
Structured Deep Kernel Networks for
Data-Driven Closure Terms of Turbulent Flows

Tizian Wenzel1,5, Marius Kurz2, Andrea Beck3, Gabriele
Santin4[0000−−0001−6959−1070], and Bernard Haasdonk1

1 Institute for Applied Analysis and Numerical Simulation, University of Stuttgart,
Germany

2 Institute of Aerodynamics und Gas Dynamics, University of Stuttgart, Germany
3 Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke-Universität

Magdeburg
4 Digital Society Center, Bruno Kessler Foundation, Trento, Italy

5 Corresponding author

Abstract. Standard kernel methods for machine learning usually strug-
gle when dealing with large datasets. We review a recently introduced
Structured Deep Kernel Network (SDKN) approach that is capable of
dealing with high-dimensional and huge datasets - and enjoys typical
standard machine learning approximation properties.
We extend the SDKN to combine it with standard machine learning mod-
ules and compare it with Neural Networks on the scientific challenge of
data-driven prediction of closure terms of turbulent flows. We show ex-
perimentally that the SDKNs are capable of dealing with large datasets
and achieve near-perfect accuracy on the given application.

Keywords: Machine Learning · Structured Deep Kernel Networks · Clo-
sure Terms · Turbulent Flows

1 Introduction

In modern science and engineering there is an increasing demand for efficient and
reliable data-based techniques. On the one hand, an unprecedented amount of
data is nowadays available from various sources, notably complex computer sim-
ulations. On the other hand, traditional model-based methods are often required
to integrate the additional information acquired through measurements.

A particularly interesting situation is the case of surrogate modeling [8],
where the underlying ground-truth is some engineering model represented by a
computational simulation, which is accessible but expensive to execute. In this
setting the accurate simulation provides a discrete set of input-output pairs, and
the resulting data-based model, or surrogate, can be used to replace to some
extent the full simulation in order to simplify its understanding and analysis.

In this paper we use a recently proposed Structured Deep Kernel Network,
which is build on a representer theorem for deep kernel learning [3], and extend
and apply it to multivariate regression using time-series data. The technique is
applied to the prediction of closure terms for turbulent flows, where a comparison

ar
X

iv
:2

10
3.

13
65

5v
1 

 [
cs

.L
G

] 
 2

5 
M

ar
 2

02
1



2 T. Wenzel et al.

with standard neural network techniques is drawn. The results show the full
flexibility of the proposed setup while archiving near-perfect accuracy.

The paper is organized as follows. To begin with, we recall in Section 1.1
and Section 1.2 some background information about machine learning and Ar-
tificial Neural Networks (ANNs). In Section 2 the novel Structured Deep Kernel
Network (SDKN) is reviewed and combined with standard machine learning
modules. Section 3 provides background information on our application setting
and the need for machine learning techniques. The subsequent Section 4 explains
the numerical experiments and their results as well as the practicability of the
SDKN. Section 5 summarizes the results and provides an outlook.

1.1 Regression in Machine Learning

Machine learning for regression tasks is usually posed as an optimization prob-
lem. For given data D := (xi, yi)

n
i=1 with xi ⊂ Rdin , yi ⊂ Rdout , the goal is to

find a function f which approximates f(xi) = yi. Mathematically speaking, this
refers to minimizing a loss functional LD. In case of a mean-squared error (MSE)
loss, this means searching for

f∗ := arg min
f∈H

LD(f), LD(f) =
1

n

n∑
i=1

‖yi − f(xi)‖22 + λ · R(f) (1)

over a suitable space of functions H, whereby R(f) is a function-dependent
regularization term with regularization parameter λ ∈ R. The space of functions
H is usually parametrized, i.e. we have f(x) = f(x, θ) for some parameters θ.

We consider here two very popular techniques that define f , namely Artificial
Neural Networks (ANNs) and kernel methods. ANNs enjoy favorable properties
for high dimensional data approximation due to representation learning. The
other approach is given by kernel methods, which have a sound theoretical back-
ground, however struggle when dealing with large and high-dimensional datasets.

1.2 Neural Networks

ANNs (see e.g. [5]) are a prevalent class of ansatz functions in machine learning.
The common feedforward ANN architecture consists of L consecutive layers,
whereby layer l transforms its input x ∈ Rdl−1 according to

fl(x) = σ (Wlx+ bl) , (2)

with a weight matrix Wl ∈ Rdl×dl−1 and a bias vector b ∈ Rdl . The weight
matrices {Wl}l=1,..,L and bias vectors {bl}l=1,..,L for all the layers are parameters
of the ANN, which are obtained by solving the optimization task in Eq. (1). A
common choice for the non-linear activation function σ(·) is the rectified linear
unit (ReLU, σ(·) = max(·, 0)), which is applied element-wise. The output of a
layer is then passed as input to the succeeding layer. The feedforward ANN can
thus be written as a concatenation of the individual layers f(x) = fL ◦ .. ◦ f1(x).

In contrast to standard kernel methods which will be recalled in the next sec-
tion, the basis of the ANN is not determined a priori, but depends on its weights



SDKN for Data-Driven Closure Terms of Turbulent Flows 3

and biases. ANNs can thus learn a suitable basis automatically from the data
they are trained on. Moreover, the concatenation of non-linear transformations
allows the ANN to recombine the non-linear basis functions of the preceeding
layers to increasingly complex basis functions in the succeeding layers, which
renders ANNs highly suitable for high-dimensional data.

Numerous variants of the feedforward ANN have been proposed for particular
kinds of data and applications. For sequential data, recurrent neural networks
(RNNs) have established themselves as state of the art. A common representative
of RNNs is the GRU architecture proposed in [4].

2 Structured Deep Kernel networks

Here, we present a brief summary of kernel methods and the architecture pre-
sented in [10]. For a thorough discussion, we refer the reader to that reference,
as our goal here is to present an extension of the orignal SDKN to sequential
data.

Standard kernel methods rely on the use of possibly strictly positive definite
kernels like the Gaussian kernel

k(x, z) = exp(−‖x− z‖22). (3)

In this framework, a standard Representer Theorem [6] simplifies the loss min-
imization of Eq. (1) and states that a loss-minimizing function can be found in
a subspace Vn := span{k(·, xi), i = 1, .., n} spanned by the data, i.e.

f∗(·) =
∑n

j=1 αjk(·, xj). (4)

The corresponding coefficients αj ∈ Rdout , j = 1, .., n can then be found by solv-
ing a finite dimensional and convex optimization problem. This is the basis to
provide both efficient solution algorithms and approximation-theoretical results.
However the choice of a fixed kernel k(x, y) restricts these standard kernel meth-
ods, as the feature representation of the data is implicitly determined by the
choice of k. Furthermore, assembling and solving the linear system to determine
the coefficients αj poses further problems in the big data regime.
In order to overcome these shortcoming, a deep kernel representer theorem [3]
has been leveraged in [10] to introduce Strucutured Deep Kernel Networks, which
alleviate these obstacles by putting kernel methods into a structured multilayer
setup: The deep kernel representer theorem considers a concatenation of L func-
tions as f = fL ◦ .. ◦ f1 and states that the problem can be restricted to

f∗l (·) =
∑n

j=1 αljkl(·, f∗l−1 ◦ .. ◦ f∗1 (xj)), l = 2, .., L (5)

with αlj ∈ Rdl . This is a generalization of the standard representation of Eq.
(4) to the multilayer setting. The paper [10] proceeds by choosing non-standard
kernels:
1. For l odd, vector-valued linear kernels are picked: klin(x, z) = 〈x, z〉Rdl−1 ·Idl

,
whereby Idl

∈ Rdl×dl is the identity matrix.



4 T. Wenzel et al.

2. For l even, single-dimensional kernels are used, that use single components
x(i), z(i) of the vectors x, z ∈ Rdl−1 : ks(x, z) = diag(k(x(1), z(1)), .., k(x(d), z(d)))
for some standard kernel k : R× R→ R, e.g. the Gaussian from Eq. (3).

This choice of kernels introduces a structure which is depicted in Figure 1, which
motivates the naming Structured Deep Kernel Networks and allows for compar-
ison with neural networks: The linear kernels of the odd layers give rise to fully
connected layers (without biases), while even layers with their single-dimensional
kernels can be viewed as optimizable activation function layers. In order to ob-
tain a sparse model and alleviate possible overfitting issues, we only use an
expansion size of e.g. M = 5 � n within the sum of Eq. (5), which amounts
to fix the remaining coefficients to zero. Even for this sparse representation and
special choice of kernels, it is proven in [10] that the SDKNs satisfy universal
approximation properties, legitimizing their use for machine learning tasks.

The proposed setup is sufficiently flexible such that it can be combined with
standard neural network modules: For the application described in Section 3
we incorporate GRU-modules by using them in between two activation function
layers. By doing so, we can make use of the time-dependence within the input
data.

Input Output

f1 using
kernel klin

f2 using
kernel ks

f3 using
kernel klin

f4 using
kernel ks

f5 using
kernel klin

fully
connect

layer

activation
function

layer

fully
connect

layer

activation
function

layer

fully
connect

layer

Fig. 1. Visualization of the Structured Deep Kernel Network. Gray arrows refer to
layers using the linear kernel, while black arrows refer to layers using the single dimen-
sional kernel layer. The braces below the layers indicate similarities to neural networks.

3 Turbulence Closure Problem

The evolution of compressible fluid flows (see e.g. [9]) is governed by the Navier-
Stokes equations, which can be written in short as

Ut +R(F (U)) = 0, (6)

with U as the vector of conserved variables. Ut denotes the derivation with
respect to time and R() denotes the divergence operator applied to the non-
linear fluxes F (U). Most engineering flows of interest exhibit turbulent behavior.



SDKN for Data-Driven Closure Terms of Turbulent Flows 5

Such turbulent flows are inherently chaotic dynamical systems with a multiscale
character. The direct numerical simulation (DNS) of turbulence is thus only
feasible for simple geometries and low Reynolds numbers, which correspond to
a small range of active flow scales. The framework of large eddy simulation
(LES) addresses these restrictions by resolving only the large energy-containing
scales by applying a low-pass filter (·) to the underlying Navier-Stokes equations.
However, the filtered flux term R(F (U)) is generally unknown, since it depends
on the full solution U . To this end, the coarse-scale solution is typically advanced
in time by some appropriate numerical discretization R̃(U), which then yields

U t + R̃(U) = R̃(U)−R(F (U))︸ ︷︷ ︸
perfect LES closure

. (7)

Solving these filtered equations becomes feasible in terms of computational cost,
but the right-hand side of Eq. (7) exhibits the unknown closure terms, which
describe the effects of the unresolved small-scale dynamics on the resolved scales.

The task of turbulence modeling can thus be stated as finding some model
M which recovers the closure terms solely from the filtered flow field:(

R̃(U)−R(F (U))
)
≈M(U). (8)

A myriad of different models have been proposed in literature over the last
decades to derive the mapping M based on mathematical and physical reason-
ing. While the accuracy of the closure model is crucial for obtaining a reliable
description of the flow field, no universal and generally best model has been iden-
tified to date. Therefore, increasing focus is laid upon finding this mapping M
from data by leveraging the recent advances in machine learning. See [2] for an
extensive review. In that reference, machine learning is used to directly recover
the unknown flux term R(F (U)) = f(U) without positing any prior assumptions
on the functional form of the underlying mapping f(·).

4 Numerical application

In the present work, the dataset described in [1,7] (to which we refer for further
details on the following configurations) is used as training set for the machine
learning algorithms. This dataset is based on high-fidelity DNS of decaying ho-
mogeneous isotropic turbulence (DHIT). The coarse-scale quantities according
to Eq. (7) are obtained by applying three different LES filters to the DNS solu-
tion: A global Fourier cutoff filter (“Fourier”), a local L2-projection filter onto
piecewise polynomials (“projection”) and a local Top-hat filter, as shown in Fig-
ure 2. The latter two are based on the typical representations of the solution in
discontinuous Galerkin (DG) and Finite-Volume (FV) schemes, respectively.

For each filter, the corresponding dataset comprises nearly 30 million samples
and a separate DHIT simulation is used as blind testing set. Since turbulence
is a time-dependent phenomenon, the input features for each training sample
are chosen as a time series of the filtered three-dimensional velocity vector v(i),



6 T. Wenzel et al.

DNS

−2

2
v
(3

)
,v

(3
)

Projection Filter Top-Hat Filter Fourier Filter

Fig. 2. Two-dimensional slices of the three-dimensional z-velocity field v(3) for the
high-fidelity DNS and for the corresponding filtered velocity fields v(3) of the three
investigated LES filters. Each slice of the filtered flow field contains 482 solution points.

i = 1, 2, 3 at a given point in space. The target quantity is the three-dimensional
closure term R(F (U))(i), i = 1, 2, 3 in the last timestep of the given series. To
investigate the influence of temporal resolution, a variety of different sampling
strategies are examined, which are given in Table 1. Before training, the input
features of the training dataset were normalized to zero mean and unit variance.

Table 1. Different time series for training. Nseq denotes the number of time instances
per sample and ∆tseq is the time increment between two successive time instances.

GRU1 GRU2 GRU3

Nseq 3 10 21

∆tseq 10−3 10−4 10−4

The ANN architecture from [7] was used as baseline model, which incorpo-
rates a GRU layer to leverage the temporal information in the data. Such a GRU
layer was also introduced into the SDKN framework, which clearly demonstrates
its modularity. In order to obtain a fair comparison of both the SDKN and ANN
approach, both models exhibit mostly the same setup: The structure of the net-
works is given via their input dimension and output dimension of 3 each and
the dimensions of the inner layers are chosen as 32, 64, 48, 24. This amounts to
a total of 31400 optimizable parameters for the ANN and 32240 for the SDKN.
The slight difference is related to the additional parameters αlj within the single-
dimensional kernel layers, see Eq. (5) for l even, and the unused bias-parameters
within the SDKN. Concerning the the results in Table 2, the Gaussian kernel
from Eq. (3) was used for the single-dimensional kernels within the SDKN, but
we remark that the use of other kernels yields qualitatively the same results. We
further remark that both models are within the underparametrized regime, as
the number of parameters is significantly below the number of training samples.

The Adam optimizer was used for training with an initial learning rate of
10−3, which was then halved after each 10 epochs for the NN and after each 5
epochs for the SDKN. The NN was optimized for 50 epochs and the SDKN for 25
epochs. This distinction keeps the overall optimization time comparable, since
the SDKN optimization is about a factor of 2 more time-consuming per epoch.



SDKN for Data-Driven Closure Terms of Turbulent Flows 7

0 2

−0.2

0

0.2

0.4

−5 0 5

0

0.5

Fig. 3. Visualization of exemplary single-dimensional kernel function mappings before
(red) and after optimization (green). The histogramms indicate the distribution of the
training data after optimization. Right: Gaussian kernel as defined in Eq. (3). Left:
Wendland kernel of order 0, which is defined as k(x, y) = max(1− ‖x− y‖2, 0). These
mappings can be interpreted as optimizable activation functions, see Section 2.

This stems from the optimization of the additional parameters (e.g. the αlj for l
even in Eq. (5)) related to its setup. For training, the MSE loss from Eq. (1) was
used without any regularization, since the use of a relatively small batch size
(128) is likely to provide a sufficient regularization effect. We remark that both
architecture and training are hyperparameter-optimized for the ANN setting,
as this was the model of choice in [7]. The experiments were run on an Nvidia
GTX1070 using PyTorch implementations of the models. The optimization took
about 12 GPU-hours each.

Table 2 summarizes the results for the different datasets and cases: Both
the final MSE-loss as well as the cross-correlation is given. The reported cross-
correlations match the ones reported in [7], thus validating their results: Even in
our runs, the ANN using the GRU2 setup performed badly on the DG dataset
with only a final cross-correlation of 0.8163, which is way worse than the other
listed cross-correlations. The SDKN reached at least the same test accuracies,
even without any further hyperparameter optimization. Especially there is no
drop in accuracy for the prediction related to the DG dataset in conjunction with
the GRU2 case, as it can be observed in Table 2: The SDKN reaches a cross-
correlation of 0.9989 which is en par with the other GRU-setups, in contrast to
the performance of the ANN setup. This might indicate that the SDKN is less
likely to get stuck in a local minima compared to the ANN.

5 Conclusion and outlook

In this paper an extension of a recently proposed Structured Deep Kernel Net-
work (SDKN) setup to time-series data was introduced. The proposed SDKN
model was compared to standard Neural Network models on the challenging task
of data-driven prediction of closure terms for turbulence modeling. With help
of machine learning models, significant speed ups in the simulation of turbu-
lent flows can be achieved. It was shown numerically that the SDKN can reach



8 T. Wenzel et al.

Table 2. Overview of the results on the test set after optimization of the Neural
Network (NN) and the Structured Deep Kernel Network (SDKN): Cross-correlation
(left) and Loss (right).

Cross-Correlation GRU1 GRU2 GRU3

Projection ANN 0.9989 0.8163 0.9989

SDKN 0.9989 0.9989 0.9988

Top-Hat ANN 0.9992 0.9992 0.9992

SDKN 0.9991 0.9992 0.9992

Fourier ANN 0.9992 0.9993 0.9993

SDKN 0.9992 0.9993 0.9993

MSE-Loss GRU1 GRU2 GRU3

Projection ANN 3.235e-01 4.996e+01 3.233e-01

SDKN 3.253e-01 3.261e-01 3.368e-01

Top-Hat ANN 3.155e-02 2.917e-02 2.888e-02

SDKN 3.222e-02 2.989e-02 2.893e-02

Fourier ANN 1.179e-02 9.737e-03 9.452e-03

SDKN 1.177e-02 1.007e-02 9.587e-03

the same near-perfect accuracy as hyper-parameter optimized ANNs for several
variants of the task at the same training cost.
The mathematical background which the SDKN was built on seems promising
for further theoretical analysis. From the application point of view, the goal is to
optimize the SDKN only for a few epochs and then use the optimized kernel in
conjunction with standard shallow kernel models, for which efficient and reliable
methods exists. This is expected to significantly speed up the training phase of
the surrogate model.

Acknowledgements: The authors acknowledge the funding of the project
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy - EXC 2075 - 390740016 and funding by
the BMBF project ML-MORE.

References

1. Beck, A., Flad, D., Munz, C.D.: Deep neural networks for data-driven LES closure
models. Journal of Computational Physics 398, 108910 (2019)

2. Beck, A., Kurz, M.: A perspective on machine learning methods in turbulence
modeling. GAMM-Mitteilungen (2021)

3. Bohn, B., Rieger, C., Griebel, M.: A representer theorem for deep kernel learning.
J. Mach. Learn. Res. 20, 64–1 (2019)

4. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neu-
ral machine translation: Encoder-decoder approaches. In: Proc. of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation. pp. 103
– 111. Association for Computational Linguistics, Stroudsburg (2014)

5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
6. Kimeldorf, G.S., Wahba, G.: A correspondence between Bayesian estimation on

stochastic processes and smoothing by splines. Ann. Math. Statist. 41(2), 495–502
(1970)

7. Kurz, M., Beck, A.: A machine learning framework for LES closure terms. arXiv
preprint arXiv:2010.03030 (2020)

8. Santin, G., Haasdonk, B.: Kernel methods for surrogate modeling. ArXiv
1907.10556 (2019), https://arxiv.org/abs/1907.10556

9. Serrin, J.: Mathematical Principles of Classical Fluid Mechanics, pp. 125–263.
Springer Berlin Heidelberg, Berlin, Heidelberg (1959)

10. Wenzel, T., Santin, G., Haasdonk, B.: Structured Deep Kernel Networks (2021),
in preparation

https://arxiv.org/abs/1907.10556

	Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows 

