
This is a repository copy of Ontology Graph Embeddings and ILP for Financial 
Forecasting.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/178510/

Version: Accepted Version

Proceedings Paper:
Erten, Can and Kazakov, Dimitar Lubomirov orcid.org/0000-0002-0637-8106 (Accepted: 
2021) Ontology Graph Embeddings and ILP for Financial Forecasting. In: Inductive Logic 
Programming, Proceedings of the 30th International Conference:. 30th International 
Conference on Inductive Logic Programming, 25-27 Oct 2021 LNAI . Springer , GRC . (In 
Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Ontology Graph Embeddings and ILP for

Financial Forecasting

Can Erten Dimitar Kazakov

26 September 2021

Ontologies, financial forecasting, SEC financial reports, ILP,
unsupervised learning, graph embedding

Abstract

There is a history of hybrid machine learning approaches where the
result of an unsupervised learning algorithm is used to provide data an-
notation from which ILP can learn in the usual supervised manner [7, 8].
Here we consider the task of predicting the property of cointegration be-
tween the time series of stock price of two companies, which can be used
to implement a robust pair-trading strategy that can remain profitable
regardless of the overall direction in which the market evolves. We start
with an original FinTech ontology of relations between companies and
their managers, which we have previously extracted from SEC reports,
quarterly filings that are mandatory for all US companies. When com-
bined with stock price time series, these relations have been shown to help
find pairs of companies suitable to pair trading [3]. Here we use node2vec
embeddings to produce clusters of companies and managers, which are
then used as background predicates in addition to the relations linking
companies and staff present in the ontology, and the values of the target
predicate for a given time period. Progol [10] is used to learn from this
mixture of predicates combining numerical with structural relations of the
entities represented in the data set to reveal rules with predictive power.

1 Introduction

Financial forecasting is a broad discipline that includes the task of predicting
future movements of price and volume of trade of company stock and financial
products. This information can then be incorporated into profitable trading
strategies. One such strategy that does not depend on the economic cycles and
current market trends (bullish or bearish) is pair trading. This is a market-
neutral strategy that aims to identify pairs of companies which have a pre-
dictable, stationary, long term average price when combined in a very simple
portfolio in which each company is represented by a specified, optimal propor-
tion of the total value. Maintaining this optimal proportion of each company as

1



their prices fluctuate leads to selling the one on the rise and buying the one going
down in relative terms. As the long term average is expected to be steady, this
means a price trend reversal will happen over time, and the opposite trades will
be made. An investor using such strategy is guaranteed to make a profit with
each trade, provided the important property of stationary long term average
continues to hold.

Historically, this strategy was not widely known, but has now been imple-
mented in a number of trading tools. The suitability to pair trading of two
companies is determined through a numerical test of cointegration [6]. With
this test now available even to private individuals, the expected profit margins
are thought to have shrunk, and new sources of information have been sought
to forecast this desirable property in a more reliable manner. As the test is
computationally costly, and the number of tests needed grows as O(n2) with
the number of companies in hand, there is a lot to be gained if the number
of candidate pairs could be reduced. One such potential source of information
is the regular SEC reports filed by all US companies to report trades of their
stock by company staff, as well as any important changes in the company man-
agement. We have used these reports, which are usually grouped and archived
on a quarterly basis, to populate an ontology representing the relationships be-
tween companies and their senior managers. The result is a relatively simple
knowledge graph from which we can discover that two companies share certain
managers, among other things.

The idea of using non-numerical information for trading is not novel, and in
fact constitutes the basis of the so called fundamental trading strategies, which
look into the details of the company finances, assets, plans and the membership
of their senior management. However, there is no standard, well established way
to incorporate such knowledge into the day-to-day trades, and it can be argued
that the short-term movements of the market have little to do with the long
term viability of an investment. Nevertheless, we have considered a possible use
of our ontology for this purpose, namely, we hypothesised that if two companies
share directors or other senior staff that could lead to a flow of information that
would make it more likely for the two companies to meet the cointegration test.

We tested this hypothesis in a previous study [3] from which it transpired
that applying this criterion1 does increase the proportion of cointegrated compa-
nies in a statistically significant way. It would be quite common to find around
5% of randomly selected company pairs to be cointegrated, while after applying
this criterion their share may increase by a couple of percent or even double in
some cases. Overall, such handcrafted rules bring palpable benefits, but their
potential is still limited.

Since that study, we have taken our work in two directions. We have been
working on the use of an in-house learner from ontologies in description logic [1]
to automate the search for suitable ontology-based hypotheses. However, this
article focuses on another approach, namely, the use of graph embeddings as
produced by the node2vec algorithm [4] to extract important properties of the

1modified by a parameter setting a minimum threshold on the number of shared staff

2



graph nodes reflecting the content and topology of each local neighbourhood
in an unsupervised way. It is common to cluster the resulting node embed-
dings and visualise the results in order to discover similarity between nodes.
We have adopted the same approach here, using k-means clustering with a
hand-selected number of clusters (k = 20). The cluster membership was then
encoded as background knowledge of a Progol [10] learning task, where the
target predicate coint(Comp1,Comp2) represented whether the prices of two
companies are cointegrated or not for the period in question. In addition, we
make use of background predicates showing the affiliation of managers with
companies, keyperson(Company,Person), and the overall number of people
connected to a company, ccon(Company,PersonCount), resp. companies con-
nected to a person pcon(Person,CompanyCount). These are then used to de-
fine ccon2(Company,MinPersonCount) and pcon2(Person,MinCompanyCount)

checking the number of connections of companies or people against the threshold
value in their second attribute. We have also defined connect(Comp1,Comp2),
a predicate showing whether two companies share at least one person.

In our experiment, we select a list of companies at random, split it into two,
and use the first list to generate training pairs of companies (cointegrated vs
non-cointegrated), while the second list is used to generate test pairs in which
neither company appears in the training data. We then use Progol to learn
rules which are evaluated on unseen data. The result shows that the rules we
find have high predictive power and the pairs covered by them have a much
higher concentration of cointegrated pairs when compared to the unprocessed
test data.

2 Background

2.1 Financial Forecasting

There are clear incentives to attempt to forecast the price of financial assets. In
that strife, portfolios of assets are used to reduce risk. This can be done in two
ways. Diversifying the assets so they are not equally affected by adverse events
and spreading the investment across more companies to reduce the relative
importance of each one is one obvious approach. The other one is to use a small
portfolio, of as few as two companies whose movements are inter-related in a
particular way.

Correlated assets are those that tend to move together with statistical signif-
icance. The main cause for this is that companies (and markets) do not exist in
isolation. They trade with each other and compete for resources and markets.
Some assets are correlated because they are in the same sector (e.g. transport or
entertainment), or work with the same suppliers: if there is a drop in demand
for the same product, or a supplier is having problems, this will likely affect
companies across the sector.

3



2.2 Pair Trading

Pair trading is a market neutral trading strategy enabling traders to profit from
any market conditions through the use of cointegration. This is a test assessing
the long term relationship between time series [6].

Two companies satisfying the statistical test for cointegration can create a
portfolio which will have a stationary long term value even if the price of each
company does not result in a stationary time series, provided the portfolio is
regularly rebalanced to contain the same proportion of each stock. This amounts
to statistical arbitrage and convergence trading strategy where the profit from
the stock increasing in value is used to buy more of the stock going down in
relative terms.

2.3 Securities and Exchange Commission (SEC) Reports

The U.S. Securities and Exchange Commission (SEC) is an independent agency
for the United States federal government. It exists to protect investors, enforce
the law against market manipulation and facilitate capital formation.2 After
the Great Depression, Congress passed Securities Act of 1934, which created
SEC.

SEC requires the companies to file several different types of report on the
company’s activities and trades. They publish the formal specification document
that every company in the United States has to provide.

The reports are mainly company statements, annual, quarterly and monthly.
There are also reports to indicate an official statement or change of structure.
Of particular interest to us are reports where the company needs to declare
“corporate insiders,” employees trading (buying or selling) more than 10% of
the company’s shares. Forms 3, 4 and 5 provide the framework for reporting
insider trading information, where the company also discloses the title of the
individual, and any important position, such as director or officer. This can
be crucial information as it shows the staff member’s role within the company.
Their buying or selling can also be an indication of the company’s financial
performance.

The initial filing is on Form 3, which the insider must file within ten days
of becoming an officer, director or beneficial owner. Form 4 reports changes in
ownership within two business days. Form 5 is used to report any transactions
that should have been reported earlier on a Form 4 as a means of deferred
reporting.

SEC does not have an API, all the data is in strongly typed XML with the
schema that they publish. They also provide an index file on their server for
every report based on company name, period or type of report. We have built
a web crawler to download the forms based on the report type and period, and
we generate knowledge graphs from the downloaded data for SEC forms 3–5 to
represent links between companies and people.

2https://www.investor.gov/introduction-investing/investing-basics/role-sec

4



2.4 Ontologies

An ontology [9] is a structured database representing objects and their rela-
tions, known as individuals and roles in the field’s parlance. Ontologies are
formal representations of knowledge with well-defined semantics. An ontology
allows for the grouping of individuals into classes (aka concepts). Both con-
cepts and roles can form hierarchies, depending on the exact formalism used.
The use of standard dictionaries of concepts and relevant roles not only assists
the representation of domain knowledge, but also the easy integration of multi-
ple an ontology is equivalent to a set of Description Logic (DL) axioms, which
provides the semantics for query languages (such as SPARQL) and reasoners.
The storage unit is a triplet with fields known as subject, predicate and object.
These combine to a create a directed graph with entities represented by Unique
Resource Identifiers (URI). Machine learning algorithms specialised in the use
of DL to represent data and models also exist [9, 1].

2.5 Node2vec Embeddings

Graph Representation Learning is a relatively new field which allows one to
apply existing machine learning algorithms, such as CNN and RNN neural net-
works on graph data. In order to achieve that the graph need to be translated
to the vector space, and represented as a tensor. The data is being converted
from nodes and edges of graph information to semantic vector representations.

Node2vec is one such algorithm generating real-valued vector representations
of nodes on a graph [5]. Known as embeddings, such representations make it
possible to define similarity between any pair of nodes, and therefore permit the
use of a range of unsupervised machine learning approaches, such as clustering.
The cluster number can then be used as a label on the node, which is obtained
in an unsupervised way, but can be used as background knowledge to an ILP-
based supervised learning. The result is a hybrid learning approach resembling
some of our earlier work [8].

3 Methodology

3.1 Data Collection

The data used is from the SEC reports, which are available to download in XML
(XBRL) format. We have built an index parser to identify the available reports
for a period and given type, and then built a crawler to download the actual
report files. When all reports are downloaded, we apply an in-house custom
parser to the XBRL (XML with metadata and schema) file in order to generate
the ontology.

5



Figure 1: Knowledge graph sample

3.2 Data Analysis

After the data is parsed, it is stored in triplet form. This is then serialised as
n-triples to be imported into an RDF graph database and our own application
for analysis using the SPARQL query language [2]. A sample of the data is
shown in Figure 1.

This can be used to construct powerful SPARQL queries to extract infor-
mation from this representation, and use rich visualisation tools to see and
understand the data. A sample of such data visualisations is shown on Figure 2
and Figure 3.

3.3 Learning and Experiment Preparation

Each experiment is prepared by our metaprogramming application generating
Prolog/Progol source files. The steps that are followed each time are listed
below:

• Load the serialised ontology data;

• Run a query to select companies (background information);

• Run a query to select linked people with the company information (back-
ground information);

6



Figure 2: Ontology visualisation (part)

Figure 3: Ontology visualisation of a person represented by an URI

7



• Split the data into a training set and a test set;

• Run the cointegration test for all pairs of companies in the report for the
period in question to generate positive and negative examples;

• Run the node2vec algorithm on the data to generate node embeddings;

• Run k-means on the embeddings to obtain clusters (to be used as back-
ground knowledge);

• Generate a Progol source file from the background knowledge and target
predicate examples;

• Run Progol on the data.

4 Experiment Design and Results

In our experiment an ontology is generated from scratch to represent three
months’ worth of SEC reports. Only tabular SEC data is used, and the free
form text is ignored.3 We should clarify that at the moment, the only parts
of the SEC reports that we use are related to insider trading: ‘The federal
securities laws require certain individuals (such as officers, directors, and those
that hold more than 10% of any class of a company’s securities, together we’ll
call, “insiders”) to report purchases, sales, and holdings of their company’s
securities by filing Forms 3, 4, and 5.’4

The result of this is a graph with nodes representing either a company or a
person, and edges showing when a person is linked to a company. The algorithm
node2vec [4] is then used to generate an embedding for each of the graph nodes.
The embedding is a real valued vector of size set to 20. For the remaining
parameters the choice was: walk_length=16, num_walks=100, workers=2. All
node embeddings were then clustered using k-means with k = 20. (There is
no link between the dimensionality of the embedding and the choice for the
number of clusters.) The resulting clusters reflect the similarity between nodes
as a combination of two factors, homophily, i.e. sharing the same neighbourhood,
and structural equivalence, reflecting the role a node plays in the graph (e.g. a
‘hub’ node). The relative importance of either factor can be modified through
the choice of the parameter walk_length.

With these results in hand, we carried out an experiment with the purpose
of learning rules that would predicate the cointegration of two companies on
their membership in a given cluster, the number of connections to a person or
company, and the existence of people connected at the same time to a pair of
companies.

3The second author is supervising an ongoing MScRes project on extracting relations from
free text at the moment of writing.

4https://www.investor.gov/introduction-investing/investing-basics/glossary/forms-3-4-
and-5

8



Table 1: Dataset description
#of Training Companies 700
#of Test Companies 300
Positive Training Pairs 8,833
Negative Training Pairs 235,817
Positive Test Pairs 1,405
Negative Test Pairs 43,445

The experiment uses the knowledge graph generated from SEC reports for
Q3/2017. There is data on a total of 1948 companies for this period. Of these,
1000 companies were randomly selected, and given a 70% : 30% split. All
244,650 possible pairs formed by companies in the first set were earmarked as
training data, while all 44,850 pairs formed by companies in the remaining set
were used as test data. As for each company we also had the time series with
the movement of stock prices over the entire three-month period, it was possible
to apply a cointegration test to each pair of companies and label it as a positive
or negative example. After some experimentation, we opted for positive-only
learning for reasons of both speed and accuracy. This meant that in reality 8,833
training examples were used, all of them positive, which represented 3.61% of
the 244, 650 training pairs (see Fig. 1). The background predicates and mode
declarations used for learning are as follows:

:- modeh(1,coint(+company, +company))?

:- modeb(1,ccluster(+company,#int))?

:- modeb(1,ccon2(+company,#int))?

:- modeb(1,pcon2(+person,#int))?

:- modeb(1,connect(+company,+company))?

coint/2: Defines whether a pair of companies are cointegrated or not.

ccluster/2: Shows the cluster a company belongs to.

ccon2/2: The predicate succeeds if its first argument is a company with a
number of connections that is equal or greater than the number in the
predicate’s second argument. In other words, the predicate checks that a
company is connected to a certain minimum number of people. Expressed
as Prolog code:

ccon2(Company,Threshold):-

ccon(Company,NumberOfConnectedPeople),

NumberOfConnectedPeople >= Threshold.

pcon2/2: The predicate succeeds if its first argument is a person with a number
of connections that is equal or greater than the number in the predicate’s
second argument. In other words, the predicate checks that a person is

9



affiliated with a certain minimum number of companies. Expressed as
Prolog code:

pcon2(Person,Threshold):-

pcon(Person,NumberOfConnectionsToCompanies),

NumberOfConnectionsToCompanies >= Threshold.

connect/2: Defines whether a company is connected to another company via
at least one key person:

connect(CompA,CompB):-

keyperson(CompA,Person),

keyperson(CompB,Person),

CompA \= CompB.

We should note here that even the background predicates that define propo-
sitional properties, e.g. the cluster number, are based on relational data about
connections between graph nodes, while the remaining ones express a numerical
relation (‘≥’) summarising that relational data.

The result of learning is a list of clauses of the target predicate as shown in
Tables 2–3. The overall accuracy of the theory learned is 50.42% as shown in
Table 4, which is a very high result for such notoriously fickle data. The two
classes for this binary classifications are not equally represented in the test set,
as we wanted to stay faithful to the original purpose of this work, which is to
eliminate negative examples from the data while preserving as many positive
examples as possible. In this we succeed: 96.9% of the positive test examples are
accepted by the theory, while around half of the negative examples are rejected.
The resulting data sample, that is, the set of pairs accepted by the learned
definition of the target predicate, contains 5.78% of positive pairs or by 85%
more than the entire test set, where this percentage is 3.13%. This difference
are statistically significant, and of substantial practical value, as it reduces the
list of candidate cointegration pairs by half at almost no loss of ‘good’ pairs.

With the evaluation of the entire theory out of the way, we can look into
the quality of the individual rules listed in the two tables, which also show
the number of positive and negative test examples each of them covers, their
precision and whether that figure is statistically different from the distribution
of the entire test set. A two-tailed χ2 test was used for that purpose.

We have grouped the rules learned by Progol by their type for ease of read-
ing. First, we have nine rules only specifying the cluster membership of either
company in the pair (see top of Table 2). Intuitively, the rules appear under-
constrained, as it is unlikely that any company from a given cluster will be
cointegrated with all other companies. This intuition is supported by evidence
as when the rules are tested, they have large coverage but low precision (defined
as the proportion of true positives in all pairs selected by the rule). Even so,
some of the results show statistical significance at the α = .05 significance level
when compared with the 3.13% ratio of cointegrated pairs in the entire test set.

10



Table 2: Q3/2017 rules: results for which the χ2 test yields p ≤ .05 are in bold.

Rules pos neg
pos

pos+neg p-value

coint(A,B) :- ccluster(B,18). 102 2327 0.04 .0036
coint(A,B) :- ccluster(A,3). 145 1987 0.07 .0000
coint(A,B) :- ccluster(B,19). 102 2690 0.04 .0000
coint(A,B) :- ccluster(A,2). 71 2005 0.03 .4633
coint(A,B) :- ccluster(A,0). 77 2290 0.03 .7434
coint(A,B) :- ccluster(B,16). 81 1904 0.04 .0184
coint(A,B) :- ccluster(A,1). 218 1956 0.10 .0000
coint(A,B) :- ccluster(B,17). 101 2138 0.05 .0003
coint(A,B) :- ccluster(B,14). 79 1473 0.05 .0000
coint(A,B) :- ccluster(A,13), ccluster(B,15). 10 54 0.16 .0000
coint(A,B) :- ccluster(A,6), ccluster(B,13). 13 100 0.12 .0000
coint(A,B) :- ccluster(A,7), ccluster(B,13). 15 120 0.11 .0000
coint(A,B) :- ccluster(A,4), ccluster(B,12). 15 114 0.12 .0000
coint(A,B) :- ccluster(A,5), ccluster(B,12). 5 58 0.08 .0289
coint(A,B) :- ccluster(A,9), ccluster(B,12). 8 53 0.13 .0000
coint(A,B) :- ccluster(A,8), ccluster(B,12). 3 41 0.07 .1609
coint(A,B) :- ccluster(A,12), ccluster(B,13). 10 65 0.13 .0000
coint(A,B) :- ccluster(A,11), ccluster(B,12). 10 112 0.08 .0014
coint(A,B) :- ccluster(A,10), ccluster(B,12). 3 44 0.06 .2013
coint(A,B) :- ccluster(A,7), ccluster(B,12). 14 121 0.10 .0000
coint(A,B) :- ccluster(A,4), ccluster(B,7). 19 238 0.07 .0001
coint(A,B) :- ccluster(A,7), ccluster(B,9). 8 121 0.06 .0460
coint(A,B) :- ccluster(A,7), ccluster(B,8). 5 115 0.04 .5163
coint(A,B) :- ccluster(A,7), ccluster(B,11). 16 123 0.12 .0001
coint(A,B) :- ccluster(A,7), ccluster(B,15). 4 107 0.04 .7761
coint(A,B) :- ccluster(A,7), ccluster(B,10). 8 98 0.08 .0093
coint(A,B) :- ccluster(A,5), ccluster(B,7). 13 112 0.10 .0000
coint(A,B) :- ccluster(A,6), ccluster(B,7). 23 191 0.11 .0000
coint(A,B) :- ccluster(A,4), ccluster(B,6). 22 143 0.13 .0000
coint(A,B) :- ccluster(A,4), ccluster(B,8). 5 133 0.04 .7412
coint(A,B) :- ccluster(A,4), ccluster(B,9). 6 116 0.05 .2586
coint(A,B) :- ccluster(A,4), ccluster(B,13). 18 118 0.13 .0000
coint(A,B) :- ccluster(A,4), ccluster(B,15). 11 105 0.09 .0001
coint(A,B) :- ccluster(A,4), ccluster(B,5). 14 143 0.09 .0000
coint(A,B) :- ccluster(A,4), ccluster(B,10). 6 101 0.06 .1425
coint(A,B) :- ccluster(A,4), ccluster(B,11). 17 124 0.12 .0000
coint(A,B) :- ccluster(A,5), ccluster(B,6). 9 68 0.12 .0000
coint(A,B) :- ccluster(A,6), ccluster(B,9). 10 95 0.10 .0002
coint(A,B) :- ccluster(A,6), ccluster(B,11). 9 104 0.08 .0033
coint(A,B) :- ccluster(A,6), ccluster(B,12). 14 101 0.12 .0000
coint(A,B) :- ccluster(A,6), ccluster(B,10). 10 83 0.11 .0000
coint(A,B) :- ccluster(A,9), ccluster(B,13). 5 61 0.08 .0386
coint(A,B) :- ccluster(A,11), ccluster(B,13). 13 114 0.10 .0000
coint(A,B) :- ccluster(A,5), ccluster(B,13). 4 63 0.06 .1830
coint(A,B) :- ccluster(A,8), ccluster(B,13). 3 45 0.06 .2155
coint(A,B) :- ccluster(A,8), ccluster(B,11). 4 40 0.09 .0235
coint(A,B) :- ccluster(A,8), ccluster(B,9). 2 48 0.04 .7250
coint(A,B) :- ccluster(A,8), ccluster(B,10). 1 39 0.03 .8184

11



Table 3: Q3/2017 rules (cont.)

Rules pos neg
pos

pos+neg p-value

coint(A,B) :- ccluster(A,10), ccluster(B,13). 5 44 0.10 .0046
coint(A,B) :- ccluster(A,5), ccluster(B,15). 9 43 0.17 .0000
coint(A,B) :- ccluster(A,5), ccluster(B,10). 6 46 0.12 .0005
coint(A,B) :- ccluster(A,5), ccluster(B,9). 6 53 0.10 .0020
coint(A,B) :- ccluster(A,5), ccluster(B,11). 9 52 0.15 .0000
coint(A,B) :- ccluster(A,9), ccluster(B,11). 7 57 0.11 .0003
coint(A,B) :- ccluster(A,9), ccluster(B,15). 3 58 0.05 .4239
coint(A,B) :- ccluster(A,9), ccluster(B,10). 2 53 0.04 .8303
coint(A,B) :- ccluster(A,8), ccluster(B,15). 4 34 0.11 .0090
coint(A,B) :- ccluster(A,14), ccluster(B,15). 4 84 0.05 .4474
coint(A,B) :- ccluster(A,11), ccluster(B,15). 10 101 0.09 .0004
coint(A,B) :- ccluster(A,10), ccluster(B,11). 6 45 0.12 .0004
coint(A,B) :- ccluster(A,5), ccluster(B,8). 4 56 0.07 .1166
coint(A,B) :- ccluster(A,10), ccluster(B,10). 1 35 0.03 .9027
coint(A,B) :- ccluster(A,10), ccluster(B,15). 5 41 0.11 .0026
coint(A,B) :- ccluster(A,6), ccluster(B,15). 7 93 0.07 .0268
coint(A,B) :- ccluster(B,15), ccon2(A,4). 40 507 0.07 .0000
coint(A,B) :- ccluster(A,6), ccon2(A,2), ccon2(B,4). 26 694 0.04 .4652
coint(A,B) :- ccluster(A,7), ccluster(B,7), ccon2(B,3). 8 74 0.10 .0006
coint(A,B) :- ccluster(A,6), ccluster(B,6), ccon2(A,4). 0 60 0.00 .1636
coint(A,B) :- ccluster(B,13), ccon2(A,310). 4 25 0.14 .0010
coint(A,B) :- ccluster(A,10), ccon2(B,310). 3 7 0.30 .0000
coint(A,B) :- ccluster(A,13), ccluster(B,13), ccon2(A,5). 4 62 0.06 .1727
coint(A,B) :- ccluster(A,5), ccluster(B,5), ccon2(B,4). 0 34 0.00 .2944
coint(A,B) :- ccluster(A,9), ccluster(B,9), ccon2(B,2). 0 40 0.00 .2554
coint(A,B) :- ccluster(A,15), ccluster(B,15), ccon2(B,2). 0 37 0.00 .2740

Table 4: Test results
Q3/2017

A ¬A Total
P 1,361 22,192 23,553

¬P 44 21,253 21,297
Total 1,405 43,445 44,850

Accuracy 50.42% ± 0.24%
χ2 probability 0.0000

12



The second and most numerous type of rule is one that specifies the clusters
each of the two companies belong to. In one case, the rule asks for the two com-
panies to belong to the same cluster, namely, cluster 10. Most rules however
specify two different clusters. Some of these rules substantially outperform the
default strategy of selecting pairs at random, e.g. choosing pairs combining clus-
ters 13 and 15 to select pairs from the unseen test data increases the proportion
of cointegrated pairs 5-fold. It is tempting to find out a common denominator
for all companies in each cluster, but our data does not contain additional fea-
tures that can be used for that purpose. Non-systematic manual inspection of
the sectors to which some of the companies belong did not show any obvious
patterns either nor can we see any substantial number of connections between
the two clusters when we look at the topology of the knowledge graph for the
nodes in clusters 13 and 15 (Figure 4). It is nevertheless the case that the ma-
jority of the rules do make use of the cluster labels, and most perform better
than random in a statistically significant way even when their results are taken
out of context, on their own. It is also to be noted that once we started using
node embedding based cluster labels as background predicates, no rule based
on the number of connections between the two companies in the pair has been
learned, despite the positive results such rules showed in our previous research
[3].

Finally, we should mention the rules setting a minimum threshold for the
number of people connected to one or both companies. When the constraint
appears in conjunction with the previous type of rule, the result is rules with
zero positive examples covered on the test data, which suggests these rules are
likely to overfit the data.

5 Conclusion

The results show that the rules obtained are potentially interpretable, and that
they have genuine predictive power. We conjecture that the results will further
improve as we increase the data set, something we have tried to limit here to
keep the complexity of the learning task under control. We shall also consider
transferring the learning task on to a concurrent learner that scales up better
[1]. It is important to note the hybrid nature of the approach, in which an
ontology is populated with data extracted from company reports through text
processing, then the embeddings for the graph nodes are generated, and clus-
tered, all in an unsupervised manner. The cluster labels are used as background
knowledge alongside other relations from the graph, and classic supervised ILP
learning is applied to obtain the final results. So, we are dealing with a hybrid
learning approach for two separate reasons, because it combines unsupervised
with supervised learning, and as logic facts and relations are combined with the
output of numerical computations based on time series. This is clearly a pow-
erful and promising novel approach, and our future work will focus on scaling
up the data set, and analysing the results with domain experts with the aim of
revealing additional salient properties and relations to the range of background

13



Figure 4: Knowledge graph subset containing clusters 13 and 15 (red vs blue)

predicates in order to allow for ever more accurate and revealing hypotheses to
be learned.

References

[1] Algahtani, E., Kazakov, D.: Conner: A concurrent ILP learner in descrip-
tion logic. In: Proc. of the 29th International Conf. on Inductive Logic
Programming (2020)

[2] DuCharme, B.: Learning SPARQL. O’Reilly Media, second edn. (2013)

[3] Erten, C., Chotai, N., Kazakov, D.: Pair trading with an ontology of SEC
financial reports. In: The 2020 IEEE Symposium Series on Computational
Intelligence (2020)

[4] Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks.
In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD) (2016)

[5] Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks.
In: KDD (2016)

[6] Johansen, S.: Statistical analysis of cointegration vectors. Jour-
nal of Economic Dynamics and Control 12(2), 231–254 (1988).

14



https://doi.org/https://doi.org/10.1016/0165-1889(88)90041-3,
https://www.sciencedirect.com/science/article/pii/0165188988900413

[7] Kazakov, D.: Achievements and prospects of learning word morphology
with inductive logic programming. In: Cussens, J., Dzeroski, S. (eds.)
Learning Language in Logic, pp. 89–109. LNCS 1925, Springer (2000)

[8] Kazakov, D., Manandhar, S.: Unsupervised learning of word
segmentation rules with genetic algorithms and inductive
logic programming. Mach. Learn. 43(1/2), 121–162 (2001),
http://dblp.uni-trier.de/db/journals/ml/ml43.html#KazakovM01

[9] Lehmann, J., Völker, J.: An introduction to ontology learning. Perspectives
on Ontology Learning 18, ix–xvi (01 2014)

[10] Muggleton, S.: Inverse Entailment and Progol. New Generation Comput-
ing, Special issue on Inductive Logic Programming 13(3-4), 245–286 (1995),
citeseer.nj.nec.com/muggleton95inverse.html

15


