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Abstract. We present efficient reduced basis (RB) methods for the sim-
ulation of a coupled problem consisting of a rigid robot hand interacting
with soft tissue material. The soft tissue is modeled by the linear elastic-
ity equation and discretized with the Finite Element Method. We look
at two different scenarios: (i) the forward simulation and (ii) a feedback
control formulation of the model. In both cases, large-scale systems of
equations appear, which need to be solved in real-time. This is essential
in practice for the implementation in a real robot. For the feedback-
scenario, we encounter a high-dimensional Algebraic Riccati Equation
(ARE) in the context of the linear quadratic regulator. To overcome the
real-time constraint by significantly reducing the computational com-
plexity, we use several structure-preserving and non-structure-preserving
reduction methods. These include reduced basis techniques based on the
Proper Orthogonal Decomposition. For the ARE, we compute a low-
rank-factor and hence solve a low-dimensional ARE instead of solving a
full dimensional problem. Numerical examples for both cases (i) and (ii)
are provided. These illustrate the approximation quality of the reduced
solution and speedup factors of the different reduction approaches.

Keywords: Model order reduction · Soft tissue · Robotics.

1 Introduction

The ability to manipulate deformable objects using robots has diverse applica-
tions with enormous economical benefits. The applications include food industry,
medical sectors, automobile industry, soft material processing industry and many
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more. Although grasping and manipulation of rigid objects by robots is a ma-
ture field in robotics, with over three decades of works, the study of deformable
objects has not been as extensive in the robotics community [4]. Here, we model
the elastic object using existing linear elastic theory with two characterization
parameters, namely, first and second Lamé parameter. The two most challeng-
ing and frequently studied manipulation tasks on planar deformable objects are
grasping and controlling its deformations [5]. Grasping an object consists of po-
sitioning the end effectors of a robot hand on the object to lift and hold it in the
air, which involves the challenges of slipping off and non-linear contact mechan-
ics. For the sake of simplicity, we assume the soft tissue material to be attached
to the rigid robot’s end effectors. We are interested in controlling the object
using a feedback controller and transfer it to a target position. Here, we focus
on two different scenarios, (i) the forward simulation of the coupled problem,
where the robot hand along with the soft tissue material follows a prescribed
trajectory, and (ii) a feedback control such that the robot hand along with the
soft tissue material cost-optimally reaches a target position and then stabilizes.
In Fig. 1, a schematic view is provided. After the discretization of both prob-
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Fig. 1. Schematic view of gripper soft tissue system with target position.

lems, large-scale systems of equations appear. Another challenging issue besides
modeling and controlling is that the simulation of the model has to be finished in
real-time because in a modern robotics software, like Franka Control Interface
[8], all real-time loops have to be finished within 1 ms. A feasible solution of
this is to simulate a reduced model instead of a full order model. We developed
and applied different structure-preserving and non-structure-preserving methods
to maintain specific structures, e.g. block structure in the reduced system. The
paper is organized in the following way. In Section 2, we discuss the modeling
based on a spatially continuous formulation, which is followed by a large-scale
spatially discrete problem in the context of the forward and LQR control prob-
lem. In Section 3, we discuss different reduced basis methods for both cases. Next
in Section 4, we apply the MOR techniques in two numerical examples. Finally,
we compare the approximation quality of the reduced solutions and provide a
comparison of the execution time in contrast to the full order model.

2 Model Problems

We model the soft tissue material by the following time-dependent linear elas-
ticity partial differential equation (PDE). We assume a two-dimensional spa-
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tial domain Ωe := (0, 1) × (0, 2) ⊂ R2 with boundary, Γ = ΓD ∪ ΓN where
ΓD = {0, 1} × [1.5, 2] denotes the Dirichlet boundary and ΓN = Γ \ ΓD denotes
the Neumann boundary. The governing equation for the displacement field is

∇ · σ + F = ρq̈c in Ωe × (0, T )

with suitable initial and boundary conditions where qc is the displacement vector
and σ the Cauchy stress tensor. F is the external body force per unit volume and
ρ is the mass density. The constitutive equation is σ = C : ε according to Hooke’s
law for elastic material, where C is a fourth-order tensor and : is the contraction
operator. For isotropic and homogeneous media holds σ = 2µε+ λtr(ε)I where
λ, µ are the Lamé parameters. The strain is expressed in terms of the gradient
of the displacement with ε = 1

2 (∇qc + (∇qc)T ).

2.1 Forward Model

After discretization using the Finite Element Method (FEM), we get the follow-
ing second order system of differential equations,

M(ρ)q̈(t) +K(µ, λ)q(t) = f(t) +Buu(t) (1)

with the parameters ρ, λ, µ ∈ R and the state vector q ∈ Rn which is decom-
posed into the displacement vector qs ∈ Rns of the solid robot hand and the
displacement vector qe ∈ Rne of the soft tissue material, i.e. q := [qs, qe]

T ∈ Rn,
n := ns + ne. The mass and stiffness matrix M,K ∈ Rn×n, the influence ma-

trix Bu ∈ Rn×m, the body force f(t) =
[
fTs (t) fTe (t)

]T ∈ Rn and input vec-

tor u(t) =
[
uTs (t) uTe (t)

]T ∈ Rn in the above equations are as follows: M =[
Mss Mse;Mes Mee

]
, K =

[
Kss Kse;Kes Kee

]
, Bu = blkdiag(Bus, Bue). Here

the block matrices with the subscript se or es refer to the coupled matrix coeffi-
cient between the vectors qs and qe and the ; indicates a new block row. With all
non-zero block matrices, the problem can be interpreted as a two-way coupled
problem [7]. For simplification, we assume that the mass of the solid system is
large enough compared to the mass of the elastic system, such that the influence
of the motion of the elastic system on the solid body is negligible but vice versa
is relevant, i.e. Mse is chosen as a zero matrix and Mes is a non-zero matrix.
Since we consider the robot hand as a rigid body, Kss is set to zero. The contact
zone follows the motion of the solid body, so we ignore Kse. The values of the
displacement vectors on the Dirichlet boundary of the elastic body are deter-
mined by the displacement vectors of the solid body qs, i.e. Kes is a non-zero
matrix. With these assumptions, we obtain the following one-way coupled model[

Mss 0
Mes Mee

] [
q̈s(t)
q̈e(t)

]
+

[
0 0
Kes Kee

] [
qs(t)
qe(t)

]
=

[
fs(t)
fe(t)

]
+

[
Bus

0

] [
us(t)
ue(t)

]
.

(2)

Here, the elasticity part of the state vector is coupled with the acceleration and
displacement of the solid state vector. For solving Eq. 2, we transformed it into
system of first order differential equations, where the state vector is composed
of the displacement q(t) and the velocity v(t) = q̇(t).
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2.2 Linear Quadratic Regulator (LQR)

For feedback control, we formulate a LQR problem and assume the weighing
matrices Q ∈ Rp×p, p ≤ 2n to be symmetric positive semi-definite and R ∈
Rm×m to be symmetric positive definite. We define the quadratic cost functional

J(u) =

∫ ∞
0

[x(t)TCTQ1/2Q1/2 Cx(t) + u(t)TRu(t)]dt

with Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) = x0, time t ∈ R+, the state

x(t) =
[
qTs (t) q̇Ts (t) qTe (t) q̇Te (t)

]T ∈ R2n, the input u(t) ∈ Rm, the output y(t) ∈
Rp and system matrices E,A ∈ R2n×2n, B ∈ R2n×m, C ∈ Rp×2n with E =[
Ess 0
Ees Eee

]
, A =

[
Ass 0
Aes Aee

]
, B =

 0
Bus

0

 , C =

[
0 0 0 0 1 0 . . . 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 1 0 . . . 0

]
.

If we assume (E,A,B) to be stabilizable and
(
E,A,Q1/2C

)
to be detectable, the

optimal control problem (OCP) possesses a unique solution u(t) = Kfx(t) with
the feedback gain matrix Kf = −R−1BTPE ∈ Rm×2n. Here, the symmetric
positive semi-definite matrix P ∈ R2n×2n is the unique stabilizing solution of
the Generalized Algebraic Riccati Equation (ARE) [1]

ETPA+ATPE − ETPBR−1BTPE + CTQC = 0 (3)

Note that this is a large-scale problem with 4n2 unknowns and therefore of
quadratic complexity.

3 Reduced Basis Methods

The RB-method [9] approximates the solution in a low-dimensional subspace
that is constructed from solutions of the large-scale problems (Eq. 1 and 3).
To construct a reduced basis matrix V := span{ψ1, . . . ψNV

} ∈ R2n×NV with
NV basis functions, we define a snapshot matrix X := [x1, . . . , xnsn

] ∈ R2n×nsn

with 1 ≤ i ≤ nsn so-called snapshots xi, which are acquired by solving the corre-
sponding large-scale problem. For different reduction techniques, we use different
splittings of the snapshot matrix: a splitXe ∈ R2ne×nsn ,Xs ∈ R2ns×nsn in elastic
and solid part, a split Xq, Xv ∈ Rn×nsn in velocity and displacement and a com-
bination of both splits Xsq , Xsv ∈ Rns×nsn , Xeq , Xev ∈ Rne×nsn . The reduction
techniques are based on the so-called Proper Orthogonal Decomposition (POD).
It chooses the reduced basis as the first k left-singular vectors of the snapshot
matrix X which we denote with PODk(X). In practice, the POD basis is com-
puted via the truncated Singular Value Decomposition of X. In the following,
the methods are classified as non-structure-preserving and structure-preserving
techniques.

3.1 MOR for forward problem

For the model reduction, we apply Galerkin projection with a suitable basis
matrix V . The non-structure-preserving methods are the following:
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• Global POD: Here, we implement a global POD, i.e. perform a singular
value decomposition (SVD) of the snapshot matrix, V = PODk(X).

• Componentwise POD: In this technique, we apply the POD algorithm
for displacement and velocity snapshots separately, i.e. V1 = PODk1

(Xq),
V2 = PODk2

(Xv) and then construct V = blkdiag(V1, V2).

As structure-preserving techniques, we apply the following methods:

• POD with fixed solid modes: The reduced basis space is constructed
in the following way: We apply POD only in the elastic part of the snap-
shots, i.e. Ve = PODke

(Xe) and hence construct V = blkdiag(I2ns
, Ve) where

I2ns
∈ R2ns×2ns is the identity matrix. The unreduced solid modes are still

computationally efficient since ns � ne.
• Componentwise POD with fixed solid modes: Here we construct V =

blkdiag(I2ns
, Veq , Vev ), with Veq = PODkeq

(Xeq ), Vev = PODkev
(Xev ).

• Global Proper Symplectic Decomposition(GPSD): As our system for
u = 0 is a Hamiltonian system, we construct a so-called orthosymplectic basis
matrix. As basis generation technique, we use the so-called PSD Complex
SVD based on the SVD of a modified snapshot matrix Y = [X JX], where
J is the corresponding Poisson matrix. For more details, we refer to [6].

• PSD with fixed solid modes: Here, we apply the PSD only on the elastic
part.

3.2 RB-ARE for LQR

In practice, the dimension of the state space and hence of P is typically very
high. The dimension m of the input u(t) and p of the output y(t) is much smaller
than the number of states 2n. The computation of P is often very expensive or
even impossible [2]. Instead of determining P , we compute ZZT ≈ P with low-
rank-factor Z ∈ R2n×N of low-rank N � 2n. The methods without fixing the
solid modes include:

• POD of ARE solution P : We construct the reduced basis matrix using
the POD of the solution of ARE, i.e. V = PODk(P ).

• Weighted POD: We assume a weighting matrix W = 1
2 (E+ET ) and apply

a weighted POD [3], i.e. V := W−
1
2 PODk(W

1
2P ).

The method with fixed solid modes are the following:

• POD with fixed solid modes: We decompose the solution P of the ARE
into Pss, Pse, Pes and Pee and apply Ve := PODk

([
Pes, Pee

])
and construct

V := blkdiag(I2ns
, Ve).

• Componentwise POD: We decompose blocks of P in displacement and ve-
locity and use PODk1

([
Pes11 , Pee11 , Pee12

])
and PODk2

([
Pes21 , Pee21 , Pee22

])
for displacement and velocity part separately to construct V.

• POD of decomposed P : We use V1 := PODk1
(
[
Pee11 , Pee12 , Pee21 , Pee22

]
)

where Pee11 , Pee12 , Pee21 , Pee22 ∈ Rne×ne with V := blkdiag(I2ns , V1, V1).



6 S. Shuva et al.

We introduce the reduced basis approximation P̂ = V PNV
T , where N � 2n

and PN ∈ RN×N is the solution of the reduced ARE

ET
NPNAN +AT

NPNEN − ET
NPNBNR

−1BT
NPNEN + CT

NQCN = 0.

V is constructed by one of the above mentioned methods (one parameter setting),
AN = V TAV , EN = V TEV , BN = V TB and CN = CV .

4 Numerical Examples

We present our numerical experiments for both, the forward and the LQR prob-
lem. As a time integrator, we use the implicit mid-point rule with nt = 600 time
steps. We choose ranges of the first and second Lamé parameter, λ ∈ [30, 500]
and µ ∈ [20, 500]. We consider one trajectory for a particular value of the pa-
rameters (λ = 50, µ = 50) which results in nsn = nt snapshots. The initial state

is x(0) = 0 ∈ R2n. As a target position we consider x̄(T ) =
[
5 5 . . . 3 3 . . .

]T
with the final time T = 3 and 300 for the forward and the LQR problem, re-
spectively. For the simulation and reduction of the model, we use the software
package RBmatlab [9].

4.1 Forward Problem

We determine NV to include 99.9% energy of the POD functional. An example
of a reduced forward problem is illustrated in Fig. 2 using the PSD method.
To measure the quality of the reduced solution we compute the relative error
‖X−X̂‖F
‖X‖F (see Fig. 3), where X ∈ R2n×nsn is the snapshot matrix introduced

above, X̂ := V Xr is the reconstructed solution, Xr ∈ RNV ×nsn is the matrix
gathering the reduced solution time-instances as columns and ‖.‖F is the Frobe-
nius norm. It shows that the structure-preserving methods are better than the
non-structure-preserving methods. The best technique is the PSD without fixed
solid modes which results in an error of ≈ 10−3 for the reduced system when
using at least NV = 14 basis functions.

Fig. 2. Forward simulation of the reduced coupled problem

The execution time for the different methods is between 0.097s and 0.101s
depending on the number of basis functions. The PSD with NV = 14 requires
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Fig. 3. Approximation quality of reduced solutions.

0.097s which is much less compared to the execution time 16.22s for the high-
dimensional solution (2n = 1916). For a size of the reduced models larger than
25, we do not get any improvements in accuracy because the singular values do
not show a sharp decay after that.

4.2 LQR Problem

We first provide the simulation using the reduced controller in Fig. 4 using V
from the global POD method. It shows that the reduced solution is able to
compute a reconstructed stabilizing solution P̂ which drives the soft tissue to its
target position.

Fig. 4. Simulation of the reduced LQR problem

We applied the MOR methods listed in Section 3.2. The relative error of
the reduced ARE solution is shown in Fig. 5 which indicates that the methods
without fixed solid modes provide better results for smaller numbers of basis
functions. We also see that the computation time for Eq. 3 (2n = 880) requires
84.53s which we can reduce to a runtime between 0.051s and 0.057s depending
on the number of basis functions, e.g. 0.053s for the global POD with NV = 8.
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Fig. 5. Relative error for the controller-scenario. Errors above 100% are not depicted.

5 Conclusion and Outlook

We compared the quality and speedup of different basis generation techniques for
a large-scale soft tissue model in the context of a forward problem and a feedback
control problem. In the forward problem, we see that the PSD-based methods
provide better results in terms of accuracy than the POD-based methods. For two
example reduced models with a good accuracy, we are able to achieve speedup
factors of 167 and 1600, respectively, which motivates us to apply these meth-
ods in parametric problems for multi-query scenarios. The future work includes
adding an obstacle using state constraints in order to look at a more general
class of control problems, greedy basis generation for the multi-query case and
modeling using a non-linear elastic material law.
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