with

x̄v =

31∑

l=0

(v[l] · cl) + c32, (1)

where cl is the coefficient vector of bit v[l], and c32 is the constant vector.
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Instead, our LDA procedure takes the same training traces, but profiles the
template with only eight bits at a time. We split each word value v ∈ Z232 into
four byte fragments v 7→ (F0(v), . . . , F3(v)) with Ff (v) =

∑7
l=0 v[8f + l] · 2l. Let

Vf,b = {v |Ff (v) = b} be the set of all 32-bit values where fragment number f
has value b. For each f , we can apply the F9 stochastic model to obtain the 256
expected trace vectors

x̄f,b =

7∑

l=0

b[l] · cf,l + cf,8, (2)

from the traces xv,t with v ∈ Vf,b, respectively. We then calculate the inter-class
scatter Bf and the total intra-class scatter Σf :

Bf =

255∑

b=0

∑

v∈Vf,b

nv(x̄f,b − x̄)(x̄f,b − x̄)T

/
255∑

b=0

∑

v∈Vf,b

nv,

Σf =

255∑

b=0

∑

v∈Vf,b

nv∑

t=1

(xv,t − x̄f,b)(xv,t − x̄f,b)
T

/
255∑

b=0

∑

v∈Vf,b

nv.

Now the inter-class scatter Bf only contains the signals from fragment number
f , and the signals from the other three bytes no longer count in the inter-class
scatter, but instead contribute to the total intra-class scatter Σf . In other words,
they are considered to be switching noise in this model.

After we project the profiling and attack traces via these two matrices to
the new m′-dimensional subspace (m′ = 8 in this paper), we can calculate the
pooled covariance matrix and combine it with the projected expected traces as
the template for this target byte in the intermediate word.

Note that in practice, with far less than 232 profiling traces acquired, an
efficient implementation will exploit the fact that many nv will be zero, by iter-
ating over recorded traces rather than all v. Alternative schemes for partitioning
a 32-bit word into fragments might be useful as well, such as 11+11+10 bits, or
grouping bits into fragments by distance of coefficient cl.

3.2 Bitwise Loopy Belief Propagation on Factor Graphs

After our templates generate the per-fragment probability tables for the selected
intermediate states, we marginalize these tables to eight binary tables of their
member bits and then use a bitwise loopy-BP network as the error-correction
procedure. Kannwischer et al. [7] state that the probability of a bit calculated by
marginalizing the Hamming weight will lose much information available in the
joint distribution of the unit’s member bits, but we believe that the information
loss caused by marginalization may not be a severe problem in our experiments:
our templates are based on the stochastic model F9 [15], where bits in the
target bytes are viewed as independent binary variables. With the assumption
of mutual independence, this model already, to some extent, gives up exploiting
information from a joint distribution across bits. Since we have already bitwisely
marginalized probabilities, the clustering technique is not required.
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Besides that main difference, we made a number of other changes compared to
Kannwischer et al. Firstly, instead of their “layer-after-layer” message updating,
in a single iteration we simply update all rm−→n messages in the factor graphs
before we update all qn−→m messages. Secondly, we terminate the loopy-BP al-
gorithm after either reaching a steady state, or a maximum iteration count of
200. We found that checking the total entropy value helped little, so we dropped
this termination check. Thirdly, their factor graph appears to cover only the first
two rounds [7, Sec. 4.5] whereas we tested different factor graphs that cover the
first two, three, or four rounds, respectively, to take more side-channel informa-
tion into account. Finally, after not finding consistent improvements when trying
different damping rates, we present our results without damping.

We did not acquire any side-channel observations for the input. Instead its
observation factors set the capacity part of the Keccak-f [1600] input according
to the sponge construct with probability one to all-zero for the first invocation,
and, also with probability one, to the verified output of the previous invocation
in subsequent invocations. The rate-part bits of the input are the only variables
without any observation factor connected.

3.3 Dealing with Multiple Invocations

We slightly modify the procedure to recover the full padded input of a Keccak
sponge function from [21] as follows.

After the loopy-BP algorithm reaches a steady state, we select in α′0 for
each bit variable the candidate with the higher probability to decide on our
prediction for that intermediate bit. However, the correctness of that state is not
yet ensured. Therefore, we feed the predicted α′0 bits into the inverse functions
of π, ρ, and θ, to calculate the corresponding input. Then we check if its capacity
part matches the expected value (e.g., all zero at the first invocation). If it passes
this check, we accept our α′0 prediction, and calculate from that the predicted
output of the invocation. Otherwise, we consider the attempt to have failed and
terminate. The reason for using the α′0 prediction instead of using the loopy-BP
results of the rate part in the input variable node directly is that the latter does
not benefit from this consistency check against the capacity part.

For a sponge function with more than one invocation, we repeat what we have
done for the first invocation, however now the capacity of the input is verified
instead against the capacity of the output of the previous invocation.

After recovering the input and output of every invocation, the remaining
steps for calculating the complete padded sponge-function input are straightfor-
ward, involving XORing the rate-part inputs and outputs, as described in [21]
and Fig. 2.

4 Experiments

4.1 Keccak Implementation and the Target Board

Our experiments target the 32-bit processor STM32F303RCT7, which has one
ARM Cortex-M4 core, on a ChipWhisperer-Lite (CW-Lite) board [5]. Our Kec-
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Fig. 2. The procedure to reconstruct input (and output) of sponge function Keccak[c]
by template attack: 1O generate the probability tables for the target intermediate states
in the first Keccak-f [1600] permutation and marginalize them to binary tables; 2O add
the observation-factor for the capacity part of the input, which is all 0; 3O run the
loopy-BP network, terminate and calculate the input and output of this invocation
from state α′

0 4O, and then 5O check consistency of the input capacity part; 6O add
the observation-factor for the capacity part of the input, where the bits match the
capacity part of the output from the previous invocation; 7O repeat template recovery,
table marginalization, and loopy-BP on latter invocations in the absorb stage; 8O repeat
step 5O; 9O XOR the rate parts of consecutive invocations and concatenate these XOR
results to find the padded Keccak[c] input.

cak implementation is based on the official reference C code [20] and our test ap-
plication implements the four SHA-3 functions (SHA3-224, SHA3-256, SHA3-384,
SHA3-512) and two extendable output functions (SHAKE128, SHAKE256). This
device stores the intermediate states that we target as a sequence of fifty 32-bit
words. We used the default compiler settings of the ChipWhisperer 5.2.1 soft-
ware, such as optimization for space (-Os with arm-none-eabi-gcc v9.2.1).

4.2 Trace Recording

The ChipWhisperer-Lite board also includes a power-analysis oscilloscope, but
that can record no more than 24 kilosamples per trace (at up to 105 MS/s).
However, we wanted to record at least 15,000 clock cycles per trace, to cover at
least four rounds of the Keccak-f [1600] permutation. That would have left us
with very few points per clock cycle (PPC). To separate signals from 32 data bits
processed in parallel, more samples per clock cycle will give us more dimensions
in the signal space to achieve this. At the same time we wanted to preserve the
phase lock between the oscilloscope’s sampling clock and the CPU clock. There-
fore, we used instead an NI PXIe-5160 [11] 10-bit oscilloscope, which can sample
at 2.5 GS/s into 2 GB of sampling memory, and an NI PXIe-5423 [12] wave



12 S.-C. You, M.G. Kuhn

generator, as an external clock signal source, to supply the target board with a
5 MHz square wave signal. We installed the oscilloscope and waveform generator
in the same PXIe chassis and configured both to use a common 100 MHz ref-
erence clock signal from the latter. With this setting, we collected traces at the
highest sampling rate, at 500 points per clock cycle (500 PPC). This provided
us with the flexibility to later digitally downsample to different PPC values, as
needed.

After not using the on-board oscilloscope, we had to create an impedance-
matched connection for the power signal. We used a 50 Ω coaxial cable to connect
the oscilloscope and the CW-Lite’s measure connector (JP10) [6]. However, JP10
taps the VDD connection of the CPU after a 13 Ω source impedance (R66+R67).
This posed a problem: the 3.3 V DC level would have lead to a high current drain
with the oscilloscope input configured to 50 Ω impedance and DC coupling, but
if we don’t have a 50 Ω impedance match on at least one end of the transmission
line, reflections will add a lot of ripples to the recorded waveform. Therefore,
we connected the coaxial cable to JP10 via a 37 Ω resistor (to better match
the 50 Ω impedance of the cable) and a 10 nF capacitor (to block the 3.3 V
DC component). Together with the 50 Ω impedance of the oscilloscope input,
this capacitor forms a high-pass filter with a time constant of 0.5 µs (2.5 clock
cycles), or a 3 dB cutoff frequency of about 320 kHz. This way, we both avoid
ringing on the cable, by terminating it at both ends, and use AC coupling with
an impulse response that decays within a few clock cycles.

We recorded traces while the device executed SHA3-512 on random inputs
that each require 10 invocations of the Keccak-f [1600] permutation. At 2.5 GS/s,
each 7,500,000-sample trace we recorded covers the first four complete rounds of
Keccak-f [1600], and we recorded that for each invocation of the permutation. To
exclude the possibility of trigger accidents (none were detected), we checked that
all traces recorded have a Pearson correlation of at least 0.98 with the mean trace.
Overall, we recorded 16 000 traces for interesting-clock-cycle detection, 64 000 for
template building, and 1 000 for model evaluation. For the traces recorded for
testing, see Sec. 4.4.

4.3 SASCA Model Building and Evaluation

Interesting clock cycle detection. Treating each bit in the intermediate byte
as an independent variable, in [21] we had used multivariate linear regression to
find the coefficient of determination (R2) of these eight variables, and for the
voltage-peak point in each clock cycle, we had evaluated the correlation with
the intermediate byte. Using a selection threshold of R2 > 0.09, we had created
far shorter training traces for each intermediate byte to build its LDA-based
template.

To detect the interesting clock cycle sets (ICs) for a 32-bit device, we assume
that the four bytes in the same word will share the same sets. Therefore, we
make a small change to our method for 8-bit devices. Rather than estimating
the correlation between the samples and the 32-bit intermediate value with a
32-bit linear regression, as in eq. (1), which would need more traces to build, we
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Fig. 3. The corresponding four R2
f values of (α′

0[0, 0, 0], . . . , α′
0[0, 0, 3]) for each sample

based on the 16 000 detection traces and their sum representing the detection results
of the full 32-bit word (above), as well as the mean trace and the 2σ interval (below)
at the same time samples.

instead estimate the correlation by adding the four R2
f values calculated from

the independently built 8-bit model (2) of each fragment byte in this 32-bit
intermediate value. While this may be less accurate, due to slight overfitting, it
significantly reduces the number of traces required.

Fig. 3 shows a small part of a mean trace, covering the 32-bit word consisting
of (α′0[0, 0, 0], . . . , α′0[0, 0, 3]), along with the corresponding four R2

f values for
each point, based on the 16 000 detection traces. Most of the data dependency
is limited to one clock cycle in the time interval shown. We also can see that
the R values peak near the voltage peek, and can use this to speed up the
selection of samples from our 500 PPC data. We sum 50 voltage samples around
each voltage peak, and calculate

∑
f R

2
f for that to decide whether this entire

clock cycle should be included. Table 1 shows the number of interesting clock
cycles selected for each intermediate word in the first round, with two different
thresholds (0.04 and 0.01); the results of the omitted other three rounds are
similar. We used the lower threshold

∑
f R

2
f > 0.01. The SNR values of the

points selected were in the range 0.01 to 3.43.

Template building and validation Considering the run time for building
templates, we only wanted to deal with at most 2000 samples per trace after
selecting the ICs. Given the numbers in Table 1, we therefore decided to resample
the training traces from 500 PPC down to 10 PPC, by averaging 50 consecutive
samples into one, effectively reducing the sampling rate to 50 MHz.

Using the 1000 traces in the validation set, Table 2 shows the resulting suc-
cess rate and guessing entropy (as in [21]) for α′0, while Table 3, 4, 5 show the
corresponding results for intermediate states β0, C0 and D0, respectively. The
omitted data for other rounds looks similar. Our results for α′0 and β0 are not as
good as the ones for the 8-bit processor in [21], and possibly not good enough for
our enumeration procedure there, but they are suitable for SASCA. Note that,
similar to the 8-bit experiments in [21], the results for the first lane of state α′
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Table 1. Numbers of interesting clock cycles selected in round Ω = 0 with thresholds∑
f R

2
f > 0.04 (left) and

∑
f R

2
f > 0.01 (right)

Lane[i]
C0 D0

first word second word first word second word

[0] 13 15 3 2

[1] 12 16 3 1

[2] 10 16 3 1

[3] 11 17 3 2

[4] 12 16 3 1

Lane[i, j]
α′
0 β0

first word second word first word second word

[0, 0] 21 35 28 39

[1, 0] 73 90 54 68

[2, 0] 67 89 53 68

[3, 0] 68 88 49 66

[4, 0] 71 88 54 68

[0, 1] 64 85 47 61

[1, 1] 71 87 56 69

[2, 1] 67 80 46 61

[3, 1] 71 89 53 70

[4, 1] 69 74 48 55

[0, 2] 61 90 49 70

[1, 2] 68 84 51 67

[2, 2] 66 87 48 64

[3, 2] 73 84 52 68

[4, 2] 73 91 59 69

[0, 3] 64 88 47 64

[1, 3] 63 88 43 61

[2, 3] 71 90 54 69

[3, 3] 68 89 55 73

[4, 3] 77 85 50 58

[0, 4] 75 74 50 62

[1, 4] 79 90 49 67

[2, 4] 64 86 50 65

[3, 4] 65 91 52 70

[4, 4] 65 82 45 60

Lane[i]
C0 D0

first word second word first word second word

[0] 31 35 36 30

[1] 31 33 25 33

[2] 32 35 25 26

[3] 31 38 17 32

[4] 35 36 34 55

Lane[i, j]
α′
0 β0

first word second word first word second word

[0, 0] 55 69 48 66

[1, 0] 130 139 91 114

[2, 0] 125 141 88 112

[3, 0] 120 142 88 111

[4, 0] 136 158 96 111

[0, 1] 120 147 86 111

[1, 1] 124 144 92 111

[2, 1] 129 143 85 103

[3, 1] 127 141 91 110

[4, 1] 141 144 100 103

[0, 2] 143 166 87 113

[1, 2] 121 135 89 110

[2, 2] 126 142 90 113

[3, 2] 133 148 92 109

[4, 2] 134 162 101 116

[0, 3] 120 145 87 112

[1, 3] 115 140 84 112

[2, 3] 131 146 96 112

[3, 3] 116 144 90 115

[4, 3] 143 158 106 112

[0, 4] 133 146 102 106

[1, 4] 134 146 104 117

[2, 4] 122 137 83 111

[3, 4] 131 140 87 110

[4, 4] 135 153 83 126

in every round are worse than those for the other lanes in the same state. This
is because this lane is not rotated in steps π or ρ, resulting in fewer interesting
clock cycles for the bits in this lane.

Since we use the marginal probabilities in the Loopy-BP network, we also
show in Table 6 the average number of correct bits in different intermediate states
from the 1000 validation traces. Because the probability tables are binary after
marginalization, we define whether a bit is successfully predicted by checking if
the probability of the correct candidate bit is higher than 0.5. The marginalized
results also show that our templates predicted the state α′Ω more successfully in
these four rounds than the other states.

We also tried other choices of fragment size besides 4× 8 bits: 11 + 11 + 10
bits, 8× 4 bits, 16× 2 bits and 32× 1 bit. We found that the choice of fragment
size plays little role in the results after marginalization. As an example, Table 8
compares the performance of these different fragment sizes for the first bit in
α′0 after marginalization. Therefore, the fragment size can be chosen here to
optimize computation time. For 11-bit fragments, calculating probability tables
for 211 candidates dominates the testing stage. On the other hand, with 32 1-bit
fragments, the profiling stage takes longer, as we need to calculate a separate Σf

for each fragment for LDA, the most time-consuming profiling step. Therefore,
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Fig. 4. Percentage of successfully recovered traces for the different factor-graph net-
works (with different numbers of rounds observed), as a function of the number of
loopy-BP iterations (left) and the number of unknown input bits (right).

for our experiments with single-bit marginalization, the use of 4×8-bit fragment
templates seemed a good compromise.

Evaluation on different networks. We now evaluate how well the loopy-BP
algorithm works when fed with marginalized binary probability tables from a
single validation trace, along with 1024 known bits in the capacity part of the
input. Table 7 shows the number of validation traces reaching a steady state,
along with statistics on the number of iterations required, and the number of
validation traces where all intermediate bits were recovered. We provide results
from three networks, covering two, three, and four rounds, respectively. Although
intermediate values of all the validation traces are successfully recovered in these
three networks, we can see that we will need fewer iterations to reach a steady
state with the four-round network. Fig. 4 (left) shows the percentage of success-
fully recovered traces (defined as all the bits of α′0 being recovered correctly) out
of the 1000 validation traces for these three factor-graph networks as a function
of the number of loopy-BP iterations. It takes fewer iterations to completely
recover state α′0 than it takes for the network to stabilize. It appears that the
two-round network takes more iterations to recover all validation traces correctly
than the larger networks.

Fig. 4 (right) shows the percentage of successfully recovered traces out of
1000 validation traces when we provide different numbers of known bits (not
just 1024), to explore the situation when the size of the rate parts (r unknown
bits) and capacity parts (c known bits) of the permutation input vary in different
sponge functions. When the number of unknown bits increases beyond half of the
full state, including up to the 1600−128×2 = 1344 unknown bits in SHAKE128,
the four-round network performs better than the others. Therefore we chose the
four-round network for our final version of the attack.



16 S.-C. You, M.G. Kuhn

Table 2. Success rates (left) and guessing entropy (right) of templates in α′
0

(i, j)
h

0 1 2 3 4 5 6 7

(0, 0) 0.036 0.046 0.021 0.023 0.029 0.050 0.012 0.015

(1, 0) 0.534 0.580 0.192 0.203 0.176 0.426 0.338 0.463

(2, 0) 0.459 0.558 0.259 0.152 0.206 0.457 0.352 0.386

(3, 0) 0.376 0.213 0.248 0.469 0.289 0.306 0.291 0.612

(4, 0) 0.522 0.377 0.370 0.246 0.275 0.384 0.506 0.351

(0, 1) 0.450 0.273 0.133 0.348 0.412 0.393 0.145 0.405

(1, 1) 0.473 0.242 0.435 0.449 0.342 0.373 0.347 0.487

(2, 1) 0.878 0.358 0.109 0.149 0.791 0.389 0.151 0.163

(3, 1) 0.360 0.332 0.259 0.279 0.173 0.358 0.366 0.531

(4, 1) 0.598 0.337 0.140 0.447 0.432 0.230 0.068 0.307

(0, 2) 0.717 0.292 0.110 0.140 0.790 0.427 0.162 0.284

(1, 2) 0.807 0.457 0.182 0.135 0.610 0.539 0.173 0.196

(2, 2) 0.423 0.214 0.110 0.789 0.383 0.277 0.176 0.777

(3, 2) 0.789 0.554 0.233 0.164 0.608 0.423 0.219 0.242

(4, 2) 0.435 0.255 0.533 0.357 0.268 0.390 0.601 0.537

(0, 3) 0.517 0.240 0.112 0.424 0.387 0.364 0.168 0.554

(1, 3) 0.740 0.318 0.118 0.124 0.577 0.460 0.217 0.305

(2, 3) 0.599 0.609 0.248 0.195 0.358 0.709 0.256 0.230

(3, 3) 0.359 0.295 0.362 0.277 0.271 0.388 0.559 0.382

(4, 3) 0.517 0.263 0.228 0.807 0.263 0.187 0.132 0.885

(0, 4) 0.635 0.424 0.122 0.290 0.445 0.288 0.061 0.183

(1, 4) 0.522 0.234 0.282 0.747 0.211 0.160 0.164 0.845

(2, 4) 0.767 0.504 0.151 0.138 0.411 0.503 0.273 0.267

(3, 4) 0.633 0.571 0.148 0.140 0.250 0.621 0.265 0.382

(4, 4) 0.860 0.359 0.111 0.178 0.838 0.397 0.146 0.203

(i, j)
h

0 1 2 3 4 5 6 7

(0, 0) 47.918 37.603 72.631 66.417 58.449 36.038 84.323 69.128

(1, 0) 2.914 2.228 9.998 9.484 10.852 3.305 5.991 3.168

(2, 0) 3.296 2.191 7.754 13.492 10.111 2.793 4.998 4.433

(3, 0) 3.878 10.928 7.214 3.287 6.476 5.613 5.836 2.142

(4, 0) 2.576 4.329 4.455 7.112 8.444 4.172 2.976 5.131

(0, 1) 3.304 6.886 21.260 3.147 3.947 3.788 13.872 2.868

(1, 1) 2.725 7.374 2.801 3.769 5.946 4.577 5.000 3.175

(2, 1) 1.161 4.434 21.005 16.938 1.381 4.054 16.640 12.926

(3, 1) 4.909 4.014 7.500 7.730 13.265 3.903 5.013 2.675

(4, 1) 2.005 4.753 18.085 3.258 3.421 8.237 30.208 3.685

(0, 2) 1.573 5.369 22.824 15.404 1.378 3.447 12.988 7.555

(1, 2) 1.295 3.155 12.805 16.964 2.118 2.141 13.294 12.928

(2, 2) 3.110 8.532 21.392 1.404 5.061 6.394 13.671 1.291

(3, 2) 1.308 2.049 9.743 14.054 2.401 3.065 11.262 8.953

(4, 2) 2.866 6.688 2.319 5.176 8.416 4.756 1.986 2.902

(0, 3) 2.555 8.155 22.583 2.758 4.980 4.951 14.281 2.157

(1, 3) 1.509 5.179 17.242 16.478 2.061 3.089 9.198 6.468

(2, 3) 2.029 1.885 8.480 12.055 5.119 1.573 8.126 8.616

(3, 3) 4.863 5.171 4.425 6.750 9.046 4.186 2.511 5.356

(4, 3) 2.509 7.140 9.502 1.275 7.513 11.743 17.919 1.167

(0, 4) 1.866 3.518 19.914 4.703 3.229 6.271 33.439 7.764

(1, 4) 2.620 9.101 8.051 1.582 10.651 13.080 14.079 1.306

(2, 4) 1.549 2.537 13.825 18.494 3.763 2.569 7.648 8.671

(3, 4) 2.066 2.134 15.311 16.691 7.488 1.926 8.879 4.935

(4, 4) 1.212 4.708 25.596 12.427 1.255 4.436 19.452 9.656

Table 3. Success rates (left) and guessing entropy (right) of templates in β0

(i, j)
h

0 1 2 3 4 5 6 7

(0, 0) 0.063 0.060 0.026 0.034 0.035 0.039 0.022 0.017

(1, 0) 0.067 0.084 0.039 0.034 0.035 0.065 0.035 0.058

(2, 0) 0.055 0.073 0.049 0.043 0.046 0.070 0.039 0.052

(3, 0) 0.061 0.049 0.030 0.057 0.052 0.058 0.046 0.052

(4, 0) 0.045 0.066 0.059 0.044 0.056 0.080 0.048 0.051

(0, 1) 0.054 0.053 0.028 0.055 0.056 0.050 0.036 0.054

(1, 1) 0.062 0.052 0.061 0.054 0.049 0.043 0.043 0.043

(2, 1) 0.096 0.045 0.034 0.041 0.063 0.068 0.022 0.029

(3, 1) 0.047 0.063 0.043 0.055 0.045 0.055 0.038 0.064

(4, 1) 0.081 0.055 0.032 0.063 0.073 0.047 0.020 0.049

(0, 2) 0.055 0.062 0.029 0.033 0.067 0.056 0.029 0.035

(1, 2) 0.070 0.059 0.032 0.050 0.059 0.054 0.025 0.033

(2, 2) 0.064 0.049 0.028 0.065 0.049 0.057 0.029 0.067

(3, 2) 0.076 0.073 0.050 0.028 0.049 0.057 0.029 0.040

(4, 2) 0.064 0.072 0.080 0.053 0.051 0.064 0.065 0.058

(0, 3) 0.048 0.061 0.031 0.054 0.051 0.058 0.025 0.055

(1, 3) 0.088 0.062 0.031 0.030 0.051 0.085 0.032 0.050

(2, 3) 0.065 0.079 0.046 0.049 0.043 0.080 0.042 0.033

(3, 3) 0.055 0.067 0.053 0.038 0.044 0.065 0.050 0.050

(4, 3) 0.062 0.067 0.043 0.066 0.051 0.056 0.018 0.061

(0, 4) 0.063 0.080 0.028 0.063 0.050 0.044 0.022 0.031

(1, 4) 0.064 0.056 0.045 0.060 0.049 0.048 0.032 0.057

(2, 4) 0.073 0.074 0.037 0.025 0.048 0.072 0.044 0.054

(3, 4) 0.057 0.084 0.030 0.045 0.032 0.083 0.025 0.054

(4, 4) 0.077 0.061 0.020 0.041 0.163 0.144 0.038 0.055

(i, j)
h

0 1 2 3 4 5 6 7

(0, 0) 29.099 31.206 66.016 55.164 49.097 41.215 77.061 72.161

(1, 0) 41.296 27.599 51.756 51.166 51.967 35.532 52.942 43.689

(2, 0) 45.505 31.928 47.914 52.142 52.209 34.579 52.971 48.676

(3, 0) 46.225 38.049 48.516 43.621 45.427 39.180 53.513 44.922

(4, 0) 44.973 33.773 41.436 53.657 45.342 29.965 45.826 47.460

(0, 1) 42.920 37.477 55.296 43.037 47.861 39.370 62.768 47.697

(1, 1) 44.062 41.569 43.692 47.447 49.794 41.370 51.363 48.475

(2, 1) 37.942 35.927 58.811 53.895 39.371 37.991 61.425 57.728

(3, 1) 49.000 33.408 47.756 51.132 54.896 38.350 52.300 44.095

(4, 1) 39.393 34.967 55.991 43.244 38.900 35.159 70.819 49.384

(0, 2) 40.071 34.954 57.510 54.016 40.775 36.531 61.750 54.218

(1, 2) 37.223 35.369 53.714 52.559 43.220 38.293 61.419 59.342

(2, 2) 42.703 38.837 58.793 42.058 44.949 41.459 63.710 40.046

(3, 2) 38.453 34.161 51.291 54.249 44.727 36.590 60.970 54.708

(4, 2) 40.264 35.120 43.146 49.255 43.270 33.627 44.398 47.326

(0, 3) 41.919 38.271 58.745 46.345 45.974 39.711 64.287 47.035

(1, 3) 35.889 34.639 56.862 54.783 43.745 32.077 56.285 52.072

(2, 3) 39.466 29.259 47.707 52.404 47.964 28.582 53.567 55.279

(3, 3) 47.758 34.515 41.710 50.016 45.893 35.975 51.737 50.468

(4, 3) 36.454 33.344 46.953 38.291 38.767 35.921 63.725 36.496

(0, 4) 36.658 30.434 57.476 47.138 45.926 38.289 73.197 47.420

(1, 4) 41.344 35.637 47.295 43.026 50.578 45.520 64.383 42.099

(2, 4) 38.915 32.309 55.223 55.883 42.468 35.518 55.496 49.946

(3, 4) 42.077 29.945 53.072 53.553 51.580 35.255 56.883 48.758

(4, 4) 37.359 38.467 61.073 50.593 15.980 21.212 53.895 33.795

Table 4. Success rates (left) and guessing entropy (right) of templates in C0

(i, j)
h

0 1 2 3 4 5 6 7

(0, 0) 0.027 0.036 0.016 0.030 0.041 0.060 0.019 0.042

(1, 0) 0.025 0.044 0.020 0.039 0.034 0.066 0.015 0.036

(2, 0) 0.027 0.043 0.027 0.039 0.047 0.051 0.018 0.043

(3, 0) 0.032 0.047 0.017 0.045 0.045 0.056 0.015 0.046

(4, 0) 0.026 0.048 0.022 0.037 0.066 0.075 0.018 0.048

(i, j)
h

0 1 2 3 4 5 6 7

(0, 0) 58.015 39.596 65.977 51.890 42.605 31.637 76.724 49.012

(1, 0) 58.307 40.936 69.313 49.246 43.310 32.581 77.534 46.917

(2, 0) 56.889 42.208 66.796 51.466 36.740 33.989 72.759 47.559

(3, 0) 59.543 41.348 68.157 51.589 38.406 31.291 74.440 44.055

(4, 0) 60.075 39.145 69.823 49.706 33.487 29.861 65.547 43.852

Table 5. Success rates (left) and guessing entropy (right) of templates in D0

(i, j)
h

0 1 2 3 4 5 6 7

(0, 0) 0.013 0.020 0.006 0.012 0.016 0.010 0.008 0.013

(1, 0) 0.013 0.016 0.010 0.016 0.016 0.016 0.008 0.015

(2, 0) 0.008 0.016 0.011 0.014 0.012 0.021 0.005 0.016

(3, 0) 0.010 0.020 0.009 0.013 0.016 0.019 0.012 0.011

(4, 0) 0.017 0.006 0.011 0.012 0.020 0.020 0.009 0.019

(i, j)
h

0 1 2 3 4 5 6 7

(0, 0) 91.069 84.318 92.714 87.537 84.127 73.385 93.005 85.368

(1, 0) 87.800 84.453 89.139 86.089 78.383 78.650 90.992 80.381

(2, 0) 89.727 86.831 89.815 88.058 76.028 78.165 92.148 84.787

(3, 0) 93.462 83.278 92.638 84.953 84.579 70.239 92.599 82.877

(4, 0) 91.890 81.804 90.937 88.506 80.511 76.263 91.385 76.724
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Table 6. Average (µ) and standard deviation (σ) of the number of correct bits found
after marginalization of the byte tables (out of 1600 bits in α′

Ω and βΩ , and 320 bits
in CΩ and DΩ , respectively).

State α′
0 β0 α′

1 β1 α′
2 β2 α′

3 β3
µ 1353.432 1093.831 1352.345 1094.108 1353.010 1095.214 1353.998 1095.555

σ 15.854 17.746 16.313 17.103 16.028 17.255 15.243 17.265

State C0 D0 C1 D1 C2 D2 C3 D3

µ 211.007 187.974 211.480 187.722 211.509 187.489 211.051 187.565

σ 7.992 9.049 8.181 7.999 8.230 7.774 8.077 8.189

Table 7. Results of terminating bitwise SASCA on the 32-bit device

Network #Steady
#Iteration #Correct Traces

Median Mean σ Max Input α′
0 β0 α′

1 β1 α′
2 β2 α′

3 β3
4-round 1000 25 25.421 0.573 28 1000 1000 1000 1000 1000 1000 1000 1000 1000

3-round 1000 30 30.331 1.247 34 1000 1000 1000 1000 1000 1000 1000 N/A N/A

2-round 1000 51 51.710 4.391 72 1000 1000 1000 1000 1000 N/A N/A N/A N/A

Table 8. Fragment size had little influence on accuracy of bit prediction, as illustrated
here for the first bit in α′

0, using several metrics: predicted marginalized probability of
correct candidate from the first trace (Prob.), number of correct bit predictions over
1000 validation traces (#Success), maximum and average deviation (|ε|) of probability
among these 1000 trials from the predictions made by four-byte fragment templates.

Fragments 11 + 11 + 10 bits 4× 8 bits 8× 4 bits 16× 2 bits 32× 1 bit

Prob. 0.752437 0.750506 0.752002 0.752274 0.751888

#Success 729 730 733 733 732

Max |ε| 0.026377 – 0.010587 0.013578 0.013906

Average |ε| 0.002809 – 0.001652 0.001872 0.002043

4.4 Loopy Belief-Propagation Results

Results for the SHA-3 and SHAKE functions. We recorded five groups
of 1000 test traces. Each group had a different range of SHA3-512 input lengths,
requiring 1, 2, 4, 5, or 10 invocations of Keccak-f [1600] to absorb, respectively.
Table 9 shows the number of successfully recovered inputs for each of these test
traces, and related statistics on the number of iterations required. We can see
that all the inputs were successfully recovered, after about 25–30 iterations.2

Apart from SHA3-512, we also recorded test traces for other Keccak[c] sponge
functions, including the other three SHA-3 variants and the two SHAKE ex-
tendable output functions. It is noteworthy that, because our SASCA network
of Keccak-f [1600] relies on the capacity part of the output of the previous invo-
cation, the functions with a shorter capacity part (c known bits) may encounter
a lower success rate or may require more iterations to reach a steady state. Ta-
ble 10 shows some results of these five functions with inputs that can be absorbed
in one or two invocations. We can see the results meet our expectation that the

2 Recall that Kannwischer et al.’s results [7] for their all-zero public input set, which
is similar to our experiments with very short Keccak[c] input, were worse than those
for their random public input set. We did not observe such variability in our setting,
i.e. the success rates or the number of iterations required did not significantly vary
with the input length of Keccak[c], even down to just one byte.
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Table 9. Results of recovering the SHA3-512 inputs with multiple invocations of
Keccak-f [1600] permutation.

#Invocations
#Traces

Recovered

#Iteration
Median Mean σ Max

1 1000 25 25.399 0.804 28

2 1000 26 25.629 0.619 29

4 1000 26 25.575 0.611 29

5 1000 26 25.615 0.621 31

10 1000 25 25.364 0.552 28

Table 10. Results of recovering the functions in the SHA-3 family with one and two
invocations by the four-round network.

Function c r #Inv. #Rec.
#Iteration*

Median Mean σ Max

SHA3-512 1024 576
1 1000 25 25.399 0.804 28
2 1000 26 25.629 0.619 29

SHA3-384 768 832
1 1000 27 26.838 0.942 29
2 1000 27 27.061 0.662 30

SHA3-256
512 1088

1 1000 29 28.646 1.246 32
2 998 29 28.679 0.761 33

SHAKE256
1 997 29 29.054 1.272 34
2 996 29 28.996 0.926 37

SHA3-224 448 1152
1 1000 29 29.106 1.255 33
2 996 29 29.440 0.971 37

SHAKE128 256 1344
1 979 31 30.897 1.512 39
2 971 31 31.206 1.212 39

* Only invocations that reached a steady state are taken into account.

Table 11. Results of recovering the functions in the SHA-3 family with one invocation
by the three-round network.

Function c r #Rec.
#Iteration*

Median Mean σ Max

SHA3-512 1024 576 1000 30 30.064 1.720 35

SHA3-384 768 832 1000 34 34.066 2.057 41

SHA3-256
512 1088

999 38 38.023 2.924 46
SHAKE256 999 39 38.789 2.727 50

SHA3-224 448 1152 992 39 39.284 2.947 52

SHAKE128 256 1344 921 43 43.512 5.033 107

* Only invocations that reached a steady state are taken into account.

shorter the capacity part, the lower the number of inputs we successfully recover,
and the more iterations we need to reach a steady state, despite all success rates
remaining close to 1. It is also noteworthy that in the same function, if the suc-
cess rate for inputs requiring one invocation is p, that for inputs requiring two
invocations should be p2, which is also consistent with our results.

Apart from our final four-round version, we have also tried these experi-
ments with the three-round network. Table 11 shows the results of recovering
1000 inputs with one invocation from the test traces of the six SHA-3 or SHAKE
functions. It appears that the four-round network provides better results, sug-
gesting that recording longer traces covering more rounds helps to push the
success rate much closer to 1.
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5 Conclusion and Outlook

With the help of LDA-based dimensionality reduction, we successfully built frag-
ment templates that generate separate probability tables for each byte in the
32-bit words of the targeted intermediate states. The quality of our templates
is sufficient for creating per-bit marginalized observation factors from which a
bitwise loopy-BP network can reconstruct the full input and output of each
invocation of Keccak-f [1600], using also knowledge about a part of its input,
as given by the sponge construction. From that we can easily reconstruct the
padded arbitrary-length inputs of the Keccak sponge functions. Interestingly, our
results so far indicate that, although the Keccak[c] functions with a longer capac-
ity have cryptographically a higher security margin, that actually helps in our
attack strategy. Our results suggest that this method will also work for Keccak-
based sponge functions with a shorter capacity, especially when observing more
rounds by recording longer traces. We also expect that this attack strategy can
easily be applied to other SHA-3-derived functions, such as cSHAKE, KMAC,
TupleHash and ParallelHash, defined in NIST Special Publication 800-185 [8],
which also use the Keccak[256] or Keccak[512] functions, except for different
padding methods.

Our fragment templates reconstruct full-state information stored in larger
word sizes (such as 32 bits) than are practical with regular template or stochastic-
method attacks, by using the LDA technique to project traces onto subspaces
that are only related to a manageable part of the state. Further improvements
should be possible, for example lowering the R2 threshold to include more inter-
esting clock cycles may help to build templates with even higher success rates,
at the expense of more computational time required for profiling. We expect this
fragment-template technique can be extended beyond attacks on SHA-3 related
functions. Also, so far we have only demonstrated this technique using the same
board for profiling and attack, therefore its portability remains to be investi-
gated; however LDA-based techniques have previously already been shown to
help with portability of templates across boards [4].
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