Skip to main content

An Analysis to Treat the Degeneracy of a Basic Feasible Solution in Interval Linear Programming

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13199))

Abstract

When coefficients in the objective function cannot be precisely determined, the optimal solution is fluctuated by the realisation of coefficients. Therefore, analysing the stability of an optimal solution becomes essential. Although the robustness analysis of an optimal basic solution has been developed successfully so far, it becomes complex when the solution contains degeneracy. This study is devoted to overcoming the difficulty caused by the degeneracy in a linear programming problem with interval objective coefficients. We focus on the tangent cone of a degenerate basic feasible solution since the belongingness of the objective coefficient vector to its associated normal cone assures the solution’s optimality. We decompose the normal cone by its associated tangent cone to a direct union of subspaces. Several propositions related to the proposed approach are given. To demonstrate the significance of the decomposition, we consider the case where the dimension of the subspace is one. We examine the obtained propositions by numerical examples with comparisons to the conventional techniques.

This work was supported by JSPS KAKENHI Grant Number JP18H01658.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bradley, S.P., Hax, A.C., Magnanti, T.L.: Applied Mathematical Programming. Addison-Wesley Publishing Company (1977)

    Google Scholar 

  2. Filippi, C.: A fresh view on the tolerance approach to sensitivity analysis in linear programming. Eur. J. Oper. Res. 167(1), 1–19 (2005)

    Article  MathSciNet  Google Scholar 

  3. Garajová, E., Hladík, M.: On the optimal solution set in interval linear programming. Comput. Optim. Appl. 72(1), 269–292 (2018). https://doi.org/10.1007/s10589-018-0029-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Garajová, E., Hladík, M., Rada, M.: Interval linear programming under transformations: optimal solutions and optimal value range. CEJOR 27(3), 601–614 (2018). https://doi.org/10.1007/s10100-018-0580-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Hladík, M.: Computing the tolerances in multiobjective linear programming. Optim. Methods Softw. 23(5), 731–739 (2008)

    Article  MathSciNet  Google Scholar 

  6. Hladík, M.: Multiparametric linear programming: support set and optimal partition invariancy. Eur. J. Oper. Res. 202(1), 25–31 (2010)

    Article  MathSciNet  Google Scholar 

  7. Inuiguchi, M.: Necessity measure optimization in linear programming problems with fuzzy polytopes. Fuzzy Sets Syst. 158(17), 1882–1891 (2007)

    Article  MathSciNet  Google Scholar 

  8. Inuiguchi, M., Gao, Z., Carla, O.H.: Robust optimality analysis of non-degenerate basic feasible solutions in linear programming problems with fuzzy objective coefficients, submitted

    Google Scholar 

  9. Inuiguchi, M., Sakawa, M.: Possible and necessary optimality tests in possibilistic linear programming problems. Fuzzy Sets Syst. 67(1), 29–46 (1994)

    Article  MathSciNet  Google Scholar 

  10. Kall, P., Mayer, J., et al.: Stochastic Linear Programming, vol. 7. Springer, Heidelberg (1976)

    Book  Google Scholar 

  11. Kondor, I., Pafka, S., Nagy, G.: Noise sensitivity of portfolio selection under various risk measures. J. Banking Finan. 31(5), 1545–1573 (2007)

    Article  Google Scholar 

  12. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  13. Rockafellar, R.T.: Convex Analysis. Princeton University Press (2015)

    Google Scholar 

  14. Shamir, R.: Probabilistic analysis in linear programming. Stat. Sci. 8(1), 57–64 (1993). http://www.jstor.org/stable/2246041. ISSN 08834237

  15. Todd, M.J.: Probabilistic models for linear programming. Math. Oper. Res. 16(4), 671–693 (1991)

    Article  MathSciNet  Google Scholar 

  16. Wendell, R.E.: The tolerance approach to sensitivity analysis in linear programming. Manag. Sci. 31(5), 564–578 (1985)

    Article  MathSciNet  Google Scholar 

  17. Wondolowski, F.R., Jr.: A generalization of Wendell’s tolerance approach to sensitivity analysis in linear programming. Decis. Sci. 22(4), 792–811 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenzhong Gao or Masahiro Inuiguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, Z., Inuiguchi, M. (2022). An Analysis to Treat the Degeneracy of a Basic Feasible Solution in Interval Linear Programming. In: Honda, K., Entani, T., Ubukata, S., Huynh, VN., Inuiguchi, M. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2022. Lecture Notes in Computer Science(), vol 13199. Springer, Cham. https://doi.org/10.1007/978-3-030-98018-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98018-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98017-7

  • Online ISBN: 978-3-030-98018-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics