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Abstract. Agent-based simulation is increasingly being used to model
social phenomena involving large numbers of agents. However, existing
agent-based simulation platforms severely limit the kinds of the social
phenomena that can modeled, as they do not support large scale simula-
tions involving agents with complex behaviors. In this paper, we present
a scalable agent-based simulation framework that supports modeling of
complex social phenomena. The framework integrates a new simulation
platform that exploits distributed computer architectures, with an exten-
sion of a multi-agent programming technology that allows development
of complex deliberative agents. To show the scalability of our framework,
we briefly describe its application to the development of a model of the
spread of COVID-19 involving complex deliberative agents in the US
state of Virginia.

Keywords: Distributed simulation · Agent-based simulation · Social
simulation

1 Introduction

Social simulation [22] is increasingly being used to study complex social phenom-
ena such as the evolution of economic inequality, environmental pollution, sea-
sonal migrations, spreading of diseases, traffic, etc., and to train professionals
such as police and fire brigades when confronted with incidents involving a large
number of people. A key approach to studying such social phenomena is agent-
based modeling and simulation. State-of-the-art agent-based simulation platforms
are capable of supporting the synchronized execution of large numbers of agents
by exploiting the computing power of distributed computer architectures such
as computing grids. However, these platforms support only very simple agent
behavior models, which severely limits the kinds of social phenomena that can
be modeled [18,21,32]. On the other hand, existing multi-agent programming lan-
guages support the high-level social and cognitive concepts necessary to model the
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complex agent behaviors required for social simulations. However, these multi-
agent programming languages and platforms are generally not designed to sup-
port the synchronized distributed execution of large numbers of agents.

In this paper, we present a novel simulation framework for the distributed
simulation of large-scale multi-agent systems consisting of intelligent autonomous
agents that can perform complex tasks such as sensing, reasoning, and planning.
To create this framework, we have developed a new discrete time distributed
agent-based simulation platform called PanSim, and Sim-2APL, an extension to
the 2APL Java-based multi-agent programming library that provides support for
the development of agent-based simulations.1 Sim-2APL supports the implemen-
tation of intelligent autonomous agents and multi-agent systems in terms of high-
level social and cognitive concepts. PanSim provides scalability by distributing
the execution of individual Sim-2APL agent programs over multiple computing
resources in a synchronized manner in order to scale the execution of large-scale
agent-based simulations. We present a synchronized execution model and state
some minimal constraints on the use of Sim-2APL necessary to allow integration
with PanSim and ensure the repeatability of simulations.

In order to demonstrate the applicability and scalability of the PanSim +
Sim-2APL simulation framework, we report on experiments involving an agent-
based simulation of the spread of COVID-19 in seven counties in the US state
of Virginia. The input to the simulation consists of a synthetic population with
realistic demographics, weekly activity schedules, and activity locations drawn
from real location data. In the chosen counties, the number of individuals ranges
from 20k to 180k and the number of weekly visits to locations ranges from
680k to about 6 million. Each individual in the synthetic population is rep-
resented by a Sim-2APL agent which reasons about whether to comply with
non-pharmaceutical interventions such as mask wearing and social distancing
that were introduced in Virginia between March and July 2020. In the current
paper, we focus on the engineering of the PanSim + Sim-2APL framework, and
we refer the reader to a companion paper for details of the simulation model [17].

Organization. The rest of the paper is organized as follows: In Sect. 2 we
discusses related work on large-scale simulation with complex agent models.
Section 3 and Sect. 4 present the design of PanSim and Sim-2APL respectively.
Section 5 describes an exemplar simulation that simulates COVID-19 epidemic
evolution jointly with a 2APL behavior model that we use to study the scaling
properties of PanSim + Sim-2APL. Section 6 presents the results of the scaling
experiments. Finally in Sect. 7 we end with concluding remarks.

2 Related Work

A number of platforms have been developed to address the challenges of scaling
simulations. Notable successes have been obtained by exploiting domain seman-
tics [4,6], or by using simplified models of agents. In the context of epidemic
1 Source code for PanSim is available at https://github.com/parantapa/pansim, and

that for Sim-2APL is available at https://bitbucket.org/goldenagents/sim2apl.
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simulations, for instance, agent behavior is often characterized only by a simple
finite state machine which represents the progression of the disease. Bhatele et
al. [5] were able to demonstrate an epidemic simulation scaling up to the size of
the US population, which computed each simulated day in 57.8 ms on 655,360
cores of the Blue Waters supercomputer. The proposed simulator was heavily
optimized for the particular application and architecture, and the agents did not
model any complex cognitive behavior.

In [25] the authors presented an agent based model for epidemic simulation
using a synthetic population of agents representing the people in the City of
Chicago. Like the current work, this system created a realistic synthetic popu-
lation of the city, and used the Repast ABM framework to create a distributed
memory simulation to run on HPC systems. The CityCOVID simulator [14] also
presented a similar system targeted to run on HPC systems. Similar to our work
the authors used a realistic synthetic population and contact network, and ran a
detailed SEIR like COVID-19 disease model to understand the disease’s impact.
However, in contrast to our study the agent behavior models in both of these
systems is much simpler and doesn’t capture the complexity of human decision
making in presence of every varying injunctive and descriptive norms.

MATSim-Episim [29] is also a similar simulation platform, in that uses a
contact network generated using a mobility model and simulates progressing
of a SEIR like disease models on this network. Unlike the current system this
platform doesn’t support distributed memory simulations, and also uses simple
non-cognitive models for agent behavior modeling.

On the other hand, simulation platforms that support more complex agent
models are typically designed for ease of development, maintenance, and post hoc
analytics. For example, Barrett et al. [3] developed a large-scale disaster simu-
lation with a database-centric simulation architecture where different modules
compute various aspects of the simulation, such as transportation, communica-
tion, health states, behavioral choices, etc. The architecture allowed these mod-
ules to be separated and developed independently by multiple developers using
different programming languages, data structures, and parallelization schemes,
and to be plugged in and out as needed. The database-centric interaction between
modules also results in all intermediate states being stored systematically, which
facilitates debugging and later analysis. While this approach allows rapid devel-
opment and complex representations of agents, there is a price to be paid in
terms of scalability. The simulation needed over 16 h to compute 100 time steps
with ∼700,000 agents.

Other approaches to scaling include dynamically varying the resolution of
the simulation [30], and developing hybrid simulations that allow a mixture of
simple and more complex agent models [33].

Simulating individual agents whose behaviors depend on their observations
and internal states requires a decision making component that allows them
to reason, decide and plan their actions. Various theories of decision-making
have been proposed, from rational decision theories and BDI theory [15] to
more psychologically-based approaches such as the Theory of Planned Behavior
(TPB) [23].
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These theories propose various conceptualizations of decision-making behav-
ior in terms of motivational, informational and deontic attitudes, together with
a decision rule that determines which of an agent’s available actions will be
selected based on the agent’s attitudes [10].

To facilitate the development of autonomous agents based on these behav-
ioral theories, a number of dedicated programming languages have been pro-
posed where the agents’ decisions are directed by their beliefs, goals, plans,
and actions [7,8]. For example, Bordini and Hübner [9] show how complex BDI
agents programmed in Jason can be used for social simulation. In their approach,
the agents’ environment is implemented by extending a predefined Java class.
Caballero et al. [11] also implement agents in Jason, but use the simulation plat-
form Mason to simulate the environment. In both these approaches, the number
of agents that can be simulated is limited by the number of threads available in
the JVM.

COMOKIT [19] is a recent COVID-19 disease simulation system which simi-
lar to the current study also uses a realistic synthetic population on top of which
the epidemic progresses. This system is built using the GAMA [34] simulation
environment which support BDI agents. However, unlike the current study the
scalability of this system is limited to a single compute node.

For a comprehensive survey of the use of BDI agents and complex reasoning
in social simulations we refer the reader to the paper by Adam and Goudou [1].
Here, we note only that Adam and Gaudou identify scalability as a key issue
limiting the use of BDI agents in simulations, and state that the distribution of
a simulator over a network is “a very difficult problem that is far from being
solved” [1, p. 228].

3 PanSim Design and Implementation

The current framework is quite broadly applicable to social contagion-like phe-
nomena, such as the spread of behaviors, information, technologies, infectious
diseases, etc. In this section, we describe how PanSim is structured to allow
scalable computation of contagions through a population.

PanSim is a multi-contagion simulator, where two contagion processes
progress concurrently on top of a dynamic contact network. In PanSim’s design
we assume that one of these contagion processes is a simple contagion, that
is it can be fully described declaratively using a SIR like model [31]. PanSim
provides its own configuration language to describe this simple contagion. On
the other hand, very few assumptions are made about the nature of the other
contagion process, which is assumed to be complex.2 Authors of PanSim simu-
lations are expected to provide custom code that encapsulates the progression
and transmission logic for the complex contagion.

PanSim is a discrete time agent-based simulation framework. A simulation
in PanSim progresses in discrete timesteps, and within a given timestep the
2 Here we use the terms simple and complex contagions in their literal sense and not

specifically in the sense developed and popularized in [13].
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simulation progresses in multiple sequential phases. However, within any given
phase computations corresponding to different agents progresses concurrently.

The dynamic contact network in PanSim is specified in terms of a temporal
agent-location bipartite graph. In PanSim agents interact with each other at
specific locations. The locations visited by a given agent can change from one
timestep to the next. Agents that are at the same location at the same time come
into contact with each other. The contact network of agents thus formed is the
unipartite projection (on the agent set) of the dynamic bipartite agent-location
network.

In the following, to make the presentation more concrete, we describe the
implementation of a behavior-aware COVID-19 simulation as a running exam-
ple. Full details of the simulation can be found in a companion paper [17]. In
this scenario, a COVID-19 disease model serves as the simple contagion, while a
Sim-2APL-based socio-psychological behavior model takes the role of the com-
plex contagion. For the rest of this paper we use the terms disease model and
simple contagion model interchangeably. Similarly, we also use the terms socio-
psychological model and complex contagion model interchangeably.

An agent’s state comprises of two parts, its disease state and its socio-
psychological state. Further, behavior exhibited by the agents is categorized into
two classes: a) disease modifier behaviors and b) visible attribute behaviors. Dis-
ease modifier behaviors—such as wearing masks, social distancing, etc.—modify
disease transmission properties, while visible attribute behaviors—such as dis-
playing religious or political affiliations or symptoms of the disease—are used to
indicate the agent’s stance and influence other agents.

In this model, during a given simulation timestep the following steps are exe-
cuted. First, every agent in the system, based on their current socio-psychological
state, ‘decides’ which locations to visit, as well as how to ‘behave’ during each
of those visits. These behaviors include disease modifier behaviors, as well as
visible attribute behaviors. Second, when visiting a location the agents come
into contact with each other. During this step, disease transmission takes place
from infectious to susceptible agents. Also, the agents interact with other agents
and ‘see’ their visible attributes. Finally, for every individual agent their dis-
ease state progresses, and they update their socio-psychological state based on
their current disease state as well as their observations of other agent’s visible
attributes that they came into contact with.

3.1 Structure of a PanSim Simulation

From the perspective of PanSim, the structure of a PanSim simulation consists of
four major modules: the socio-psychological module, the social interaction mod-
ule, the disease transmission module, and disease progression module. Figure 1
shows the overall organizations of the modules and their communication patterns.

The socio-psychological module and the social interaction module together
represent the complex contagion component of a PanSim simulation, while the
disease transmission and progression modules together represent the simple con-
tagion component of the simulation. Another way of organizing the modules is
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Fig. 1. Structure of a PanSim simulation

to think of them from the perspective of the dynamic agent-location bipartite
graph that serves as network on which both contagions progress. In this view, the
socio-psychological and disease progression models encapsulate the computation
that happens on behalf of every agent/individual in the simulation, while the
social interaction and disease transmission modules encapsulate the computation
that happens on behalf of every location in the system.

To write a custom PanSim simulation, the simulation authors only need
to provide the code for the socio-psychological behavior module. The rest of
modules are provided by PanSim itself. For example, in the exemplar prob-
lem described above, the socio-psychological module is written using the Java
Sim-2APL library (described in Sect. 4). PanSim provides a generic language-
agnostic interface, written using Apache Arrow3, that can be used to write the
socio-psychological module in most popular programming languages, including
C, C++, Java, Python, and R.

3.2 Formal Description of a PanSim Simulation

Here we formally describe the structure of a PanSim simulation. A stochastic
discrete time simulation can be written as a stochastic function F : S → S
that, given the state of a system at timestep t, st ∈ S, computes the next state
of the system st+1 = F (st). The whole simulation can then be formulated as
an iterated application of the simulation function F , starting from the initial
state s0.

To use distributed system hardware, it is important to split this monolithic
function into parts that can be executed in parallel, with intermediate coordi-
nation. For this purpose we consider the following decomposition of the system
state at timestep t, st = (st1, s

t
2, . . . , s

t
n). Here, sti is the state of the ith agent

3 https://arrow.apache.org/.

https://arrow.apache.org/
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at time t. As described above, PanSim implements a two contagion model, that
we refer to as the socio-psychological model and the disease model. The state of
the agent then is split as sti = (bti, d

t
i) where bti and dti are the state of the agent

corresponding to the socio-psychological and disease models. Equations Eqs. 1–5
show the functional decomposition that is used in PanSim to compute the next
state of an agent given the current state.

(Lt
i, τ

t
i , v

t
i ,m

t
i) = ν(bti, d

t
i) (1)

Δbti =
∑

j;j �=i

∑

l∈Lt
i∩Lt

j

β
(
vt
i(l), v

t
j(l), τ

t
i (l), τ

t
j (l), l

)
(2)

Δdti =
∑

j;j �=i

∑

l∈Lt
i∩Lt

j

ρ
(
dti, d

t
j , τ

t
i (l), τ

t
j (l),m

t
i(l),m

t
j(l), l

)
(3)

dt+1
i = σ(dti,Δdti) (4)

bt+1
i = γ(bti,Δbti, d

t+1) (5)

First, as part of the socio-psychological model, the locations to be visited by
the agent (Lt

i), the time duration of the visits (τ t
i ), the visual attributes displayed

by the agent during the visits (vt
i), and the disease modifier behaviors observed

by the agent (mt
i) are computed. In the formal model the socio-psychological

model is represented by the function ν() (Eq. 1). Second, for each pair of agents
visiting the same location, the social interaction updates, Δbti, and disease trans-
mission updates, Δdti, are computed using the interaction model β() (Eq. 2), and
disease transmission model ρ() (Eq. 3) respectively. Third, agent’s disease state is
updated to dt+1

i using the disease progression model σ(), based on their current
disease state dti and disease transmission update Δdti (Eq. 4). Finally, the agents
socio-psychological state is updated to bt+1

i using the socio-psychological update
model γ, based on their current socio-psychological state bti, their interaction
updates Δbti, as well as their updated disease state dt+1

i (Eq. 5).
Note, we intentionally do not describe the domain of the state and update

variables, bti, Δbti, etc. They can be modeled using a variety of structures that
support the required operations. In the experiments shown below, they are imple-
mented using real-valued vectors of appropriate lengths.

In classical multi agent AI system formulations, the agents in the system
directly transform the global system state. Influence/Reaction model (IRM) [28]
was proposed as a framework to address the practical issues arising from trans-
forming of the global system state, such as: ordering of these transformations,
handling conflicts in transformations, and parallelization of this global write pro-
cess. This idea was further developed for simulation of multi agent systems in [26]
and [27]. In the IRM framework agents do not directly transform the system. They
only ‘influence’ the system at a micro level. The system/environment accumulates
to all these micro level influences and produces a global macro level ‘reaction’.

Due to the generic and very high level semantics of the IRM formulation,
the formalism presented above can be seen as a special case implementation of
the IRM framework. At a high level, location visits generated by agents can
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be thought of as influences, while the rest of the process can be seen as the
system reaction. The contribution of the above formalism, beyond IRM, is in
decomposing the monolithic reaction into pieces that can be used to support
distributed parallelism.

3.3 Declarative Simple Contagion Model

In PanSim the simple contagion’s definition is written in a TOML4-based
domain-specific language. Table 1 shows the simple contagion model (a COVID-
19 disease model) used for the scaling studies described later in this paper. At
its core the model is a SEIAR model with five disease states: susceptible (succ),
exposed (expo), infected symptomatic (isymp), infected asymptomatic (iasymp)
and recovered (recov).

Disease transmission happens when a susceptible individual (susceptibility
> 0) comes in contact with an infectious individual (infectivity > 0). The prob-
ability of transmission is defined in terms of unit interaction times, specified in
the configuration in seconds. If an individual with susceptibility α comes in con-
tact with an individual with infectivity β, for unit time, then the probability of
disease transmission is given by α × β. In the given example (Table 1), if a sus-
ceptible individual is in contact with an infectious (symptomatic) individual for
300 s, and both have baseline behaviors, then the probability of the susceptible
individual getting infected is 4.81 × 10−5.

Table 1. Simple contagion model (Covid-19 disease model)

Category Parameter Value

unit time 300.0

states [succ, expo, isymp, iasymp, recov]

behaviors [base, mask, sdist, mask sdist]

exposed state expo

susceptibility succ 1

infectivity isymp 4.81e-05

iasymp 2.40e-05

progression expo {isymp = 0.6, iasymp = 0.4}
isymp {recov = 1.0}
iasymp {recov = 1.0}

dwell time expo {isymp = dist1, iasymp = dist1}
isymp {recov = dist2}
iasymp {recov = dist2}

distribution dist1 {dist = fixed, value = 6}
dist2 {dist = fixed value = 14}

behavior modifier base {base = 1.0, mask = 0.5, sdist = 0.5, mask sdist = 0.25}
mask {base = 0.5, mask = 0.25, sdist = 0.25, mask sdist = 0.15625}
sdist {base = 0.5, mask = 0.25, sdist = 0.25, mask sdist = 0.15625}
mask sdist {base = 0.25, mask = 0.15625, sdist = 0.15625, mask sdist =

3.906e-3}

4 https://github.com/toml-lang/toml.

https://github.com/toml-lang/toml
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Disease transmission probability is further affected by disease modifier behav-
iors. For example in the configuration shown in Table 1, four disease modifier
behaviors are defined: baseline (base), wearing masks (mask), social distancing
(sdist) and wearing masks as well as social distancing (mask sdist). If in the
above example a susceptible individual wearing masks interacts with an infec-
tious (symptomatic) individual wearing masks and social distancing, for 300 s,
then the probability of disease transmission for this case is given by 7.51×10−6.

An individual with a given disease state may move to a different disease
state, based on the progression of the disease inside the individual. In the given
example, three progressions are defined. An individual in the exposed state will
move to one of infectious states. Further there is a time—measured in simulation
timesteps, specified in days—after which the progression to a different state
occurs. In the given example (Table 1), infected individuals move to recovered
state after 14 simulation timesteps (or 14 days).

Some of the parameters used fix values in the model come from COVID-19-
related information shared by public health agencies, such as CDC [12]. The
rest of the parameters are obtained by calibration to data. The procedure for
calibration and details about how the model was arrived at can be found in our
companion paper [17].

3.4 Distributed Software System Implementation

PanSim is a MPI based distributed memory application that is implemented in
a mix of Python and C++. In PanSim a Python/C++ process (MPI rank) runs
on each CPU core available. If the socio-psychological module is not written
in Python, as is the case for the current study, then the socio-psychological
module is run as a separate process. The socio-psychological processes share the

Fig. 2. Partitioning of agents/individuals and locations for distributed processing on
PanSim.
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CPU cores with the PanSim processes5. In this scenario, data is shared between
PanSim processes and the socio-psychological module processes using Apache
Arrow specifications.

On PanSim the two contagions progress over a dynamic agent-location bipar-
tite graph. To be able to utilize distributed computing hardware, the nodes in
the agent-location bipartite graph are partitioned across the MPI ranks. Figure 2
shows the overall partitioning strategy. To partition the graph evenly across the
MPI ranks while keeping the cross-rank edges at a minimum, we use a two-step
greedy process. In the first stage, the locations in the bipartite graph are sorted
based on their maximum indegree. Next, the locations are assigned to the MPI
ranks in a round robin manner. Finally the agents are assigned to the rank of
the location that they are likely to visit the most frequently, which in most cases
is their home location6.

PanSim uses a bulk synchronous parallel design [20]. A PanSim simulation
progresses in discrete timesteps. Within a timestep the execution progresses in
five distinct phases, as described formally in Sect. 3.2. Figure 3 shows the differ-
ent phases of computation of a PanSim simulation for a single timestep. First, in
the socio-psychological decision phase (Eq. 1), every agent decides the locations
to visit, and how to behave during those visits. This is followed by data exchange
among MPI ranks to transfer information to the rank corresponding to the loca-
tion of the visits. Second, in the social interaction phase (Eq. 2), the interactions

Fig. 3. Different phases of computation in a single timestep of a PanSim simulation.

5 To ensure that the socio-psychological module processes and PanSim processes don’t
compete for CPU resources we use MPI implementation specific configuration to
make PanSim processes sleep during the execution of the socio-psychological module.
This configuration trades of some performance for ease of programming.

6 We experimented with using Metis and ParMetis [24] for this partitioning. However,
we found that our simple approach was much faster and produced adequately good
partitions.
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of the individuals at a every location is computed. Third, in the disease trans-
mission phase (Eq. 3), the probability of susceptible agents getting infected from
visits is computed. After the third phase, data is again exchanged among the
MPI ranks to send the social interaction and transmission updates back to the
agents they correspond to. Fourth, in the disease transmission phase (Eq. 4), the
disease state of the agent is updated based on the transmission and progres-
sion models. Finally, in the socio-psychological belief update phase (Eq. 5), the
socio-psychological agent state is updated based on the social interaction and
the updated disease state of the agent.

As shown in Fig. 3, the first, fourth, and fifth phases of the simulation are
collectively referred to as the individual phases. The computation of these phases
can progress concurrently for every agent. Similarly, the second and third phases
are location specific and can be executed concurrently for every location.

4 Sim-2APL

Sim-2APL is an extension of the agent programming library Java-2APL [16]
(2APL) which supports the development of complex reasoning agents for large-
scale simulations. 2APL defines the concepts of beliefs, goals, plans, and reason-
ing rules as Java interfaces, and dictates the interaction between these interfaces.
In 2APL, the Context captures the agent’s information or beliefs, the Triggers
capture events or goals the agent may react to, the Plans capture specific parts
of behavior that agents can perform, and the Plan Schemes match triggers to
a suitable plan to be executed. An agent’s behavior is generated through the
application of plan schemes to triggers. The execution of an agent is defined
in terms of pre-programmed execution steps, which are captured in the agent’s
deliberation cycle. The steps in the deliberation cycle allow plan schemes to be
applied in response to different types of triggers (see [16] for more details on
2APL).

In agent-based simulations, agents sense the environment and act upon it.
From the point of view of Sim-2APL, PanSim acts as the environment in which
agents sense and act. However, to allow the agents to effectively act and interact
in the environment, the action execution and deliberation cycle of 2APL must
be modified. In 2APL, the deliberation cycle of an agent is rescheduled as soon
as it ends. This means agents are executed continuously and independently, and
an agent does not have to wait for all other agents to finish their deliberation
cycle before acting. As a result, one agent may perform several deliberation
cycles – and thus act in the environment several times – while another agent is
still computing its first deliberation cycle. While this approach is appropriate
for many applications, it does not guarantee a synchronized execution of the
agents, which in turn may make simulations not repeatable. To address this, we
modified 2APL in two ways: first, the execution of agent actions is delegated
to the environment; second, we constrain the way agents are scheduled and
executed.
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Action Execution. In 2APL, the external actions in a plan are executed
directly through Java method calls. This means that agents have full control
over when actions are executed. However, many simulation platforms, including
PanSim, do not allow agents to change the state of the environment directly,
but rather update the state of the environment by calculating the subsequent
simulation state from the joint set of all agent actions. For example, in PanSim
this is represented by the stochastic function F in Sect. 3.2. Therefore, in the
framework, the execution of external actions is delegated to the environment.
In addition, we require that each plan executes at most one external action
per deliberation cycle.7 This is achieved by modifying the 2APL Plan interface
so that its execute() method (void in 2APL) returns to the environment an
identifier for the intended action that otherwise would be performed directly
through a method call. When actions are delegated to the PanSim environment,
the identifier is the tuple (Lt

i, τ
t
i , ε

t
i,m

t
i) from Eq. 1.

Agent Scheduling. As explained above, many simulation platforms require
agent execution to be synchronized to discrete-time steps. In Sim-2APL, discrete-
time synchronization of agents is achieved using three interfaces: StepExecutor,
StepGenerator, and EnvironmentInterface, the interaction of which is visu-
alized in Fig. 4. The StepExecutor interface defines the method doStep, which
is responsible for making each agent perform a single time step (deliberation
cycle), and a method reschedule, called by each agent to reschedule its deliber-
ation cycle for the subsequent time step. The StepGenerator interface specifies
how execution time alternates between the StepExecutor and the environment
responsible for storing and advancing the simulation state. This interface waits
for the environment to finish calculating the new state at each time step. Finally,
the EnvironmentInterface implements the communication layer with the envi-
ronment. In the following, we describe these three interfaces in more detail.

StepGenerator. The StepGenerator is responsible for initiating the next time
step in Sim-2APL. Each step is divided into three phases: preparation, delibera-
tion, and processing, each of which run on the main thread so that the next phase
only starts when the previous phase has finished. The process of phase transi-
tions in the StepGenerator is visualized at the top in Fig. 4. The StepGenerator
interface does not specify when a new step starts as this is initiated by an exter-
nal ‘driver’; in the framework, PanSim signals the StepGenerator to begin the
next time step. This ensures agents cannot deliberate while the state of the
environment is being updated. During the preparation phase, the stepStarting
method of the EnvironmentInterface is called to prepare for the next phase
of agent deliberation. The stepStarting method should perform all computa-
tions necessary to prepare for the agents’ deliberation at this time step, such
as processing or translating updates from the environment, creating Triggers for
belief updates, or calculating global resources or statistics. When the preparation
7 Since agents can execute multiple plans during one deliberation cycle, this approach

does not restrict the agent’s number of actions per time step.
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Fig. 4. The StepGenerator calls the appropriate methods on the StepExecutor and
registered EnvironmentInterfaces to initiate the preparation, deliberation, and pro-
cessing phases in each time step.

phase is complete, the deliberation phase for this time step is started by call-
ing the doStep method of the StepExecutor. When deliberation of all agents is
completed, the StepExecutor returns the actions generated by the agents. These
actions can then be ordered to ensure determinism (e.g., using agent names) and
are passed to the EnvironmentInterface to start the final processing phase. In
this phase, the environment realizes the effect of the actions generated by the
agents and calculates the next simulation state.

EnvironmentInterface. Sim-2APL is agnostic about what environment it is
connected to. In order for Sim-2APL to interact with an environment, the
EnvironmentInterface must be implemented. This interface is responsible for
encoding agent actions and sending them to the environment, and receiving
state updates from the environment and translating those for use by the agents.
The interface defines three methods: stepStarting and stepFinished, which
are called during the preparation and processing phases of the StepGenerator,
respectively, and simulationFinished which is called when the simulation ends.
This interface and its methods are shown in green in Fig. 4. Implementation
of the stepStarting method is optional. The stepFinished method receives
the set of actions produced by the agents as an argument, and should realize
the actions in the environment and produce the next simulation state. In the
framework, this is achieved by sending all agent actions to PanSim. However,
in a simulation where the environment is programmed in Java, one could use
the same methods that in 2APL are called on directly by the agents to realize
the effect of those actions. Finally, the simulationFinished method is called
when the simulation has ended. This method should implement any necessary
cleanup operations, such as closing the connection with the environment. Mul-
tiple EnvironmentInterfaces can register with the StepGenerator by calling
its registerEnvironmentListener method. The appropriate methods of each
EnvironmentInterface instance will be called sequentially in each of the three
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phases. Note that the only assumptions we make regarding the environment are
that, (i) there is some way for it to interface with Java so that actions can be
executed in it and the state can be requested by agents, and (ii) the simulation
state can be advanced one step at the time.

Step Executor. The StepExecutor is responsible for executing a single deliber-
ation cycle for each agent at the current time step. In our default implementa-
tion, the StepExecutor maintains a queue of the deliberation cycles of sched-
uled agents. As in 2APL, agents re-schedule themselves from within their own
deliberation cycle (unless they sleep). To ensure an agent is not executed twice
within the same time step, when the doStep method of the StepExecutor is
called by the StepGenerator, the queue is first copied into a temporary queue.
The deliberation cycles of all agents are executed from this temporary queue,
and rescheduled agents are placed on the original, now empty, queue. This pro-
cess is visualized in blue in Fig. 4. Execution is handled using a Java Executor
service, allowing the deliberation phase to run concurrently. Agents’ (external)
actions are then collected from the deliberation cycles and placed into a hash
map where the unique identifier of the agent producing those actions is the key,
and the value is the list of produced actions. This hash map is then returned to
the StepGenerator.

5 Sample Simulation

We now describe our simulation of the spread of COVID-19, instantiated using
PanSim + Sim-2APL. The simulation is built using a synthetic population of
several counties in the US state of Virginia. Agents are represented with detailed
demographic information from the US Census Bureau, along with detailed
weekly activity sequences, and appropriate locations assigned for the activities
from comprehensive location data [2]. The disease spread is driven by the inter-
actions between agents (due to physical collocation), as they go about their
weekly activity schedules and is handled by PanSim. In order to model changes
in activity patterns as various social distancing interventions were instituted,
we developed a normative reasoning model for the agents using Sim-2APL, as
briefly described below and detailed in another work [17].

The simulation proceeds as follows. On each simulated day, each agent
chooses which of its activities from its normal (pre-COVID) schedule it will
carry out. The deliberation process is informed by normative reasoning as we
describe below. For the activities the agent selects, it also chooses which behav-
ioral interventions (mask-wearing, physical distancing) it will comply with, while
carrying out each activity. Each activity results in a visit to a corresponding loca-
tion. Table 2 shows the number of persons, households, and visits in each county,
where the visit counts are based on pre-COVID activity schedules. During the
simulation period, as the agents reduce their mobility to comply with various
norms, the number of visits are lower.

For our sample simulation, we consider the behavioral interventions of official
institutes as norms which agents can reason about. We classify these norms as



PanSim + Sim-2APL 15

Table 2. The counties of the state of Virginia used for the experiments, along with the
number of persons, households, and weekly location visits in the synthetic population.

County Persons Households Visits

Goochland 20,923 8,240 680,571

Fluvanna 24,110 9,776 779,337

Louisa 32,938 13,398 1,066,179

Charlottesville 41,120 18,377 1,335,596

Albemarle 93,570 39,920 3,047,807

Hanover 98,435 38,149 3,204,317

Richmond 181,975 89,146 5,920,569

either regimented (R) – meaning that an agent has no choice but to comply,
or non-regimented (NR) – meaning an agent is expected to comply but has the
agency to violate. Examples of R norms are closure of schools and businesses,
while examples of NR norms are wearing a mask or staying home when sick.
Both NR and R norms operate on goals g, and are implemented in terms of the
functions applies : g �→ {true, false} and transform : g �→ g × ⊥, the former
specifies whether the norm n applies to the goal while the latter transforms
the goal g into a goal g′ that complies with the norm, or into ⊥ to not pursue
the goal for one deliberation cycle. NR norms specify one additional function
attitude : g × a �→ x ∈ (0, 1) ⊂ R, which also takes the agent a as a parameter
and, based on beliefs, observations and attitudes of the agent a, calculates its
motivation to comply with norm n as a probability p(n, g).

The normative reasoning process which we employ is as follows. If the plan
scheme of the agent a is triggered by a goal g, all norms that apply to g are
collected and iteratively applied to g by using the transform(g) function. After
this step, a plan is selected for the updated goal following the traditional 2APL
approach.

In our work, we interpret the daily activities in the activity schedules of an
agent directly as the agents’ (to-do) goals. The transformations applied by the
norms can change the modality of these activities (i.e. wear a mask, maintain
physical distance), change the time or duration of the activity, or cancel the
activity for that day.

For each location, PanSim computes the duration of overlap for each pair of
agents that visits that location on the current day. This duration, coupled with
whether the agents are complying with mask-wearing and physical distancing,
determines the probability of infection if one of the agents is infectious and the
other is susceptible. Based on these probabilities, PanSim computes disease state
changes for all the agents. These are communicated back to the agents in Sim-
2APL, along with the observations made by the agents of the visible attributes
of the other agents they encounter, as described in Sect. 3. Each agent then uses
this information in its decision-making procedure for the next simulated day.
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The computational burden of the simulation is thus divided between the two
components.

In the paper in which we describe the model in detail [17], we also report
how the model was calibrated using both COVID-19 case data (PanSim) and
cellphone based mobility data (Sim-2APL) using simulations spanning March to
June 2020 of the counties of Charlottesville, Fluvanna, and Goochland (Table 2).
The Sim2APL side of the model was calibrated by minimizing the Root-Mean-
Square-Error (RMSE) between mobility observed in those counties in that time
period, and the mobility of the agents in our model. A good overall fit was pro-
duced, but the model was not able to differentiate the differences in observed
mobility between the three counties. The PanSim side of the model was cali-
brated by minimizing the RMSE between the recorded number of cases in those
counties – multiplied with an arbitrary scaling factor (30 in this work) to account
for testing uncertainty at the onset of COVID-19 – on the one hand, and the
number of recovered agents in our model on the other. The calibration process
matched the shape of the curve, but significantly undershot the target, resulting
in a high RMSE of 2052.0222. We intend to address the issues with both cali-
bration processes in future work. We performed 10 counterfactual experiments
E0, . . . , E9 with the calibrated model to rank the effectiveness of the 9 Executive
Orders (EOs) implemented in Virginia in the simulated time period, counting
the number of infected or recovered agents at the end of the simulation. In E0

we ignored all norms, E1 ignored all but the first EO, E2 ignored all but the
first two EOs, etc. According to our model, the most effective measures were
the sixth EO (also restricting gatherings in private settings to 10 and closing
higher education), and the seventh EO (requiring employees wear masks) with
a 37.89% and 32.47% respective reduction compared to the previous EO. We
were not able to conclusively rank one of these two EOs above the other due to
overlapping confidence intervals.

As discussed earlier, prior work has either ignored individual behavioral com-
plexity in favor of scaling disease spread simulations, or has focused on creating
complex simulations with smaller agent populations. Our goal is to be able to
scale simulations with complex individual agents to large population sizes, so we
turn to scalability experiments with PanSim+Sim-2APL next.

6 Scalability Experiments

For the purposes of the scaling experiments, we chose synthetic populations of
seven counties in the state of Virginia, USA, with varying sizes. Table 2 shows the
number of persons, households and their weekly activity schedule (location visits)
in the synthetic populations. To understand the scalability of PanSim+Sim-
2APL we ran individual simulations for each of the seven counties, with each
simulation running for 180 timesteps representing 180 days starting from March
1, 2020. The simulations were run with 40, 80, 160, and 320 CPU cores on
compute nodes each having 2 Intel Xeon Gold 6148 CPUs with 20 CPU cores
each. The compute nodes used to run the experiments also had 384 GB of DDR4
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RAM Memory and were connected to each other with Mellanox ConnectX-5
network adaptors. Each simulation was run 10 times and their running time was
noted.

We study scaling in two ways. First, we keep the problem size fixed and
increase the number of CPU cores. This is done by running the simulation for
each county with the four levels of cores above. The expectation is that the
running time should decrease smoothly as the computational resources increase.

Second, we keep the computational resources fixed and increase the problem
size. This is done by comparing the running times for simulations of increasingly
larger counties, while keeping the number of CPU cores fixed. We carried out
this experiment for all four levels of CPU cores also. The expectation is that the
running time should not increase too sharply as the problem size increases.

In both cases, the resulting performance curves should ideally be linear.
However, communication overheads can make the curves nonlinear. There is
also inherent nonlinearity in the structure of the problem, as the disease spread
computation is quadratic in the number of agents simultaneously present at a
location. It is also expected that at some point, the overhead of communication
between distributed parts of the simulation becomes higher than the efficiency
gained by splitting the computation across multiple cores. For smaller problem
sizes (i.e., smaller counties), this should become apparent with fewer cores.

6.1 Complexity

To contextualize the results of the experiments, we will briefly address the com-
plexity of the integrated Pansim+Sim-2APL model. PanSim calculates the con-
tact points of agents based on overlap in the location and time of visits, which
is quadratic in the number of visits in the worst case. The deliberation imple-
mented in Sim-2APL matches norms to activities, and is therefor linear to the
number of active norms multiplied with the number of visits in the worst case
(although not all norms apply to all activities).

Timings show that in the overall simulation on one CPU core, delibera-
tion takes up ∼47–57% of computation time, where a larger number of agents
increases the relative time spent on this part. ∼40–50% of the time is spent in
PanSim, but this includes the transferal of encoded data frames of visits and
agent disease states, which we did not study separately as this varies by hard-
ware. Extracting and packaging these data frames in Sim-2APL uses ∼ 1% of
the processing time and the pre- and post processing phases (in which norms are
activated, and mobility is calculated from agent actions, see Sect. 4) consistently
makes up ∼ 0.5% of the computation time. These last two were not parallelized
in our implementation, so their relative computation time increases slightly when
increasing CPU cores to ∼3–4% for extracting and packaging, and consistently
using roughly ∼2.5% for pre- and post processing on 12 CPU cores. With that
number of cores, the deliberation phase goes down to ∼30–38%, and the envi-
ronment increases to ∼55%–65% (note again this includes constant time data
transferal). The computation time for the pre- and post processing and for pack-
aging does not depend on the number of active norms. On one CPU core, only
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∼6–11% of computation time is spent on deliberation when no norms are active,
with the environment taking ∼85–90%. As the number of norms increases, these
numbers gradually balance out to those reported for the overall simulation.

Fig. 5. The mean runtime of PanSim+Sim-2APL simulations for seven counties of the
state of Virginia compared with (a) the number of cores, and (b) the number of agents.

6.2 Results

Figure 5 shows the variance in the runtime of the simulations when run with
different number of CPU cores. We can see in Fig. 5a when the same simulation
is run with increasing number of CPU cores (strong scaling) for all the counties
the runtimes decrease almost linearly till 160 CPU cores on a log-log scale. For
smaller counties, such as Goochland and Charlottesville, increasing the number
of CPU cores to 320 actually increases the runtime due the communication
overhead becoming apparent, as discussed above. However, for a larger county
like Richmond, the strong scaling results hold even with 320 CPU cores.

A similar story can be seen when looking at Fig. 5b which shows the runtime
of simulations with increasing compute load (number of agents in the county sim-
ulated). We can see that for counties with more than 100,000 persons, increasing
the number of CPU cores to 320 shows definite benefits. However, for the rest of
the counties simulated, the benefits of increasing CPU cores are observed only
up to 160 CPU cores.

These results demonstrate that PanSim+Sim-2APL simulations integrate
well, and can be used to simulate large populations. More detailed simulation
results, investigating the effects of various non-pharmaceutical interventions, are
presented in the companion paper, which focuses on the data, design, calibration,
and analysis of the simulation [17].

7 Conclusion

In this paper, we presented a novel agent-based simulation framework for mod-
eling large-scale complex social phenomena. We presented Sim-2APL, a Java-
based multi-agent programming library that allows to model and simulate com-
plex reasoning agents through the BDI paradigm. We integrated Sim-2APL with
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PanSim, our novel platform for distributing large-scale agent-based simulations.
We reported on a scalability experiment using a COVID-19 epidemic simula-
tion with a population of BDI agents representing individuals from 7 counties
of the state of Virginia, with population size ranging from 20k to 180k agents.
Our results demonstrate that it is indeed possible to build an execute large-scale
realistic simulations with BDI based agent models with efficient and judicious
use of distributing computing platforms.

As we have seen with COVID-19 during 2020, epidemics (especially novel
ones) are driven by human behavior. Until vaccines became available, pub-
lic health authorities, institutions, and governments had to rely on non-
pharmaceutical interventions to try to mitigate the epidemic. However, we don’t
have a rigorous understanding of the effectiveness of these interventions, due, in
large part, to the complexity of human behavioral responses and their effects on
epidemic dynamics. Thus, while there have been numerous computational and
mathematical models of the COVID-19 epidemic that have been developed in the
past year, they have largely focused on disease dynamics and have either ignored
human behaviors or represented them in very simplistic ways, such as assuming
that people comply with interventions independently with certain probabilities.

Our goal in developing this framework has been to bring together the
strengths of MAS technologies for building normative reasoning agents with
large-scale data-driven distributed agent-based simulation technologies. The
scalability of this framework will now enable the development of more mean-
ingful simulations, which can properly address complex human behaviors and
allow reasoning about the effects of a larger class of interventions.
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