
Deep Reinforcement Learning for Dynamic
Things of Interest Recommendation in Intelligent

Ambient Environment

May S. Altulyan1,3, Chaoran Huang1, Lina Yao1,
Xianzhi Wang2, and Salil Kanhere1

1 The University of New South Wales, Sydney, NSW 2052, Australia
{m.altulyan, lina.yao, chaoran.huang, salil.kanhere}@unsw.edu.au

2 The University of Technology Sydney, Ultimo, NSW 2007, Australia
xianzhi.wang@uts.edu.au

3 Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
m.altulayan@psau.edu.sa

Abstract. Recommender Systems for the IoT (RSIoT) aim for interac-
tive item recommendations. Most existing methods focus on user feed-
back and have limitations in dealing with dynamic environments. Deep
Reinforcement Learning (DRL) can deal with dynamic environments and
conduct updates without waiting for user feedback. In this study, we de-
sign a Reminder Care System (RCS) to harness the advantages of deep
reinforcement learning in addressing two main issues of RSIoT: captur-
ing dynamicity patterns of human activities and system update without
a focus on user feedback. The RCS is formulated based on a Deep Q-
Network (DQN), which works well with the dynamic nature of human
activities. We further consider harvesting the feedback automatically in
the back end without requiring users to explicitly label activities. Exper-
iments are conducted on three public datasets and have demonstrated
the performance of our proposed system.

Keywords: Deep Reinforcement Learning · IoT · Recommender Sys-
tem.

1 Introduction

With the rapid growth in the number of things that can be connected to the
internet, Recommendation Systems for the IoT (RSIoT) have become more sig-
nificant in helping a variety of applications to meet user preferences, and such
applications can be smart home, smart tourism, smart parking, m-health and so
on. On the one hand, RSIoT can recommend an item that users might need in
situations. On the other hand, it can save time and cost by actively allocating
specific IoT resources accordingly to the very situations.

We motivate RSIoT with a smart home scenario: Alice, a 79-year-old woman
with dementia, lives alone in a house and is preparing a cup of coffee in her smart
kitchen. Motion sensors monitor her every move and track each coffee-making

2 May S. Altulyan et al.

step. If she pauses for a while, a recommender application will determine if it
is too long and remind her of what to do next. If she tries to prepare a cup of
coffee late at night, the system considers the time and recommends she goes back
to bed instead. Later that day, AliceâĂŹs son accesses the system and scans a
checklist for his motherâĂŹs house. He finds that his mother has taken medicine
on schedule, slept, eaten regularly, and continued to manage her daily life well.

Numerous efforts have been made to develop RSIoT using different ap-
proaches. Most of the existing works adapted conventional recommender system
approaches, including collaborative filtering [?], content-based [?] and hybrid-
based approach [?]. However, those conventional RSIoT approaches face two
main issues. The first issue is treating the recommendation procedures as statics
and ignoring the dynamicity in human activity patterns. More formally, human
activity patterns could be changed at any time during the day or even after a
period of time. The second issue is making recommendations for users while the
system must wait for user feedback to update itself. While this may provide the
system with accurate labels, it can have an impact on the end-user experience.
RSIoTs should able to be updated based on the recommended item status only,
which means no need to hold any device or to deal with any application.

Deep Reinforcement Learning (DRL) is inherently profitable for overcoming
dynamic environments and thus has been adapted in interactive recommenda-
tion systems. It has been shown the ability to learn user decision behavior by
observing the userâĂŹs actions and conducting accurate recommendations even
from a few samples by grouping its observations. Furthermore, it considers the
feedback from the environment as a reward to update the system. Significant
efforts have shown the notable performance of DRL methods in conventional
recommendation systems [?,?,?]. Also, there are only very few studies on RSIoT
systems based on RL [?,?,?,?]. However, no previous research known to us has
adapted DQN based RL for RSIoT. Inspired by [?], we design a Reminder Care
System (RCS) based on DQN, which can tackle two main issues: dynamicity
patterns of the human activity and the focus on the user feedback during sys-
tem updates. We first formulate our system based on a Deep Q-Network (DQN),
which captures the userâĂŹs dynamicity pattern using three kinds of extracted
features that address the first issue. Subsequently, we calculate the probabil-
ities for items and nominate only one item with the highest probability as a
recommendation. To tackle the second issue, we introduce our reward function
that enables the system to receive feedback automatically without waiting for
the user. Finally, we propose a new term called a Reward Delay Period which
improves the evaluation for the quality of recommendations.

The main contributions of our proposed system are summarized as follows:

– We design the Reminder Care System (RCS) and formulate it based on the
Deep Q-Network (DQN) which utilizes three main features: past activities
features, current activities features, and item context features as an input
(State).

Deep RL for Dynamic Things of Interest Recommendation 3

– We formulate the reward function that helps the system to be updated au-
tomatically without needing feedback from the user by checking the status
of items after a period of time.

– We conducted extensive experiments on three public datasets, and our exper-
imental results demonstrate the feasibility and effectiveness of our system.

2 Related work

2.1 Recommender system approaches for the IoT

Numerous recent works provide methods and techniques for building recom-
mender systems in several domains of the IoT. Most of the existing research
falls into three categories, the same as normal recommender systems: collabo-
rative filtering, content-based, and hybrid methods. Authors in [?,?] proposed
a unified CF model based on a probabilistic matrix factorization recommender
system that exploits three kinds of relations to extract the latent factors among
these relations. In [?], content-based was adapted for the recommender engine
in their AGILE project, which aims to improve the health conditions of users. In
[?,?], authors built their recommender system engine using a hybrid recommen-
dation algorithm. All previous categories only focus on the interaction between
items and users to construct a recommendation, making them inapplicable for
RSIoT.

2.2 Deep Reinforcement Learning in RSIoT

In previous studies, most approaches deal with a static recommendation pro-
cess, whereas RSIoT needs to capture user’s temporal intentions and to conduct
recommendations in a timely manner. DRL has received significant attention
in building recommender systems [?,?,?,?,?] for two main reasons; coping with
dynamic environments by updating the strategies during the interactions and
the ability to learn a policy that maximizes the long term reward.

Author in [?] proposed a deep recommender system framework (DEERS).
It aims to exploit both negative and positive feedback to conduct recommen-
dations in a sequential interaction environment. In [?], DRL was adapted for
the page-wise recommendation. The authors in [?] proposed a novel DRL-based
recommendation framework. It tackles two main issues: the dynamic nature of
new features and users’ preferences and the lack of information to improve the
quality of recommendations. In addition, DRL has also been utilized to propose
a DEAR framework for online advertising recommendations[?].

3 Reminder Care System (RCS) framework

In this section, we introduce Reminder Care System (RCS) in detail. First, we
define the problem and notations; then, we provide an overview of our framework.
Finally, we describe DQN and explain the process of our agent.

4 May S. Altulyan et al.

3.1 Notation

Our problem is framed as follows: when extracted features of the complex activity
v where vi ∈ V = {v1, v2,vm} is received by the agent G (The extracted
features will be explained in details in Section 3.2). Notice that the agent receives
the extracted features of the activity that needs recommendation only as an input
(state) s. Then the agent nominates an appropriate item a from a fixed candidate
set of items A for the particular activity. In other words, the algorithm generates
ranking list Γ =< γa1

, γa2
, ..., γal

>, where γai
denotes the probability of the

item ai where the user needs to finish the current activity. Unlike a conventional
recommendation system that typically recommends more than one item for users
each time, our agent recommends only one item with maximum probability for
the activity that needs a recommendation. Table 1 summarises the notations
used throughout this paper.

Table 1: System Notations
Notation Explanation

G Agent
v, V Activity, set of activities
s, s′ state, next state
a action(item)
r Reward
A set of items
Q Q-Network
W Parameters of DQN parameter
Γ Ranking list
γa Probability of the item
O Value of each item
E Experience replay buffer

3.2 Overview

In this section, we describe our framework as shown in Fig.1. We divided it
into two main parts online and offline. In the offline part, our system will be
training to deal with the activities that need a recommendation. Notice during
the training, we treat each activity that needs a recommendation as a session.
During the online part, the agent receives the required features as an input
(state) s; then recommends an appropriate item ai for the activity. There are
three kinds of features that should be received for each activity (session) that
needs a recommendation:

Deep RL for Dynamic Things of Interest Recommendation 5

Fig. 1: The architecture of our framework, which consists of two main parts:
offline and online. The offline part focuses on training our agent G using different
datasets. During the online part, the agent receives each activity and extracts the
required features as state s, then nominates suitable item ai for this state. After
a periodic time called reward delay period Tr, the agent will receive a reward r.
Two kinds of updating will be applied for the system: periodically update after
every recommendation P and the total update after a period of time using the
experience replay buffer.

– Past activities features. Since each activity can have a different pattern, for
each activity, the system extracts the path/sequences of items used. They
enable agent G to learn different patterns of each activity.

– Current activities features. It can define where the user is stuck by reviewing
all previously used items for this activity. This feature helps the agent to
ignore all the used items before and to choose from the rest.

– Item context (IC). It includes information about items, such as to which
activity this item belongs to, how long it could be in use, and how many
times the user needs it for the current activity.
To improve the system’s recommendation accuracy, we consider all features
that help our system learn the best action in a specific state. The public
datasets did not meet all required features , which affect the results of our
systems.

3.3 Deep Q network for recommendation

After the features are extracted, we apply the DQN algorithm to model our
agent. It maps state and action pairs to Q-value using neural networks. It aims
to maximize a cumulative future reward by recommending the correct item ai

6 May S. Altulyan et al.

for each activity that needs a recommendation. Three main components for
the DQN are Q-Network which could be a standard neural network or regular
network depending on the state; Q-Target is identical to the Q Network; and
Experience Replay, which stores all the interactions with the environment and
uses them as mini-batch to update the Q-network. The DQN has two main
features compared with other RL algorithms: (1) using the experience replay
buffer to store the agent experiences E =

{
si, ai, ri, s

′

i

}
which represents state,

action, reward, and next state respectively, (2) adjusting any update for the
target network. Here, agent G (Q-network) will be trained using the offline part.
During this part, the agent learns to map each stat for suitable action. Then, the
agent calculates the reward as feedback to updated the system. We summary
the agent roles as following:

1. Receiving the extracted features of current state s during the interaction
with the environment at timestamp t.

2. Generating a list of recommendations Γ that includes top items to be rec-
ommended using exploration and exploitation policy. Notice, the agent will
pick only one item with the highest ranking.

3. Calculating the reward which considers as feedback to update the system
using the following equation:

r(a) =

∑Tr

t=0Oa,t∑A
a=0

∑Tr

t=0Oa,t

(1)

where O represents the value of each item at each time step and Tr is a
Reward Delay Period.
However, the agent G has to wait for the reward delay period Tr (will be
discussed in the next part).

4. Periodically updating after every recommendation by comparing the perfor-
mance of the Q-network with target network using the following loss fucntion:

loss =MES(predicted Q− V alue, Target Q− V alue) (2)

5. Total updating for the system to tackle the dynamicity of human activity
pattern, the agent G after a period of time (it is defined to be 24 hours for
our system) will use the experience replay buffer to update the network Q
using the following loss equation [?]:

Li(θi) = E(s,a,r,s′) ∼ U(D)

[(
r + γmaxa′Q(s

′
, a

′
; θ−i)−Q(s, a; θi)

)2]
(3)

where γ is a discount factor , θi and θ−i represent the parameters of the
Q-network and the target-network at iteration i respectively.

Most traditional recommender systems focus on “click” or “not click” as feed-
back to calculate the reward function immediately and to update the system. In

Deep RL for Dynamic Things of Interest Recommendation 7

contrast, our system recommends an item to the user and then waits for suffi-
cient time to decide if the recommended item is used or notâĂŤby checking its
status (on/off or moved/not moved). For example, if the system recommends a
coffee machine to Alice when she is preparing a cup of coffee, whereas she wants
to use it later yet not immediately. This does not mean that the recommended
item is incorrect, and it is better for the system to ignore this false negative
feedback this time. To facilitate the above, we introduce a Reward Delay Period
Tr, which accounts for the different paces of users in carrying out activities, and
we consider Tr a hyperparameter. Here, our agent acts using different policies:
EpsGreedyQPolicy, GreedyQPolicy, BoltzmannGumbelQPolicy, MaxBoltzman-
nQPolicy. Table 2 shows details about the policies with DQN that we used for
our agent and their parameters.

Table 2: Explaining policies and tuning Hyperparameters for our agent.
Policies

(1) EpsGreedyQPolicy:

it combines both exploration

by taking a random action with probability epsilon

and exploitation by taking the current

best action with probability (1 - epsilon)

(2) GreedyQPolicy:
it focuses on exploration where it calculates the probability

of choosing the action with the highest Q-value

(3) BoltzmannGumbelQPolicy:
it is an exploration rule which defines

probabilities of actions based on their Q-values.

(4) MaxBoltzmannQPolicy:
it adapts the Gumbel-softmax trick to

address the classic Boltzmann exploration issues

Hyperparameters

batch_size 200

Epsilon 0.1

target_model_update 1e-3

nb_steps 50000

verbose 1

4 Experiment

In this section, we first introduce three public datasets that we used for our
experiments. Next, we conduct some experiments that show the effectiveness of
our proposed RCS and evaluate the performance among these datasets.

8 May S. Altulyan et al.

(a) PUCK. (b) ARAS(houseA).

(c) ARAS(houseB). (d) ADL.

Fig. 2: Performance of our system among three datasets and the Tr=5.

4.1 Datasets

Our evaluation focused on the offline part, and we left the evaluation of the
online part to future work. The evaluation has been applied on three public
datasets: PUCK [?], ARAS [?], and ADL [?].

The PUCK dataset4 was collected in Kyoto smart home testbed in Wash-
ington State University, and it consists of a two-story apartment with one living
room, one dining area, one kitchen, one bathroom, and three bedrooms. A num-
ber of environmental sensors have been installed in this testbed. The ARAS
dataset contains two houses of two residents who performed 27 daily living ac-
tivities. The activity-sensory data was collected from 20 binary sensors. The
ADL Normal dataset represents a public dataset published in 2010. The dataset
was collected from a Kyoto smart apartment testbed in Washington State Uni-
versity. It includes five complex activities. The activities are performed by 20
participants. Features engineering and data processed are explained in detail in
our previous work [?].

4.2 Experiments results

We first evaluate the effectiveness of our RCS in recommending the correct item
to the user in case the user’s current activity needs a recommendation. The
4 http://casas.wsu.edu/datasets/puck.zip

Deep RL for Dynamic Things of Interest Recommendation 9

(a) PUCK. (b) ARAS(houseA).

(c) ARAS(houseB). (d) ADL.

Fig. 3: The Reward Delay Periods Tr=10s.

agent uses all the extracted features as the state to make a recommendation of
the correct item. We use the DQN model that is provided by one public available
‘keras-rl‘ package of python for our experiments. The hyper-parameters of the
DQN model are configured as follows: the number of layers in DQN is set to
6 with two Flatten layers, three Dense layers, and one Activation layer. The
package provides a number of policies that help our agent to map each state
with a correct action.

The performance of our system is shown in Fig. 2. As we can see, the cumula-
tive mean reward for the three datasets; However, the two policies: GreedyQpol-
icy and BlotzmanngumbleQpolicy, produce the highest performance compared
with another two policies. Also, the ARAS dataset for house B (see Fig. 2c)
has the highest cumulative mean reward compared with other datasets. There
are different reasons that could affect the results on different datasets: (1) the
number of item sensors used to collect the data, (2) the time period between
each reading of the sensors values, i.e., half a second for PUCK and a second for
ARAS and ADL datasets, (3) the type of sensor value such as binary or contin-
ues values, (4) the number of items that are included in each activity. Moreover,
all the previous datasets do not consider time as a context which is an important
feature for our system. As mentioned, the Reward Delay Period parameter Tr
has direct impacts on the model’s performance which controls when the agent
should receive the feedback as a reward. Adjusting this parameter is important,

10 May S. Altulyan et al.

(a) PUCK. (b) ARAS(houseA).

(c) ARAS(houseB). (d) ADL.

Fig. 4: The Reward Delay Periods Tr=15s.

Table 3: The cumulative mean reward of our system among three datasets using
different reward delay periods.

Dataset T_{r} Policies
EpsGreedyQPolicy GreedyQPolicy BoltzmannGumbleQPolicy MaxBoltzmannQPolicy

PUCK
5s 0.65 0.75 0.75 0.67
10s 0.58 0.68 0.66 0.60
15s 0.51 0.64 0.62 0.52

ARAS
House (A)

5s 0.64 0.72 0.71 0.63
10s 0.59 0.69 0.68 0.57
15s 0.54 0.67 0.66 0.59

ARAS
House (B)

5s 0.77 0.90 0.90 0.83
10s 0.68 0.78 0.78 0.70
15s 0.65 0.73 0.73 0.64

ADL
5s 0.70 0.77 0.77 0.72
10s 0.74 0.77 0.82 0.75
15s 0.64 0.71 0.72 0.65

and it is various from one activity to another depending on how much time each
item consumes to be used. For example, some items take a little bit of time to
be picked, and others may be a little bit longer. We assume three values of Tr:
5s, 10s, and 15s, then we monitor the performance among these different values.
Fig. 2, Fig. 3 and, Fig. 4 show the performance of our RCS on the three datasets
using three different values of Tr: 5s, 10s, and 15s respectively. Table 3 sum-

Deep RL for Dynamic Things of Interest Recommendation 11

marizes all cumulative mean rewards of our system among three datasets using
different reward delay periods. We can observe that our proposed system per-
formance when the Tr=5 consistently outperforms the other two values: Tr=10,
and Tr=15 for the two datasets: PUCK, and ARAS. However, the ADL dataset
demonstrates that increasing the Tr to 10s improves the cumulative reward to
be around 0.82 instead of 0.77 and 0.72 for the Tr=5 and Tr=15 respectively.
Moreover, table 3 shows the effectiveness of The GreedyQPolicy and Boltzman-
nGumbleQPolicy policies compared with the other two policies. However, among
all the policies, the GreedyQPolicy performs well and is stable except in the last
dataset with Tr=10.

5 Conclusion

In this study, we designed a Reminder Care System (RCS) that uses deep rein-
forcement learning to capture dynamic patterns of human activities and update
the system automatically without waiting for user feedback. The RCS uses DQN
to formulate the agent and considers the reward delay period to account for the
different paces of users in carrying out activities. We conducted experiments on
three real-world public datasets to show that the effectiveness of our system. For
future work, we will test our system on a real-time testbed that considers all
features requirements for the proposed system.

