
Deeper Insights into Neural Nets with Random
Weights?

Ming Li1[0000−0002−1218−2804], Giorgio Gnecco2[0000−0002−5427−4328], and
Marcello Sanguineti3[0000−0003−0355−8483]

1 Key Laboratory of Intelligent Education Technology and Application of Zhejiang
Province, Zhejiang Normal University, Jinhua 321004, China

mingli@zjnu.edu.cn
2 AXES Research Unit, IMT School for Advanced Studies, Lucca 55100, Italy

giorgio.gnecco@imtlucca.it
3 Department of Informatics, Bioengineering, Robotics and Systems Engineering,

University of Genoa, Genova 16145, Italy
marcello.sanguineti@unige.it

Abstract. In this work, the “effective dimension” of the output of the
hidden layer of a one-hidden-layer neural network with random inner
weights of its computational units is investigated. To do this, a poly-
nomial approximation of the sigmoidal activation function of each com-
putational unit is used, whose degree is chosen based both on a desired
upper bound on the approximation error and on an estimate of the range
of the input to that computational unit. This estimate of the range is
parameterized by the number of inputs to the network and by an upper
bound both on the size of the random inner weights of the network and
on the size of its inputs. The results show that the Root Mean Square
Error (RMSE) on the training set is influenced by the effective dimen-
sion and by the quality of the features associated with the output of the
hidden layer.

Keywords: Neural Networks with Random Weights · Hyperbolic Tan-
gent · Polynomial Approximation · Effective Dimension · Approximate
Rank.

1 Introduction

This work analyzes the “effective dimension” of the output of the hidden layer
of a random neural network based on a sigmoidal activation function σ : R→ R.

? G. Gnecco and M. Sanguineti are members of INdAM. G. Gnecco and M. Li ac-
knowledge financial support from the research program ICTP-INdAM Research in
Pairs in Mathematics 2020, for the project “On the Expressive Power of Neural Nets
with Random Weights”. The work of G. Gnecco was supported in part by the Ital-
ian Project ARTES 4.0 – Advanced Robotics and enabling digital TEchnology &
Systems 4.0, funded by the Italian Ministry of Economic Development (MISE). The
work of M. Li was supported in part by the National Natural Science Foundation of
China under Grant 62172370.

2 M. Li et al.

Such a network computes a function g : X ⊂ RD → R of the form

g(x) :=

M∑
m=1

cmσ (am · x− bm) , (1)

where · denotes the dot product, x ∈ X ⊂ RD, the weights c1, . . . , cM are
optimizable (e.g., using ordinary least squares), whereas the other weight vectors
a1, . . . ,aM ∈ RD and the biases b1, . . . , bM ∈ R are randomly extracted before
training (i.e., they are nonoptimizable during the training of the network).

The motivation for this study is as follows. Although [6] characterized the ap-
proximation power of neural networks with random weights, its main theoretical
result (i.e., a sufficient condition for universal approximation4 by random neural
networks in a probabilistic sense) is based on the assumption that there exist
some “ideal” support ranges/distributions for randomly assigning the hidden pa-
rameters of such networks. Hence, universal approximation is not guaranteed for
every random assignment of such parameters, and some key issues are still un-
solved [8]: e.g., what are the limitations of neural networks with random weights
to approximate certain classes of target functions? For instance, the random pa-
rameters of the random neural network are typically extracted from the same
interval [−λ, λ], for some λ > 0. The choice of λ clearly has an influence on the
resulting approximation capability, as partially discussed in [10].

In this paper, we shed some further light on this issue by considering the case
of a target function defined on the hypercube [0, 1]D and belonging to the func-
tion family Γ[0,1]D,1,C (see [5] for a precise definition of this family), i.e., loosely
speaking, a function whose actual dependence is only on one of its variables,
and the index of this variable is not known a-priori by the network. Our analy-
sis is based on a polynomial approximation of the sigmoidal activation function
(here, the hyperbolic tangent), where the degree of that approximation is chosen
implicitly as a function of λ and D, as the “effective domain” of the activation
function (the domain on which its input actually ranges) depends on these choic-
es, for each hidden unit. So, by varying λ and D, the “effective dimension” of the
output of the hidden layer of the random neural network is expected to change
typically (as confirmed by our numerical results). Moreover, we show that by
increasing D, an increasingly larger percentage of the hidden features comput-
ed by the network is expected to be unrelated to the only variable on which a
target function belonging to Γ[0,1]D,1,C depends. This may help to explain, for
this choice of the target function, the quite large RMSE error achieved on the
training set for large D.

4 This refers to the approximation of continuous functions on compact sets with arbi-
trary accuracy, using elements of the specific family of neural networks.

Deeper Insights into Neural Nets with Random Weights 3

2 Literature review on polynomial approximations of
activation functions

The idea of approximating a sigmoidal activation function through a polynomial
with a suitable degree is quite natural and has been investigated in previous
works (with various research objectives). A comparison of the approximation
capability of feedforward neural networks with sigmoidal and polynomial acti-
vation functions was made in [2] (see this reference for a precise statements of
results). Of the other findings, it was proved that, under mild conditions, the two
kinds of networks are equivalent in the sense that, if it is possible to approximate
a Lipschitz-continuous function with a suitable Lipschitz constant by one kind of
network with an error (in the supremum norm) smaller than a properly defined
threshold and a suitable bound on the Lipschitz constant of its neural network
approximation, then it is also possible to do the same using the other kind of
network, possibly by increasing its size, its number of layers, and the bound
on the Lipschitz constant of the corresponding neural network approximation.
Feedforward neural networks with polynomial activation functions are also of
practical interest because of their suitability to digital implementation, based,
e.g., on lookup tables [9]. A drawback, however, is that they do not satisfy the u-
niversal approximation property [1]; indeed, according to [7], a one-hidden-layer
feedforward neural network can approximate any continuous function defined on
a compact set up to any degree of accuracy (with respect to the supremum norm)
if and only if its activation functions are not given polynomials. A final remark
has to be made on how the coefficients of the polynomial approximation of an
activation function can be obtained in practice. While a Taylor approximation
appears to be suitable in the case in which only a local approximation is needed
(provided the original activation function is locally smooth enough), either a
least-squares approximation or a Chebyshev approximation is more suitable to
a global approximation (e.g., on a closed and bounded interval).

3 Analysis

In this work, focus is given to the rank (but also to a sort of “approximate rank”,
based on the distribution of singular values, as discussed later in this paper) of
the hidden output matrix of a one-hidden-layer random neural network, since
this can be a measure of the “effective dimension” of the feature space associated
with that network.

To undertake the analysis, the following proposition, inspired by [3, Lemma
1], is used. It differs from that result because the proof of the next proposition
does not allow one to conclude that the equality holds in the following Equation
(3). However, this is enough to complete the successive analysis. In the proposi-
tion, x1, . . . ,xN ∈ RD refers to the elements of a training set of size N . We recall
that the hidden output matrix H ∈ RN×M collects in each of its N rows the M
outputs of the hidden neurons of the neural network (each row being associated
with a particular input vector belonging to the training set).

4 M. Li et al.

Proposition 1. Let the rows of the hidden output matrix H ∈ RN×M have the
following form:

rn =
[
σ
(P)
pol (a1 · xn − b1) , . . . , σ

(P)
pol (aM · xn − bM)

]
, n = 1, . . . , N , (2)

where a1, . . . ,aM ,x1, . . . ,xN ∈ RD and σ
(P)
pol : R → R is a given polynomial

approximation (with degree P) of a sigmoidal function σ : R → R. Then, one
has

rank(H) ≤ min

{
M,N,

(
D + P

P

)}
. (3)

Proof. By introducing the multi-index µ ∈ ND0 and the notation |µ| :=
∑D
d=1 µi,

then, for n = 1, . . . , N , the column vectors sn = {xµ1

n,1 · · ·x
µD

n,D}|µ|≤P ∈ R(D+P
P),

and, for m = 1, · · · ,M , suitable vectors of coefficients cm ∈ R(D+P
P) (which

depend both on am and on the P + 1 coefficients of the polynomial σ
(P)
pol), and

finally, the matrix C =
[
c1 . . . cM

]
∈ R(D+P

P)×M , one gets

rn = s>nC . (4)

Hence, by introducing the matrix S =

 s>1
· · ·
s>N

 ∈ RN×(D+P
P), one gets

H = SC . (5)

Since rank(C) ≤ min{
(
D+P
P

)
,M} and rank(S) ≤ min{N,

(
D+P
P

)
}, one gets E-

quation (3). ut

Based on Proposition 1, we analyze different polynomial approximations of
the hyperbolic tangent sigmoidal function σ(z) = 1

1+exp(−z) , and the effect of

training random neural networks based on such approximations. The reason
why a polynomial approximation is considered instead of the hyperbolic tangent
itself is that the hidden output matrix corresponding to the latter has a full
rank under mild conditions [4] (even though some of its positive singular values
could be very small). The rank (or the “approximate” rank, as discussed in
the next section) of the hidden output matrix corresponding to the use of a
good polynomial approximation (i.e., having a reasonably small approximation
error over the domain of interest for the analysis) is expected to be a good
approximation of the number of largest singular values of the hidden output
matrix (with respect to a reasonable threshold) corresponding to the use of the
hyperbolic tangent.

Our polynomial approximations are constructed as follows. First, for L > 0,
we restrict the domain of σ to [−L,L]. The specific choice of L is discussed later
and depends on the fact that, for the random neural network architecture studied
in our analysis, it is possible to find a lower and an upper bound on the inputs to

Deeper Insights into Neural Nets with Random Weights 5

its computational units, depending on the constraints on the weights of the hid-
den neurons, on the constraints on the components of the feature vector (which
are the inputs to such a network), and on the dimension D of that feature vector.

Then, for each degree P , we get the best polynomial approximation σ
(P)
pol,[−L,L] of

degree P to σ in the weighted L2([−L,L],mu) norm5 (where mu is the uniform
probability measure on [−L,L]). Finally, we fix a desired upper bound ε > 0
on the approximation error in that norm6, and we choose the smallest degree

P ◦ for which ‖σ(P)
pol,[−L,L] − σ‖L2([−L,L],mu) ≤ ε. To avoid boundary effects (e.g.,

undesired oscillations near the boundary, see Figure 1), the domain is further
restricted – for some choice of ∆L ∈ (0, L) – to [−L̄, L̄] := [−L+∆L,L−∆L].
As an example, Figure 1(a) shows the graphs of the hyperbolic tangent and
of its polynomial approximation found by the procedure above on the domain
[−7, 7] and with tolerance ε = 10−4. The approximation has degree P ◦ = 8. To
avoid boundary effects, its domain is further restricted to [−5, 5], having chosen
∆L = 2 by trial and error. Similarly, Figure 1(b) refers to the case ε = 10−5, for
which the optimal degree of the polynomial approximation is P ◦ = 12.

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

hyperbolic tangent
polynomial approximation of degree 8

(a)

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

hyperbolic tangent
polynomial approximation of degree 12

(b)

Fig. 1: (a) Polynomial approximation (with degree P = 8) of the hyperbolic
tangent on [−7, 7], and a restriction of its domain to [−5, 5]. (b) Polynomial
approximation (with degree P = 12) of the hyperbolic tangent on [−7, 7], and a
restriction of its domain to [−5, 5].

In the following section, two simulation scenarios are considered. For each
such scenario and for each choice of the tolerance ε on the approximation error,

5 In our numerical implementation, the integral in the definition of the weighted
L2([−L,L],mu) norm is approximated by a finite summation on a uniform and
fine grid.

6 The error could be also measured according to the supremum norm, and Chebyshev
polynomials [12] could be used to achieve this aim. However, the results obtained
with the weighted L2([−L,L],mu) are already good enough, as shown in Figure 1.

6 M. Li et al.

a suitable value for L̄ (and, as a consequence, one also for P ◦) is obtained as
follows. First, an admissible range for the input am·xn−bm of each computational
unit is found. Assuming that xn,d ∈ [0, 1] for each component of xn and, given
λ > 0, one has am,d ∈ [−λ, λ] for each component of am, and bm ∈ [−λ, λ], one
also gets am ·xn−bm ∈ [−(D+1)λ, (D+1)λ], i.e., L̄ := (D+1)λ. Then, by taking,
e.g., ∆L = 2 as before, a possible choice for L is L = L̄+∆L = (D + 1)λ+ 2.

In the next section, to further justify the use of a polynomial approximation of
the hyperbolic tangent sigmoidal function, the random neural network is trained
both by using the activation function, then its polynomial approximation. In
both cases, the same training inputs are used. Then, to check the quality of
the approximation, the results obtained in the two cases are compared on the
training set, and later on the test set. For a fair comparison, the same training
set is used in both cases, and later, the same test set is used to compare the
generalization capabilities of the two trained models.

4 Simulations

The target function used in Simulation 1 (for which D = 1) is defined as

f(x; θ) = 0.6 exp

(
− (x− 0.2)2

θ2

)
+0.4 exp

(
− (x− 0.5)2

θ2

)
+exp

(
− (x− 0.8)2

θ2

)
,

(6)
where x ∈ [0, 1], and θ > 0 is a scalar which directly determines the complexity
of f . In the case of Simulation 2 (for which D > 1), it is defined as

f(x; θ) = 0.6 exp

(
− (x1 − 0.2)2

θ2

)
+ 0.4 exp

(
− (x1 − 0.5)2

θ2

)
+ exp

(
− (x1 − 0.8)2

θ2

)
,

(7)
where x ∈ [0, 1]D, i.e., the target function depends only on the first compo-
nent x1 of the feature vector x (but this is not known a-priori by the random
neural network). This target function was chosen because it belongs, for C > 0
large enough and D′ = 1, to the family Γ[0,1]D,D′,C of D-variable functions on

the hypercube [0, 1]D whose actual dependence is only on D′ of such variables
(whose identity is not known a-priori by the network), and which satisfies a
suitable smoothness condition, related to the choice of C (see [5] for the pre-
cise definition). In the previous work [5], it was proved that (one-hidden-layer)
non-random neural networks (i.e., having optimizable inner parameters of their
computational units) have a better approximation capability of functions belong-
ing to Γ[0,1]D,D′,C than linear combinations of fixed basis functions. This holds,
loosely speaking, because the computational units of such neural networks are
flexible enough to be matched each time to the specific subset of D′ variables
associated with every element of Γ[0,1]D,D′,C , via suitable choices of their inner
parameters. Nevertheless, this flexibility disappears when a random neural net-
work is considered, since the inner parameters of its computational units are
fixed once they have been randomly extracted, hence they are not optimizable.

Deeper Insights into Neural Nets with Random Weights 7

Simulation 1: One-dimensional function approximation. We set θ = 0.05
and sample 1000 instances {xi, f(xi)}1000i=1 based on a regularly spaced grid on
[0,1], then randomly (and uniformly) select N = 500 samples as the training set,
whereas the remaining samples are used for test.

Case 1: Using the hyperbolic tangent sigmoidal function. We test the perfor-
mance of two random models with λ = 1 and λ = 10, respectively, with different
numbers of M of hidden neurons. For all the simulations, the sigmoidal acti-
vation function σ(z) = 1

1+exp(−z) is used. Figure 2 shows the training and test

approximation results for four different learner models, as reported respectively
in (a) and (b) for the model built with λ = 1,M = 100, in (c) and (d) for
the model built with λ = 1,M = 500, in (e) and (f) for the model built with
λ = 1,M = 10000, and in (g) and (h) for the model built with λ = 10,M = 200.
It is clear that λ = 1 does not work at all for this simple function approximation
problem, even when the number of hidden nodes is sufficiently large. In con-
trast, the model built with λ = 100 and trained with M = 200 shows a very
good learning and generalization capability. On the other hand, based on our
empirical experience, some values larger than 1, such as λ = 50, 100, 150, 200,
also work favorably on this regression task, implying that the setting of λ has
a strong impact on the expressive power of the resulting randomized learner
model.

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Training Target
Training Approximation

(a) λ = 1, M = 100, Tr

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Test Target
Test Approximation

(b) λ = 1, M = 100, Te

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1
Training Target
Training Approximation

(c) λ = 1, M = 500, Tr

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1
Test Target
Test Approximation

(d) λ = 1, M = 500, Te

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Training Target
Training Approximation

(e) λ = 1, M = 10000,

Tr

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Test Target
Test Approximation

(f) λ = 1, M = 10000,

Te

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Training Target
Training Approximation

(g) λ = 10, M = 200,

Tr

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Test Target
Test Approximation

(h) λ = 10, M = 200,

Te

Fig. 2: Performance visualization for training (Tr) and testing (Te) results for
random neural network models for various combinations of λ and M : (a-b) λ =
1,M = 100; (c-d) λ = 1,M = 500; (e-f) λ = 1,M = 10000; (g-h) λ = 10,M =
200.

Case 2: Using the polynomial approximation. We investigate the performance of
two random neural network models with λ = 1 and λ = 10, respectively, where

8 M. Li et al.

the polynomial approximation of the activation function is used for all the simu-
lations. For simplicity, in this case, we only considerM = 200. As shown in Figure
3, the training and testing performances of the random model based on the poly-
nomial approximation of the activation function are quite similar to those of the
model based on the sigmoidal activation function, confirming the good quality of
the approximation constructed in line with the procedure reported in Section 3.
Since the computation of the rank of a matrix may suffer from numerical issues,
to verify Proposition 1, we calculate an “approximate” rank of H in MATLAB
in the following way. First, we run the command svd(H), which returns the sin-
gular values {v1, v2, . . . , vR} of H ∈ RN×M , where R ≤ min{N,M}. Then, the
number of “largest” singular values (hence, the approximate rank) is selected in
the following way:

r̂ank(H) := Cardinality{r|vr > max{v1, v2, . . . , vR}/S, r = 1, 2, . . . , R} , (8)

where we set S = 100 in the simulations. Figure 4 shows an example of a singular
value distribution for two random realizations of matrix H, which clarifies the
idea behind the approximation above. Table 1 shows the records of approximate
rank values for the hidden output matrix H (for the case in which the polynomial
approximation of the activation function is used), in which we can find that
the simulation results are consistent with Proposition 1. In this case, it can
be seen from the table that, by increasing λ, also the “effective dimension” of
the feature space associated with the hidden output layer tends to increase,
providing a better approximation capability of the network with respect to the
target function. This may explain the smaller RMSE achieved on the training
set for larger λ.

Table 1: Summary of the approximate rank values of the hidden output matrix

H ∈ RN×M , of P ◦, of the upper bound min
{
M,N,

(
D+P◦

P◦

)}
on the rank of H,

and of the training RMSE: N = 500, M = 200, L = 2λ+ 2, ε = 10−4.

λ r̂ank(H) P ◦ min
{
M,N,

(
D+P◦

P◦

)}
Training RMSE

λ = 1 2 6 7 0.2103

λ = 3 3 10 11 0.1609

λ = 5 3 14 15 0.0908

λ = 10 4 22 23 0.0641

λ = 15 5 30 31 0.0233

λ = 20 6 38 39 0.0170

Simulation 2: Multi-dimensional function approximation. To further ver-
ify our theoretical result reported in Proposition 1, we extend the 1-D regres-
sion task studied in Simulation 1 to a multi-dimensional function approximation

Deeper Insights into Neural Nets with Random Weights 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Training Target
Training Approximation-S
Training Approximation-P

(a) λ = 1, M = 200, Tr

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Test Target
Test Approximation-S
Test Approximation-P

(b) λ = 1, M = 200, Te

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

Training Target
Training Approximation-S
Training Approximation-P

(c) λ = 10, M = 200, Tr

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

Test Target
Test Approximation-S
Test Approximation-P

(d) λ = 10, M = 200, Te

Fig. 3: Performance visualization for training (Tr) and testing (Te) results for
random neural network models with λ = 1 and λ = 10, respectively, for D = 1
(i.e., for Simulation 1, Case 2). In the figure, “S” and “P” represent, respectively,
the cases in which the hyperbolic tangent sigmoidal activation function and its
polynomial approximation are used: (a-b) λ = 1,M = 200, L = 4, ∆L = 2,
ε = 10−7, P = 10; (c-d) λ = 10,M = 200, L = 22, ∆L = 2, ε = 10−7, P = 54.

10 M. Li et al.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

(a) λ = 1

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

(b) λ = 10

Fig. 4: Distribution of the singular values for two random realizations of H: (a)
for λ = 1; (b) for λ = 10, respectively.

problem (with the target function reported in Equation (7)), via artificially in-
cluding additional input features. Concretely and without loss of generality, we
investigate the cases in which D = 2, 3, 4, 5, that is, additional features are
included as inputs together with the original feature x1, while still keeping the
output f(x, θ) as a scalar. In other words, the additional features are only “noisy
features”, completely uncorrelated with the output. For simplicity, we random-
ly generate the additional features from the uniform distribution on [0, 1]D−1,
where D − 1 = 1, 2, 3, 4, corresponding to the cases D = 2, 3, 4, 5, respectively.

Table 2 summarizes the results obtained. In this case, the increase in the
“effective dimension” of the feature spaces does not usually help in reducing the
training RMSE. In order to explain the difference with respect to Simulation
1 (see the next paragraph), the following definitions are introduced. One can
call “good features” those that are associated with monomials only in x1 in the
polynomial approximation (in total, there are at most P +1 such features, where
the number P + 1 is obtained when all the coefficients of these monomials are
nonzero), whereas all the other features can be called “bad features”, since they
refer to monomials containing at least one of the noisy inputs (in total, there are
at most

(
D+P
P

)
− (P + 1) such features, where the number

(
D+P
P

)
− (P + 1) is

obtained when all the coefficients of these monomials are nonzero). For simplicity,
we use the abbreviations “GF” and “BF” to represent the upper bound on the
number of good features (:= P + 1) and the upper bound on the number of bad
features (:=

(
D+P
P

)
− (P + 1)), respectively. It is worth mentioning that this

distinction between good features and bad features is highly dependent on the
specific simulation scenario, in which the target function depends on one variable
but not on the other variables. However, this analysis can be extended to other
target functions belonging to the same class Γ[0,1]D,1,C . Finally, in the setting
considered in Case 2 of Simulation 1, one has GF = P + 1 and BF = 0, i.e.,

Deeper Insights into Neural Nets with Random Weights 11

there are only good features (see Table 1 for the values assumed by the optimal
P in the various cases).

Table 2 shows that, by increasing D, the ratio GF
GF+BF is decreasing to 0,

i.e., the (upper bound on the) number of bad features tends to dominate the
(upper bound on the) number of good features. Moreover, in spite of the quite
large values of GF and BF reported in the table, the approximate rank obtained

(r̂ank(H)) is typically quite small. Since one can extract from the output of the

hidden layer of the network a maximal set of about r̂ank(H) linearly indepen-
dent features, and these are linear combinations of both good and bad features
(see Equations (4) and (5) in the proof of Proposition 1), one expects that by
increasing D, of the coefficients defining the features extracted, the ones associ-
ated with the set of bad features dominate the other ones associated with the
set of good features.

Table 2: Summary of the approximate rank values of the hidden output matrix

H ∈ RN×M , of P ◦, of GF , of BF , and of the upper bound min
{
M,N,

(
D+P◦

P◦

)}
on the rank of H. N = 500, M = 200, λ = 1, L = (D + 1)λ + 2, ∆L = 2,
ε = 10−4. e1 stands for the training RMSE of the random neural network model
based on the polynomial activation function, while e2 stands for the training
RMSE of the random neural network model based on the sigmoidal activation
function.

D r̂ank(H) P ◦ min
{
M,N,

(
D+P◦

P◦

)}
GF BF GF

GF+BF
e1 e2

D = 2 3 6 28 7 21 0.3333 0.1724 0.1430

D = 3 4 8 165 9 156 0.0577 0.1838 0.1507

D = 4 5 8 200 9 486 0.0185 0.1620 0.1589

D = 5 6 10 200 11 2992 0.0048 0.1637 0.1617

5 Conclusions

In this work, we analyzed the “effective dimension” of the output of the hidden
layer of a one-hidden-layer neural network with random inner weights. Our anal-
ysis has been based on a polynomial approximation of the sigmoidal activation
function of the network, whose degree has been chosen by taking into account
both a desired upper bound on the approximation error, an upper bound λ both
on the size of the inner weights of the network and on the size of its inputs,
and the input dimension D. Our analysis is limited to explaining the behavior
of the trained network on the training set, when the D-variable target function
depends only on one of its inputs. As a future investigation, we plan to also
explain the generalization capability of the trained neural network as a function

12 M. Li et al.

of D and λ, and to investigate the case in which the target function depends
on two or more among its inputs (whose identities are not known in advance),
and the case in which its approximation is achieved by using a neural network
with random inner weights having two or more hidden layers. Finally, although
only the hyperbolic tangent has been used as a case study, our approach based
on an optimized polynomial approximation could be applied also to other acti-
vation functions which are commonly used in the context of feedforward neural
networks [11].

References

1. Cybenko, G.: Approximation by Superposition of a Sigmoidal Function, Mathe-
matics of Control, Signals, and Systems, vol. 2, pp. 303–314, 1989.

2. DasGupta, B., and Schnitger, G.: The Power of Approximation: A Comparison of
Activation Functions, Advances in Neural Information Processing Systems (NIPS),
pp. 615–622, 1992.

3. Fan, J., and Udell, M.: Online High Rank Matrix Completion, Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 8690–8698, 2019.

4. Fu, A. M, Wang, X. Z., He, Y. L., and Wang, L. S.: A Study on Residence Error
of Training an Extreme Learning Machine and its Application to Evolutionary
Algorithms, Neurocomputing, vol. 146, pp. 75–82, 2014.

5. Gnecco, G.: A Comparison between Fixed-Basis and Variable-Basis Schemes for
Function Approximation and Functional Optimization, Journal of Applied Math-
ematics, vol. 2012, article ID 806945, 17 pages, 2012.

6. Igelnik, B., and Pao, Y.-H.: Stochastic Choice of Basis Functions in Adaptive Func-
tion Approximation and the Functional-link Net, IEEE Transactions on Neural
Networks, vol. 6, pp. 1320–1329, 1995.

7. Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S.: Multilayer Feedforward Net-
works with a Nonpolynomial Activation Function can Approximate any Function,
Neural Networks, vol. 6, pp. 861–867, 1993.

8. Li, M., and Wang, D.: Insights into Randomized Algorithms for Neural Networks:
Practical Issues and Common Pitfalls, Information Sciences, vol. 382, pp. 170–178,
2017.

9. Piazza, F., Uncini, A., and Zenobi, M.: Artificial Neural Networks with Adaptive
Polynomial Activation Function, Proceedings of the International Joint Conference
on Neural Networks (IJCNN), pp. 343–348, 1992.

10. Sonoda, S., Li, M., Cao, F., Huang, C., and Wang, Y. G.: On the Approxima-
tion Lower Bound for Neural Nets with Random Weights, arXiv preprint arX-
iv:2008.08427, https://arxiv.org/abs/2008.08427, 2020.

11. Szandala, T.: Review and Comparison of Commonly Used Activation Functions
for Deep Neural Networks, in: Bhoi, A., Mallick, P., Liu, C. M., Balas, V. (Eds.),
Bio-inspired Neurocomputing. Studies in Computational Intelligence, Springer, vol.
903, pp. 203–224, 2021.

12. Vlcěk, M.: Chebyshev Polynomial Approximation for Activation Sigmoid Function,
Neural Network World, vol. 4, pp. 287–393, 2012.

https://arxiv.org/abs/2008.08427

	Deeper Insights into Neural Nets with Random Weights

