Skip to main content

Concept Description and Definition Extraction for the ANEMONE System

  • Conference paper
  • First Online:
Book cover Engineering Multi-Agent Systems (EMAS 2021)

Abstract

We present algorithms for computing definitions and concept descriptions that agents can use to restrict and adapt their knowledge with respect to signature shared with other agents. This ensures that knowledge shared is understood by the communication partners. We focus on agents that make use of description logic ontologies to represent their expertise. We have implemented and evaluated the performance of the algorithms in the form of a case study and on a freely accessible ontology. Our evaluation suggests that definition extraction can reduce the amount of messages exchanged by agents, thus optimising the communication time and effort of the agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Relative to free and accessible occuring ontologies.

  2. 2.

    It is worth noting that this definition of cyclicity is simplified here for brevity. For a more comprehensive description, refer to [10].

  3. 3.

    Higher relative to ANEMONE ontologies.

  4. 4.

    We use the notation \(O, \alpha \) as a shorthand to denote \(O \cup \{\alpha \}\).

  5. 5.

    Symbols not in the signature of the ontology.

References

  1. Afsharchi, M., Didandeh, A., Mirbakhsh, N., Far, B.H.: Common understanding in a multi-agent system using ontology-guided learning. Knowl. Inf. Syst. 36(1), 83–120 (2013). https://doi.org/10.1007/s10115-012-0524-7

    Article  Google Scholar 

  2. Antoniou, G., van Harmelen, F.: Web ontology language: OWL. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24750-0_4

    Chapter  Google Scholar 

  3. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  4. Botoeva, E., Lutz, C., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: Query inseparability for \(\cal{ALC}\) ontologies. Artif. Intell. 272, 1–51 (2019)

    Article  MathSciNet  Google Scholar 

  5. van Diggelen, J., Beun, R.J., Dignum, F., van Eijk, R.M., Meyer, J.J.: Optimal communication vocabularies and heterogeneous ontologies. In: van Eijk, R.M., Huget, M.P., Dignum, F. (eds.) Agent Communication, pp. 76–90. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32258-0_6

    Chapter  Google Scholar 

  6. Doherty, P., Lukaszewicz, W., Szalas, A.: Computing strongest necessary and weakest sufficient conditions of first-order formulas. In: Proceedings of the IJCAI, pp. 145–154 (2001)

    Google Scholar 

  7. Euzenat, J., Shvaiko, P., et al.: Ontology Matching, vol. 18. Springer, Cham (2007). https://doi.org/10.1007/978-3-642-38721-0

  8. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2 reasoner. J. Autom. Reason. 53(3), 245–269 (2014). https://doi.org/10.1007/s10817-014-9305-1

    Article  MATH  Google Scholar 

  9. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies. Semant. Web 2(1), 11–21 (2011)

    Article  Google Scholar 

  10. Koopmann, P., Schmidt, R.A.: LETHE: a saturation-based tool for non-classical reasoning. In: Dumontier, M., et al. (eds.) Proceedings of ORE-2015. CEUR Workshop Proceedings, vol. 1387. CEUR-WS.org (2015)

    Google Scholar 

  11. Koopmann, P., Schmidt, R.A.: Uniform interpolation and forgetting for \(\cal{ALC}\) ontologies with aboxes. In: Bonet, B., Koenig, S. (eds.) Proceedings of AAAI-2015, pp. 175–181. AAAI Press (2015)

    Google Scholar 

  12. Laera, L., Blacoe, I., Tamma, V., Payne, T., Euzenat, J., Bench-Capon, T.: Argumentation over ontology correspondences in mas. In: AAMAS, pp. 1–8 (2007)

    Google Scholar 

  13. Lin, F.: On strongest necessary and weakest sufficient conditions. Artif. Intell. 128(1–2), 143–159 (2001)

    Article  MathSciNet  Google Scholar 

  14. Lin, F.P.Y., Groza, T., Kocbek, S., Antezana, E., Epstein, R.J.: The cancer care treatment outcomes ontology (CCTO): a computable ontology for profiling treatment outcomes of patients with solid tumors (2017)

    Google Scholar 

  15. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description logics. In: IJCAI, pp. 453–458 (2007)

    Google Scholar 

  16. Mascardi, V., Ancona, D., Bordini, R.H., Ricci, A.: CooL-AgentSpeak: enhancing AgentSpeak-DL agents with plan exchange and ontology services. In: 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 109–116. IEEE (2011)

    Google Scholar 

  17. Payne, T.R., Tamma, V.: Negotiating over ontological correspondences with asymmetric and incomplete knowledge. In: AAMAS, pp. 517–524 (2014)

    Google Scholar 

  18. Souza, M., Moreira, A., Vieira, R., Meyer, J.-J.C.: Integrating ontology negotiation and agent communication. In: Tamma, V., Dragoni, M., Gonçalves, R., Ławrynowicz, A. (eds.) OWLED 2015. LNCS, vol. 9557, pp. 56–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33245-1_6

    Chapter  Google Scholar 

  19. Ten Cate, B., Franconi, E., Seylan, I.: Beth definability in expressive description logics. JAIR 48, 347–414 (2013)

    Article  MathSciNet  Google Scholar 

  20. Van Diggelen, J., Beun, R.J., Dignum, F., Van Eijk, R.M., Meyer, J.J.: Ontology negotiation: goals, requirements and implementation. IJAOSE 1(1), 63–90 (2007)

    Article  Google Scholar 

  21. Van Diggelen, J., Beun, R.J., Dignum, F., Van Eijk, R.M., Meyer, J.J.: ANEMONE: an effective minimal ontology negotiation environment. In: AAMAS, pp. 899–906. ACM (2006)

    Google Scholar 

  22. Whetzel, P.L., et al.: Bioportal: enhanced functionality via new web services from the national center for biomedical ontology to access and use ontologies in software applications. Nucleic Acids Res. 39(suppl-22), W541–W545 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Toluhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toluhi, D., Schmidt, R., Parsia, B. (2022). Concept Description and Definition Extraction for the ANEMONE System. In: Alechina, N., Baldoni, M., Logan, B. (eds) Engineering Multi-Agent Systems. EMAS 2021. Lecture Notes in Computer Science(), vol 13190. Springer, Cham. https://doi.org/10.1007/978-3-030-97457-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97457-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97456-5

  • Online ISBN: 978-3-030-97457-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics