Skip to main content

Generative Clausal Networks: Relational Decision Trees as Probabilistic Circuits

  • Conference paper
  • First Online:
  • 397 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13191))

Abstract

In many real-world applications, the i.i.d. assumption does not hold and thus capturing the interactions between instances is essential for the task at hand. Recently, a clear connection between predictive modelling such as decision trees and probabilistic circuits, a form of deep probabilistic model, has been established although it is limited to propositional data. We introduce the first connection between relational rule models and probabilistic circuits, obtaining tractable inference from discriminative rule models while operating on the relational domain. Specifically, given a relational rule model, we make use of Mixed Sum-Product Networks (MSPNs)—a deep probabilistic architecture for hybrid domains—to equip them with a full joint distribution over the class and how (often) the rules fire. Our empirical evaluation shows that we can answer a wide range of probabilistic queries on relational data while being robust to missing, out-of-domain data and partial counts. We show that our method generalizes to different distributions outperforming strong baselines. Moreover, due to the clear probabilistic semantics of MSPNs we have informative model interpretations.

F. Ventola and D. S. Dhami—Equal contribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We are not strict on “density” vs. “distribution”.

  2. 2.

    A set of random variables is finitely exchangeable with respect to a joint distribution P, if all permutations of the variables result in the same joint probabilities. Note that finite exchangeable does not require independence; the random variables can have strong dependencies.

  3. 3.

    In the figure and in the following text \(\boldsymbol{1}()\) represents an indicator function.

  4. 4.

    www.drugbank.ca.

  5. 5.

    https://github.com/SPFlow/SPFlow.

  6. 6.

    Both Scikit-learn implementation with default hyperparameters.

References

  1. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. The Am. Stat. (1992)

    Google Scholar 

  2. Austin, P.C., White, I.R., Lee, D.S., van Buuren, S.: Missing data in clinical research: a tutorial on multiple imputation. Can. J. Cardiol. (2020)

    Google Scholar 

  3. Blockeel, H., de Raedt, L.: Top-down induction of first-order logical decision trees. AI (1998)

    Google Scholar 

  4. van Buuren, S., Groothuis-Oudshoorn, K.: mice: Multivariate imputation by chained equations in r. J. Stat. Softw. (2011)

    Google Scholar 

  5. Cawley, G.C., Talbot, N.L.: On over-fitting in model selection and subsequent selection bias in performance evaluation. JMLR (2010)

    Google Scholar 

  6. Chattopadhyay, P., Balaji, Y., Hoffman, J.: Learning to balance specificity and invariance for in and out of domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 301–318. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_18

    Chapter  Google Scholar 

  7. Cheng, W., Kok, S., Pham, H.V., Chieu, H.L., Chai, K.M.A.: Language modeling with sum-product networks. In: INTERSPEECH (2014)

    Google Scholar 

  8. Choi, Y., Vergari, A., Van den Broeck, G.: Probabilistic circuits: a unifying framework for tractable probabilistic models (2020)

    Google Scholar 

  9. Correia, A.H.C., Peharz, R., de Campos, C.P.: Joints in random forests. In: NeurIPS (2020)

    Google Scholar 

  10. Darwiche, A.: A differential approach to inference in Bayesian networks. JACM (2003)

    Google Scholar 

  11. De Raedt, L., Kersting, K., Natarajan, S., Poole, D.: Statistical relational artificial intelligence: logic, probability, and computation (2016)

    Google Scholar 

  12. Dhami, D.S., Kunapuli, G., Das, M., Page, D., Natarajan, S.: Drug-drug interaction discovery: kernel learning from heterogeneous similarities. Smart Health (2018)

    Google Scholar 

  13. Dhami, D.S., Yen, S., Kunapuli, G., Natarajan, S.: Non-parametric learning of Gaifman models. arXiv preprint arXiv:2001.00528 (2020)

  14. Flach, P.A., Lachiche, N.: Naive Bayesian classification of structured data. Mach. Learn. (2004)

    Google Scholar 

  15. Gangal, V., Arora, A., Einolghozati, A., Gupta, S.: Likelihood ratios and generative classifiers for unsupervised out-of-domain detection in task oriented dialog. In: AAAI (2020)

    Google Scholar 

  16. Gens, R., Domingos, P.: Learning the structure of sum-product networks. In: ICML (2013)

    Google Scholar 

  17. Getoor, L., Taskar, B.: Statistical relational learning (2007)

    Google Scholar 

  18. Khosravi, P., Vergari, A., Choi, Y., Liang, Y., den Broeck, G.V.: Handling missing data in decision trees: a probabilistic approach. arXiv preprint arXiv:2006.16341 (2020)

  19. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning Markov logic networks via functional gradient boosting. In: ICDM (2011)

    Google Scholar 

  20. Kok, S., et al.: The alchemy system for statistical relational AI (2005)

    Google Scholar 

  21. Landwehr, N., Kersting, K., De Raedt, L.: nfoil: Integrating Naıve Bayes and foil. In: AAAI (2005)

    Google Scholar 

  22. Landwehr, N., Kersting, K., De Raedt, L.: Integrating Naive Bayes and foil. JMLR (2007)

    Google Scholar 

  23. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: NeurIPS (2018)

    Google Scholar 

  24. Mitchell, T., et al.: Never-ending learning. Commun. ACM (2018)

    Google Scholar 

  25. Molina, A., Natarajan, S., Kersting, K.: Poisson sum-product networks: a deep architecture for tractable multivariate Poisson distributions. In: AAAI (2017)

    Google Scholar 

  26. Molina, A., Vergari, A., Mauro, N.D., Natarajan, S., Esposito, F., Kersting, K.: Mixed sum-product networks: a deep architecture for hybrid domains. In: AAAI (2018)

    Google Scholar 

  27. Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Gradient-based boosting for statistical relational learning: the relational dependency network case. Mach. Learn. (2012)

    Google Scholar 

  28. Nath, A., Domingos, P.: Learning relational sum-product networks. In: AAAI (2015)

    Google Scholar 

  29. Neville, J., Jensen, D.: Relational dependency networks. JMLR (2007)

    Google Scholar 

  30. Peharz, R., Gens, R., Pernkopf, F., Domingos, P.M.: On the latent variable interpretation in sum-product networks. TPAMI (2017)

    Google Scholar 

  31. Peharz, R., Kapeller, G., Mowlaee, P., Pernkopf, F.: Modeling speech with sum-product networks: application to bandwidth extension. In: ICASSP (2014)

    Google Scholar 

  32. Peharz, R., et al.: Random sum-product networks: a simple and effective approach to probabilistic deep learning. In: UAI (2019)

    Google Scholar 

  33. Poon, H., Domingos, P.M.: Sum-product networks: a new deep architecture. In: UAI (2011)

    Google Scholar 

  34. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. (2006)

    Google Scholar 

  35. Tan, M., et al.: Out-of-domain detection for low-resource text classification tasks. In: EMNLP-IJCNLP (2019)

    Google Scholar 

  36. Tran, D., Vafa, K., Agrawal, K.K., Dinh, L., Poole, B.: Discrete flows: invertible generative models of discrete data. In: NeurIPS 2019 (2019)

    Google Scholar 

  37. Vapnik, V., Vashist, A.: A new learning paradigm: learning using privileged information. Neural Netw. (2009)

    Google Scholar 

  38. Vergari, A., Di Mauro, N., Esposito, F.: Visualizing and understanding sum-product networks. Mach. Learn. (2019)

    Google Scholar 

  39. Yang, E., Ravikumar, P.K., Allen, G.I., Liu, Z.: On Poisson graphical models. In: NIPS (2013)

    Google Scholar 

  40. Yu, Z., Ventola, F., Kersting, K.: Whittle networks: a deep likelihood model for time series. In: ICML (2021)

    Google Scholar 

  41. Yuan, Z., Wang, H., Wang, L., Lu, T., Palaiahnakote, S., Tan, C.L.: Modeling spatial layout for scene image understanding via a novel multiscale sum-product network. Expert Syst. Appl. (2016)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the ICT-48 Network of AI Research Excellence Center “TAILOR” (EU Horizon 2020, GA No 952215), the Federal Ministry of Education and Research (BMBF; Competence Center for AI and Labour; “kompAKI”, FKZ 02L19C150), the German Science Foundation (DFG, German Research Foundation; GRK 1994/1 “AIPHES”), the Hessian Ministry of Higher Education, Research, Science and the Arts (HMWK; projects “The Third Wave of AI” and “The Adaptive Mind”), the Hessian research priority programme LOEWE within the project “WhiteBox”, and the Collaboration Lab “AI in Construction” (AICO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Ventola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ventola, F., Dhami, D.S., Kersting, K. (2022). Generative Clausal Networks: Relational Decision Trees as Probabilistic Circuits. In: Katzouris, N., Artikis, A. (eds) Inductive Logic Programming. ILP 2021. Lecture Notes in Computer Science(), vol 13191. Springer, Cham. https://doi.org/10.1007/978-3-030-97454-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97454-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97453-4

  • Online ISBN: 978-3-030-97454-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics