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Abstract

Model interpretability is one of the most intriguing problems in most of the Machine Learn-
ing models, particularly for those that are mathematically sophisticated. Computing Shap-
ley Values are arguably the best approach so far to find the importance of each feature in
a model, at the row level. In other words, Shapley values represent the importance of a
feature for a particular row, especially for Classification or Regression problems. One of
the biggest limitations of Shapley vales is that, Shapley value calculations assume all the
features are uncorrelated (independent of each other), this assumption is often incorrect.
To address this problem, we present a unified framework to calculate Shapley values with
correlated features. To be more specific, we do an adjustment (Matrix formulation) of the
features while calculating Independent Shapley values for the rows. Moreover, we have
given a Mathematical proof against the said adjustments. With these adjustments, Shap-
ley values (Importance) for the features become independent of the correlations existing
between them. We have also enhanced this adjustment concept for more than features. As
the Shapley values are additive, to calculate combined effect of two features, we just have
to add their individual Shapley values. This is again not right if one or more of the features
(used in the combination) are correlated with the other features (not in the combination).
We have addressed this problem also by extending the correlation adjustment for one fea-
ture to multiple features in the said combination for which Shapley values are determined.
Our implementation of this method proves that our method is computationally efficient
also, compared to original Shapley method.

Keywords: Model Interpretation, Multicollinearity, Feature Extraction, Shapley Values

1. Introduction

The ability to correctly interpret a prediction model’s output is extremely important. It
engenders appropriate user trust, provides insight into how a model may be improved, and
supports understanding of the process being modeled. Shapley values serve this purpose
to a great extent with the biggest limitation that in case the used features are correlated,
then Shapley calculations do not consider that. For example, for a given data point, if two
features X1 and X2 with no correlation are having Shapley values 0.2 and 0.3, then with
significant correlation, these Shapley values will definitely change. Simple reason is that,
when we calculate the importance of X1 (According to Shapley method), we replace X1
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(in a modified Shapley technique, we remove X1) to find the effect on the other features
including X2. Now, if X1 and X2 are having high correlation, then replacement or removal
of X1 will increase the importance of X2. Such effect is undesirable in calculation the right
importance of X2 (and vice versa, while calculating the importance of X1). Therefore, we
adjust X2 with a linear modification (say X ′

2) so that X ′

2 would not have any correlation
with X1, thereby nullifying the correlation effect of X1 while calculating the importance
of X1 by removing/replacing X1. This method would be extended while calculating the
combined importance of X1,X2 (or any other combination of any size).

Again, if we are supposed to find the combined importance of (X1,X2) for the proposed
model, Combined Shapley value of (X1,X2) cannot be a simple summation of Shapley
(X1) and Shapley(X2) when X1 and X2 are individually correlated with other features, say
X3,X4, . . . .,Xk (Let’s say there are K features in the model). In other words, combined
effect of (X1,X2) should be less than Shapley (X1) + Shapley (X2). In the example above,
this combined effect < (0.2 + 0.3) = 0.5, as proposed by the original Shapley method. To
address this issue and quantify the combined effect, first we find the independent Shapley
values (Importance values) of the features using the technique mentioned above. Then, we
do the modification for the combined effect as an enhancement of the same method. Suppose,
we want to modify X3 to X ′

3 where X ′

3 would be uncorrelated with both X1 and X2 (features
that are part of the said combination). So, we have added a linear adjustment factor with X3

(to make X ′

3) and this factor is a function of covariance of X3 with X1 and X2 individually.

In general, if there are k features, we present a linear adjustment based on a combination
of p features on rest of the features (i.e. rest k˘p features) in a matrix formulation, given
below. It is mentionable that while calculating the feature combination effect of m features,
we have to find independent feature importance values using the method and formulation
stated in the first step.

Moreover, we present a detailed Mathematical proofs regarding how we have reached
the matrix formulations while adjusting for the effect of combination X1,X2, . . . .,Xk upon
rest of the features. It is quite intuitive that the matrix formulation representing the linear
adjustment is pretty much similar for rest of the features. A very practical assumption for
this Mathematical derivation is that, all the correlations are linear in nature. For most of
the real time scenario where features are extracted properly, this assumption should hold
good. Necessary Mathematical derivation considering those non linear correlation effects
are also possible without much hassle.

Biggest advantage of this modification addressing the correlation effects is that, linear
correlations among the features in a dataset are very much common for the datasets evolving
from most of the domains, e.g. Healthcare, Retail, Telecom, E-commerce. For example,
importance values of smoking and drinking are 0.4 and 0.3 calculated from original Shapley
method respectively for a possible early heart attack. It is quite obvious that people who
smoke and the people who drink are very much correlated. Then, Shapley cannot find their
independent importance values correctly in respect of possible heart attach due to smoking
and drinking. Our technique definitely helps an Analyst or Healthcare professional under
the independent effects of smoking and drinking. Also, the combined effect of smoking and
drinking cannot be the sum of 0.4 and 0.3 as depicted in the original Shapley method. Our
technique rightly addresses the same.
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2. Related Work

Correlation effects can be handled only with a few methods mentioned in chapter 5 of the
book, A Guide for Making Black Box Models Explainable by Molnar (2019). First one is that,
permute correlated features together and get one mutual Shapley value for them. Second
one is to determine conditional sampling: Features are sampled conditional on the features
that are already in the team. In both the approaches, we cannot find feature importance
values independent of each other.

3. Our Approach

For a given data (X, y), if two features Xj and Xk (where j 6= k) are linearly correlated,
then we propose three novel ideas to correct the shapley output of a feature based on the
feature types of the data available. Xj is the j-th feature where j = 1, 2, 3, ...,m and m is
the total number of features. y is the response variable.

The main idea of multi-collinearity correction while calculating shapely values of feature
Xj for datapoint i, is that we remove the correlation effect of Xj from all of the other
features Xk, where k = 1, 2, 3, ...,m, and j 6= k. We have tested this algorithm for shapely
value calculation including multiple machine learning models.

3.1 Numeric Predictors Only

Unlike shapley values, as the Multi-collinearity Corrected (MCC) Shapley values are not
additive, we have to calculate MCC shapley value for a specific feature combinations to get
the same. We break this subsection into two parts, where in the first part we discuss about
the calculation of MCC shapley values for individual features and in the next part we discuss
the same for the combination of two or more features.

3.1.1 MCC Shapley Values for Individual Features

Assume for a dataset the correlation of Xj with other features X1,X2, ...,Xj−1,Xj+1, ...,Xm

are cj1, cj2, ..., cj(j−1), cj(j+1), ..., cjm respectively. If we are interested in calculating the
shapely value of Xj , we add one Adjustment Factor (AFk) with Xk, where k = 1, 2, ..., j −
1, j + 1, ...,m, while we randomize (or remove) Xj in the shapley value calculation process
so that,

cor(Xj ,Xk +AFk) = 0 (1)

Putting AFk = aXj in the above equation and solving we get,

AFk = −
cov(Xj ,Xk)

var(Xj)
Xj (2)

The detailed steps from Equation A to Equation 2 have been shown in Appendix A. The
reason of taking AFk as only a function of Xj , because we want to remove the correlation
effect of Xk only from Xj.
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3.1.2 MCC Shapley Values for Combination of Two or More Features

Assume for a dataset the correlation of Xi and Xj with other features Xk, where k =
1, 2, ...,m and k /∈ {i, j}, are cik and cjk respectively. If we are interested in calculating the
shapely value of the combination of Xi and Xj, we add one Adjustment Factor (AFk) with
Xk, while we randomize (or remove) Xi and Xj all together in the shapley value calculation
process so that,

cor(Xi,Xk +AFk) = 0

cor(Xj ,Xk +AFk) = 0
(3)

Putting AFk = aXi + bXj in the above equation and solving we get,

a =
cov(Xi,Xk)var(Xj)− cov(Xj ,Xk)cov(Xi,Xj)

var(Xi)var(Xj)− (cov(Xi,Xj))2

b =
cov(Xj ,Xk)var(Xi)− cov(Xi,Xk)cov(Xi,Xj)

var(Xi)var(Xj)− (cov(Xi,Xj))2

(4)

As we want to nullify the effect of Xk from both Xi and Xj , the adjustment factor of Xk,
AFk is only function of Xi and Xj . The detailed steps are in Appendix B. By the similar
manner, the combination of two features can be easily expanded to combination of p + 1
(p + 1 ≤ m) features. In this case equation 3 becomes,

cor(Xi,Xk +AFk) = 0

cor(Xi+1,Xk +AFk) = 0

cor(Xi+2,Xk +AFk) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

cor(Xi+p,Xk +AFk) = 0

(5)

Putting
AFk = aiXi + ai+1Xi+1 + ai+2Xi+2 + ...+ ai+pXi+p (6)

in the equation 5 and writing the p equations in matrix form we get,


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By Cramer’s rule,

ai+j =
detAj+1

detA
(8)

where, Aj+1 =
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Once we calculate all the ai+j , where j = 0, 1, 2, ..., p, those values can be put back in
equation 6 to get the adjustment factor for feature Xj while calculating MCC shapley values.

3.1.3 Algorithm of MCC Shapley Value Calculation

For MCC shapley value calculation we used our adjustment factor in approximate shapley
value calculation with Monte-Carlo sampling proposed by Štrumbelj and Kononenko (2013)
as original shapley value calculation is very time consuming and practically infeasible for
large number of features. Algorithm 1 contains estimation of MCC shapley values. This
algorithm is exactly same as the algorithm of approximate shapley value calculation written
in the chapter 5 of the book by Molnar (2019) except line 9 and 10, where we add our novel
adjustment factors to each of the features in coalitions excluding x

(i)
j as Xj is the feature of

interest for calculation of MCC shapley values for x(i). It is to be noted that, as correlation
is only restricted to numerical variables, the multi-collinearity correction is only applicable
to the same. So, in step 9 and 10, Xj and the features with which we add AF must be
numerical.

4. Results

We experimented on those datasets where at least two features have moderate to high cor-
relation values between them for the MCC shapley value calculation for indivudual features
and combination of two features. The result is very intuitive to understand with the pres-
ence of strong multi-collinearity (correlation value ≈ 1). This statement will become clearer
once we show and explain the results in this section. We mainly focused to calculate MCC
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Algorithm 1 Estimation of MCC Shapley Values

1: Output: MCC Shapley value for the value of the j-th feature, x(i)j .
2: Required: Number of iterations M , instance of interest x(i), feature index j, data

matrix X, and machine learning model f
3: for m← 1,M do
4: Draw random instance x(r) from the data matrix X
5: Choose a random permutation o of the feature values
6: Order instance x(i): x

(i)
[o] = (x

(i)
(1), ..., x

(i)
(j), ..., x

(i)
(m))

7: Order instance x(r): x
(r)
[o] = (x

(r)
(1), ..., x

(r)
(j) , ..., x

(r)
(m))

8: Construct two new instances adding adjustment factors to the feature values in coali-
tions i.e features belongs to instance x(i)

9: • With feature j: x+j = (x
(i)
(1) +AF(1), ..., x

(i)
(j−1) +AF(j−1), x

(i)
(j), x

(r)
(j+1), ..., x

(r)
(m))

10: • Without feature j: x−j = (x
(i)
(1) + AF(1), ..., x

(i)
(j−1) +

AF(j−1), x
(r)
(j), x

(r)
(j+1), ..., x

(r)
(m))

11: Compute marginal contribution: φm
j = f̂(x+j)− f̂(x−j)

12: Compute MCC Shapley value as the average: φj(x) =
1
M

∑M
m=1 φ

m
j

shapley values with individual and combination of two features. The other combinations
can be easily calculated based on the matrix form shown in the section 3.1.2.

4.1 Dataset - House Prices

This dataset from Kaggle (2016) presents a regression problem where given the attributes of
a house, the prediction of the price of the house to be predicted. We did the pre-processing
which includes handling missing values and creation of dummy variables for the categorical
variables to make the dataset prepared for model fitting with the final 331 predictors.

4.1.1 Results of MCC Shapley Values for Individual Features

As the dataset with features with strong multi-collinearity (correlation ≈ 1) is hard to find,
we break our results into two scenarios, in first scenario we add one (or two) artificially
created variables with correlation ≈ 1 with any one (or two) of the features to understand
the effect of multi-collinearity correction. Once we understand this, in the second scenario we
shall observe the effect of the same with two real features with high correlation. We refrain
ourselves from fitting linear models as the estimate of the coefficients become unstable due
to the presence of multi-collinearity. From now on we term shapley values with and without
multi-collinearity as MCC-SV and NMCC-SV respectively.

In scenario 1, we picked one numerical feature MiscVal as our feature of interest because
MiscVal has very low correlation (≈ 0) with the other numerical features. We shall explain
the reason behind doing so after we show the result. We created one highly correlated
variable (correlation ≈ 1) with MiscVal artificially and name it MiscVal_corr. This makes
MiscVal and MiscVal_corr the equally important feature to the output feature SalePrice.
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Model
Without Presence of
Artifically Created
Variable

With Presence of Artifically Created Variable

NMCC-SV
of MiscVal

MCC-SV
of MiscVal

NMCC-SV
of MiscVal

NMCC-SV of
MiscVal_corr

MCC-SV
of MiscVal

MCC-SV of
MiscVal_corr

Decision Tree -261.4 ± 5.3 -260.2 ± 5.3 -129.3 ± 5.1 -128.3 ± 4.8 -263.1 ± 5.4 -262.9 ± 4.7
Random Forest -210.9 ± 1.4 -209.8 ± 1.4 -107.8 ± 1.1 -102.4 ± 1.2 -213.5 ± 0.9 -210.2 ± 1.3
Gradient Boosting -273.2 ± 1.1 -272.1 ± 1.1 -138.1 ± 1.4 -137.3 ± 1.2 -276.3 ± 1.8 -275.2 ± 1.0
Extreme Gradient Boosting -265.9 ± 1.2 -263.8 ± 1.2 -135.2 ± 1.2 -131.7 ± 1.3 -265.0 ± 0.9 -264.2 ± 1.1
Support Vector Regression -112.6 ± 0.4 -113.9 ± 0.4 -53.4 ± 0.3 -55.6 ± 0.1 -111.0 ± 0.1 -115.7 ± 0.2

Table 1: Shapley Values with and without Multi-collinearity Correction for a randomly
picked data point for MiscVal Feature. These values are created for a Monte-Carlo simula-
tion with 10000 iterations.

Table 1 shows the shapley values with and without multi-collinearity correction for a ran-
domly picked data point for MiscVal feature. In the table Without Presence of Artif-
ically Created Variable and With Presence of Artifically Created Variable mean
the situations where models are trained with the original 331 predictors and 331+1 artifi-
cially created feature (MiscVal_corr) respectively. From Table 1 it is seen that with the
presence of MiscVal_corr the NMCC shapley values have sliced to half of the NMCC shap-
ley values without the presence of MiscVal_corr for all the models. This is very intuitive
because as both MiscVal and MiscVal_corr are the equally important features to the out-
put feature and this is the reason we created the artificial feature with correlation ≈ 1.
But this reduction of the shapley values with the presence of correlated variable is highly
unwanted as stated earlier, because if MiscVal is an important variable to the output then
the importance of it reduces down due to the presence of a similar important variable. It is
also seen from the table that due to our novel multi-collinearity correction the MCC shap-
ley values of both MiscVal and MiscVal_corr increased back to the earlier NMCC shapley
values without the presence of MiscVal_corr. Under Without Presence of Artifically
Created Variable column header along with NMCC-SV of MiscVal there is another
column MCC-SV of MiscVal which calculates the MCC shapley value of Miscval without
presence of MiscVal_corr. We see that the values of both the columns are almost same,
because the correlation of the other features with MiscVal is almost 0. This is the reason we
chose this type of feature to have a sanity check of the performance of our multi-collinearity
correction.

In Scenario 2, We picked feature 1stFlrSF and we see that 1stFlrSF has high correla-
tion (0.82) with TotalBsmtSF. To understand the effect of the multi-collinearity correction,
in one setting we remove highly correlated features with 1stFlrSF and build the model to
calculate the shapley values. Then in the second setting we use all the 331 features of the
dataset to build the model and compare the MCC and NMCC shapley values. Table 2 shows
shapley values with and without Multi-collinearity Correction for a randomly picked data
point for 1stFlrSF Feature. In the first setting Without Presence of TotalBsmtSF we
have compared between MCC and NMCC shapley values. As we build the model removing
the highly correlated features with 1stFlrSF we see that there is not much difference be-
tween NMCC and MCC shapley values, but there is one interesting pattern which is that
the MCC shapley values are always slightly greater than the NMCC shapley values. Though
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Model
Without Presence of
TotalBsmtSF

With Presence of all of
331 features

NMCC-SV
of 1stFlrSF

MCC-SV
of 1stFlrSF

NMCC-SV
of 1stFlrSF

MCC-SV
of 1stFlrSF

Decision Tree 2721.1 ± 5.1 2832.2 ± 5.0 1932.8 ± 5.6 2841.7 ± 5.2
Random Forest 2502.3 ± 1.1 2715.4 ± 1.6 1781.3 ± 1.2 2700.4 ± 1.5
Gradient Boosting 2657.7 ± 0.9 2919.1 ± 1.1 1699.1 ± 0.9 2933.4 ± 1.0
Extreme Gradient Boosting 3356.2 ± 1.4 3612.6 ± 0.9 2134.5 ± 1.5 3597.8 ± 1.1
Support Vector Regression 1745.8 ± 0.5 1983.7 ± 0.4 1244.9 ± 0.7 1998.4 ± 0.8

Table 2: Shapley Values with and without Multi-collinearity Correction for a randomly
picked data point for 1stFlrSF Feature. These values are created for a Monte-Carlo simu-
lation with 10000 iterations.

we removed the highly correlated features while building the model there were some features
(e.g. BsmtFinSF1, GarageArea, BsmtUnfSF, WoodDeckSF, etc.) having moderate/low cor-
relation with 1stFlrSF, thus they reduced the NMCC shapley values to a little extent. But
with the presence of the highly correlated feature TotalBsmtSF, we see that the NMCC
shapley values has reduced down a lot, but the reduction is not roughly 50% like scenario
1, because here the correlation between TotalBsmtSF and 1stFlrSF is not 1. With the use
of our multi-collinearity correction the MCC shapley values increased and roughly matches
with the MCC shapley values calculated from the model built on Without Presence of
TotalBsmtSF in dataset. The match is not very close because we are comparing the the
shapley values of two different models and in one of the model TotalBsmtSF feature is not
available.

4.1.2 Results of MCC Shapley Values for Combination of two Features

For combination of two features, for scenario 1, We picked two features MiscVal and
3SsnPorch who are almost uncorrelated with the other features. We created two highly
correlated artificial features and name those MiscVal_corr and 3SsnPorch_corr. Table 3
shows the result of the effect of Multi-collinearity correction for the combination of two fea-
tures which is analogous of Table 1 for individual features. From the result it is seen that the
NMCC shapley values sliced to half due to presence of the perfectly correlated features, but
the multi-collinearity correction factor helped those features to get back the actual values
i.e. MCC shapley values. Also, as MiscVal and 3SsnPorch are almost uncorrelated with
other features, NMCC and MCC shapley values are almost same without the presence of
artificially created variable across all the models.

For scenario 2, we just compared the shapley values with and without multi-collinearity
correction for a combination of two features i.e. 1stFlrSF and 2ndFlrSF. Table 4 shows
the result from which it is seen that as 1stFlrSF and 2ndFlrSF have moderate to strong
correlation with other features, due to correction the MCC shapley values increase with
respect to their NMCC shapley values counter-parts.

8



Multicollinearity Correction and Combined Feature Effect in Shapley Values

Model
Without Presence of Artifically
Created Variable

With Presence of Artifically
Created Variable

NMCC-SV of
the combination
of MiscVal and
3SsnPorch

MCC-SV of the
combination of
MiscVal and
3SsnPorch

NMCC-SV of
the combination
of MiscVal and
3SsnPorch

MCC-SV of the
combination of
MiscVal and
3SsnPorch

Decision Tree 417.2 ± 4.9 415.6 ± 5.0 211.4 ± 5.1 419.6 ± 4.8
Random Forest 323.6 ± 1.9 327.8 ± 1.8 163.8 ± 1.9 330.9 ± 2.0
Gradient Boosting 374.3 ± 1.4 376.1 ± 1.7 185.0 ± 1.3 370.7 ± 1.5
Extreme Gradient Boosting 289.5 ± 1.1 292.5 ± 1.4 149.7 ± 1.7 289.1 ± 1.6
Support Vector Regression 134.5 ± 0.7 145.3 ± 0.8 67.3 ± 0.9 149.2 ± 0.6

Table 3: Shapley Values with and without Multi-collinearity Correction for a randomly
picked data point for the combination of MiscVal and 3SsnPorch features. These values are
created for a Monte-Carlo simulation with 10000 iterations.

Model NMCC-SV of com-
bination of 1stFlrSF
and 2ndFlrSF

MCC-SV of combina-
tion of 1stFlrSF and
2ndFlrSF

Decision Tree 3321.5 ± 3.2 4610.3 ± 3.3
Random Forest 2895.4 ± 1.4 3767.6 ± 1.6
Gradient Boosting 3006.7 ± 1.3 4209.2 ± 1.3
Extreme Gradient Boosting 3209.1 ± 0.9 4479.9 ± 1.0
Support Vector Regression 3877.0 ± 0.7 5003.6 ± 0.9

Table 4: Shapley Values with and without Multi-collinearity Correction for a randomly
picked data point for the combination of 1stFlrSF and 2ndFlrSF features. These values are
created for a Monte-Carlo simulation with 10000 iterations.

4.2 Dataset - Default of Credit Card Clients

This data set by Yeh and hui Lien (2009) aimed at the case of customers’ default payments
in Taiwan and predicts probability of default of clients. For this data set, to compare
results between with and without multi-collinearity correction for individual or combination
of features, we mainly focused on the real features like scenario 2 in the earlier section. As
this a classification problem the shapley values are produced in logit terms. Table 5 and
Table 6 shows the effect of multi-collinearity correction for individual and combination of two
features respectively. As there are correlation with the features it is seen that for almost all
the cases across all the models the shapely values increase after multi-collinearity correction.
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Model
NMCC Shapley Values MCC Shapley Value
PAY_2
&
PAY_3

BILL_AMT5
&
BILL_AMT6

PAY_2
&
PAY_3

BILL_AMT5
&
BILL_AMT6

Decision Tree 6.1 ± 0.2 2.9 ± 0.3 10.7 ± 0.3 5.5 ± 0.2
Random Forest 5.1 ± 0.1 3.0 ± 0.1 9.1 ± 0.1 5.6 ± 0.1
Gradient Boosting 4.8 ± 0.1 3.4 ± 0.1 9.0 ± 0.1 6.0 ± 0.1
Extreme Gradient Boosting 5.3 ± 0.1 3.9 ± 0.1 9.9 ± 0.1 7.3 ± 0.1

Table 6: Shapley Values with and without Multi-collinearity Correction for a randomly
picked data point for two sets of combination of two features i.e. PAY_2 & PAY_3 and
BILL_AMT5 & BILL_AMT6. These values are created for a Monte-Carlo simulation with 10000
iterations.

Feature Size NMCC-SV(sec) MCC-SV(sec)
≈ 10 0.3 ± 0.01 0.3 ± 0.03
≈ 100 0.9 ± 0.02 1.0 ± 0.03
≈ 1000 4.7 ± 0.01 4.9 ± 0.01
≈ 10000 17.3 ± 0.01 18.1 ± 0.01

Table 7: Comparison of Shapley Value Calculation with and without correlation adjustment.
This result is produced with Random Forest model and 10000 Monte-Carlo iterations.

Model
NMCC Shapley Values MCC Shapley Value
PAY_6 BILL_AMT6 PAY_AMT6 PAY_6 BILL_AMT6 PAY_AMT6

Decision Tree 3.7 ± 0.4 4.9 ± 0.3 1.7 ± 0.2 6.6 ± 0.3 0.5 ± 0.2 2.6 ± 0.3
Random Forest 3.2 ± 0.1 4.0 ± 0.1 1.8 ± 0.1 6.0 ± 0.1 7.4 ± 0.1 3.0 ± 0.1
Gradient Boosting 2.9 ± 0.1 5.1 ± 0.1 2.0 ± 0.1 5.9 ± 0.1 9.8 ± 0.1 3.6 ± 0.1
Extreme Gradient Boosting 4.5 ± 0.1 4.3 ± 0.1 2.1 ± 0.1 7.1 ± 0.1 8.1 ± 0.1 3.6 ± 0.1

Table 5: Shapley Values with and without Multi-collinearity Correction for a randomly
picked data point for three individual features i.e. PAY_6, BILL_AMT6 and PAY_AMT6. These
values are created for a Monte-Carlo simulation with 10000 iterations.

We performed one additional experiment where we compared the execution time between
the MCC and NMCC shapley value calculation. This experiment is done in a machine with
2.6 GHz Intel Core i7 and 8 GB available RAM. Table 7 shows the comparison in execution
time of the Shapley Values with and without multi-collinearity correction. This result is
produced with a Random Forest model which is trained on default parameters and the
number of iterations of Monte-Carlo simulation is 10,000. From the table it is seen that
introduction of the correlation adjustment factor does not almost have any effect in the
execution time for calculating shapley values.

5. Conclusion

This paper shows that the novel multi-collinearity correction factor with shapley values
helps to interpret features more accurately with the presence of moderate to high correlation
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within features in a data. Our algorithm is tested on multiple datasets and multiple models
to prove it’s efficacy. For better intuitive understanding we analysed the effect of our novel
multi-collinearity correction factor with the presence of both artificially created features and
real features and concluded it’s effectiveness from different perspective. Finally we analysed
the effect of the multi-collinearity correction factor in execution time and concluded that
with the presence of multi-collinearity correction factor, the execution time is almost same
compared to the calculation of shapley values without multi-collinearity correction factor.
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Appendix A. Detailed Steps for the Calculation of Adjustment Factor for

Individual Features

cor(Xj ,Xk +AFk) = 0

=⇒ cov(Xj ,Xk +AFk) = 0

Putting AFk = aXj in the above equation we get,

cov(Xj ,Xk + aXj) = 0

=⇒ cov(Xj ,Xk) + a× cov(Xj ,Xj) = 0

=⇒ a = −
cov(Xj ,Xk)

var(Xj)

Putting the value of a, we get,

AFk = −
cov(Xj ,Xk)

var(Xj)
Xj

Appendix B. Detailed Steps for the Calculation of Adjustment Factor for

Combination of Two Features

Putting AFk = aXi + bXj in the equation 3 we get,

cor(Xi,Xk + aXi + bXj) = 0

=⇒ cov(Xi,Xk + aXi + bXj) = 0

=⇒ cov(Xi,Xk) + a× cov(Xi,Xi) + b× cov(Xi,Xj) = 0

=⇒ cov(Xi,Xk) + a× var(Xi) + b× cov(Xi,Xj) = 0

(9)

and,

cor(Xj ,Xk + aXi + bXj) = 0

=⇒ cov(Xj ,Xk + aXi + bXj) = 0

=⇒ cov(Xj ,Xk) + a× cov(Xj ,Xi) + b× cov(Xj ,Xj) = 0

=⇒ cov(Xj ,Xk) + a× cov(Xi,Xj) + b× var(Xj) = 0

(10)

Solving above two equations for a and b, we get the values shown in equation 4.
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