Abstract
Approximate computing has been proposed as a novel paradigm for efficient and low power design at nanoscales. It introduces error as a new dimension in the circuit design view. Approximate arithmetic circuits are the fundamental units in approximate computing and have been widely investigated. This chapter introduces and evaluates various basic arithmetic units like adder, multiplier, and divider. Besides, the error compensation scheme for approximate design is discussed. Furthermore, the latest applications based on approximate arithmetic circuits such as neural networks, digital signal processing (DSP), digital image processing, and N-modular redundancy are presented to reveal energy-efficient improvement using approximate arithmetic circuits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jiang H, Santiago FJH, Mo H, et al. Approximate arithmetic circuits: a survey, characterization, and recent applications. Proc IEEE. 2020;108:2108–35. https://doi.org/10.1109/JPROC.2020.3006451.
Amanollahi S, Kamal M, Afzali-Kusha A, Pedram M. Circuit-level techniques for logic and memory blocks in approximate computing systemsx. Proc IEEE. 2020;108:2150–77. https://doi.org/10.1109/JPROC.2020.3020792.
Scarabottolo I, Ansaloni G, Constantinides GA, et al. Approximate logic synthesis: a survey. Proc IEEE. 2020;108:2195–213. https://doi.org/10.1109/JPROC.2020.3014430.
Kang M, Gonugondla SK, Shanbhag NR. Deep in-memory architectures in SRAM: an analog approach to approximate computing. Proc IEEE. 2020;108:2251–75. https://doi.org/10.1109/JPROC.2020.3034117.
Liu W, Gu C, O’Neill M, et al. Security in approximate computing and approximate computing for security: challenges and opportunities. Proc IEEE. 2020;108:2214–31. https://doi.org/10.1109/JPROC.2020.3030121.
Lu S-L. Speeding up processing with approximation circuits. Computer. 2004;37:67–73.
Gupta V, Mohapatra D, Park SP, et al. IMPACT: IMPrecise adders for low-power approximate computing. In: IEEE/ACM international symposium on low power electronics and design. IEEE; 2011. p. 409–14.
Mahdiani HR, Ahmadi A, Fakhraie SM, Lucas C. Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications. IEEE Trans Circuits Syst I: Regular Papers. 2009;57:850–62.
Zhu N, Goh WL, Zhang W, et al. Design of low-power high-speed truncation-error-tolerant adder and its application in digital signal processing. IEEE Trans Very Large Scale Integr Syst. 2009;18:1225–9.
Kahng AB, Kang S. Accuracy-configurable adder for approximate arithmetic designs. In: Proceedings of the 49th annual design automation conference; 2012. p. 820–5.
Kim Y, Zhang Y, Li P. An energy efficient approximate adder with carry skip for error resilient neuromorphic VLSI systems. In: 2013 IEEE/ACM international conference on computer-aided design (ICCAD). IEEE; 2013. p. 130–7.
Du K, Varman P, Mohanram K. High performance reliable variable latency carry select addition. In: 2012 design, automation & test in Europe conference & exhibition (DATE). IEEE; 2012. p. 1257–62.
Ansari MS, Cockburn BF, Han J. An improved logarithmic multiplier for energy-efficient neural computing. IEEE Trans Comput. 2020;70:614–25.
Yin P, Wang C, Waris H, et al. Design and analysis of energy-efficient dynamic range approximate logarithmic multipliers for machine learning. IEEE Trans Sustain Comput. 2020;6:612.
Kulkarni P, Gupta P, Ercegovac M. Trading accuracy for power with an underdesigned multiplier architecture. In: 2011 24th international conference on VLSI design. IEEE; 2011. p. 346–51.
Gillani GA, Hanif MA, Verstoep B, et al. MACISH: designing approximate MAC accelerators with internal-self-healing. IEEE Access. 2019;7:77142–60.
Jiang H, Han J, Qiao F, Lombardi F. Approximate radix-8 booth multipliers for low-power and high-performance operation. IEEE Trans Comput. 2015;65:2638–44.
Qian L, Wang C, Liu W, et al. Design and evaluation of an approximate Wallace-Booth multiplier. In: 2016 IEEE international symposium on circuits and systems (ISCAS). IEEE; 2016. p. 1974–7.
Liu W, Qian L, Wang C, et al. Design of approximate radix-4 booth multipliers for error-tolerant computing. IEEE Trans Comput. 2017;66:1435–41.
Liu W, Cao T, Yin P, et al. Design and analysis of approximate redundant binary multipliers. IEEE Trans Comput. 2018;68:804–19.
Momeni A, Han J, Montuschi P, Lombardi F. Design and analysis of approximate compressors for multiplication. IEEE Trans Comput. 2014;64:984–94.
Marimuthu R, Rezinold YE, Mallick PS. Design and analysis of multiplier using approximate 15-4 compressor. IEEE Access. 2016;5:1027–36.
Parhami B. Computer arithmetic. Oxford University Press; 2010.
Chen L, Han J, Liu W, Lombardi F. Design of approximate unsigned integer non-restoring divider for inexact computing. In: Proceedings of the 25th edition on Great Lakes symposium on VLSI; 2015a. p. 51–6.
Chen L, Han J, Liu W, Lombardi F. On the design of approximate restoring dividers for error-tolerant applications. IEEE Trans Comput. 2015b;65:2522–33.
Zendegani R, Kamal M, Fayyazi A, et al. SEERAD: a high speed yet energy-efficient rounding-based approximate divider. In: 2016 design, automation & test in Europe conference & exhibition (DATE). IEEE; 2016. p. 1481–4.
Qureshi F, Ali M, Takala J. Multiplierless reconfigurable processing element for mixed radix-2/3/4/5 FFTs. In: 2017 IEEE international workshop on signal processing systems (SiPS). IEEE; 2017. p. 1–6.
Liao Q, Liu W, Qiao F, et al. Design of approximate FFT with bit-width selection algorithms. In: 2018 IEEE international symposium on circuits and systems (ISCAS). IEEE; 2018. p. 1–5.
Xiao H, Yin X, Wu N, et al. VLSI design of low-cost and high-precision fixed-point reconfigurable FFT processors. IET Comput Digital Tech. 2018;12:105–10.
Huang S-J, Chen S-G. A green FFT processor with 2.5-GS/s for IEEE 802.15. 3c (WPANs). In: The 2010 international conference on green circuits and systems. IEEE; 2010. p. 9–13.
Chen Y, Lin Y-W, Tsao Y-C, Lee C-Y. A 2.4-Gsample/s DVFS FFT processor for MIMO OFDM communication systems. IEEE J Solid State Circuits. 2008;43:1260–73.
Du J, Chen K, Yin P, et al. Design of an approximate FFT processor based on approximate complex multipliers. In: 2021 IEEE computer society annual symposium on VLSI (ISVLSI). IEEE; 2021. p. 308–13.
Cai L, Qian Y, He Y, Feng W. Design of approximate multiplierless DCT with CSD encoding for image processing. In: 2021 IEEE international symposium on circuits and systems (ISCAS). IEEE; 2021. p. 1–4.
Emer J, Sze V, Chen Y-H, Yang T-J. Hardware architectures for deep neural networks. CICS/MTL Tutorial, Mar. 2017;27:258.
Esposito D, Strollo AGM, Alioto M. Low-power approximate MAC unit. In: 2017 13th conference on Ph. D. research in microelectronics and electronics (PRIME). IEEE; 2017. p. 81–4.
Yang T, Sato T, Ukezono T. An approximate multiply-accumulate unit with low power and reduced area. In: 2019 IEEE computer society annual symposium on VLSI (ISVLSI). IEEE; 2019. p. 385–90.
Baumann R. Soft errors in advanced computer systems. IEEE Des Test Comput. 2005;22:258–66.
Vaidya NF, Pradhan DK. Fault-tolerant design strategies for high reliability and safety. IEEE Trans Comput. 1993;42:1195–206.
von Neumann J. Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Automata studies.(AM-34), vol. 34. Princeton University Press; 2016. p. 43–98.
Pierce WH. Failure-tolerant computer design. Academic Press; 2014.
Shim B, Shanbhag NR. Energy-efficient soft error-tolerant digital signal processing. IEEE Trans Very Large Scale Integr Syst. 2006;14:336–48.
Shim B, Sridhara SR, Shanbhag NR. Reliable low-power digital signal processing via reduced precision redundancy. IEEE Trans Very Large Scale Integr Syst. 2004;12:497–510.
Chen K, Chen L, Reviriego P, Lombardi F. Efficient implementations of reduced precision redundancy (RPR) multiply and accumulate (mac). IEEE Trans Comput. 2018a;68:784–90.
Bosi B, Bois G, Savaria Y. Reconfigurable pipelined 2-D convolvers for fast digital signal processing. IEEE Trans Very Large Scale Integr Syst. 1999;7:299–308.
Chen K, Lombardi F, Han J. Design and analysis of an approximate 2D convolver. In: 2016 IEEE international symposium on defect and fault tolerance in VLSI and nanotechnology systems (DFT). IEEE; 2016. p. 31–4.
Chen K, Han J, Montuschi P, et al. Design and application of an approximate 2-D Convolver with error compensation. In: 2018 IEEE international symposium on circuits and systems (ISCAS). IEEE; 2018b. p. 1–5.
Chen Y-H, Chang T-Y, Jou R-Y. A statistical error-compensated Booth multipliers and its DCT applications. In: TENCON 2010–2010 IEEE region 10 conference. IEEE; 2010. p. 1146–9.
Schulte MJ, Swartzlander EE. Truncated multiplication with correction constant [for DSP]. In: Proceedings of IEEE workshop on VLSI signal processing. IEEE; 1993. p. 388–96.
King EJ, Swartzlander EE. Data-dependent truncation scheme for parallel multipliers. In: Conference record of the thirty-first Asilomar conference on signals, systems and computers (Cat. No. 97CB36136). IEEE; 1997. p. 1178–82.
Stine JE, Duverne OM. Variations on truncated multiplication. In: Euromicro symposium on digital system design, 2003. Proceedings. IEEE; 2003. p. 112–9.
Van L-D, Yang C-C. Generalized low-error area-efficient fixed-width multipliers. IEEE Trans Circuits Syst I: Regular Papers. 2005;52:1608–19.
Petra N, de Caro D, Garofalo V, et al. Truncated binary multipliers with variable correction and minimum mean square error. IEEE Trans Circuits Syst I Regular Papers. 2009;57:1312–25.
Wey I-C, Wang C-C. Low-error and hardware-efficient fixed-width multiplier by using the dual-group minor input correction vector to lower input correction vector compensation error. IEEE Trans Very Large Scale Integr Syst. 2011;20:1923–8.
Kumar GG, Sahoo SK. Power-efficient compensation circuit for fixed-width multipliers. IET Circuits Dev Syst. 2020;14:505–9.
Cho K-J, Lee K-C, Chung J-G, Parhi KK. Design of low-error fixed-width modified booth multiplier. IEEE Tran Very Large Scale Integr Syst. 2004;12:522–31.
Wang J-P, Kuang S-R, Liang S-C. High-accuracy fixed-width modified Booth multipliers for lossy applications. IEEE Trans Very Large Scale Integr Syst. 2009;19:52–60.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Chen, K., Liu, W., Lombardi, F. (2022). Approximate Arithmetic Circuits: Design and Applications. In: Liu, W., Lombardi, F. (eds) Approximate Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-98347-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-98347-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98346-8
Online ISBN: 978-3-030-98347-5
eBook Packages: Computer ScienceComputer Science (R0)