Skip to main content

Approximate Arithmetic Circuits: Design and Applications

  • Chapter
  • First Online:
Approximate Computing

Abstract

Approximate computing has been proposed as a novel paradigm for efficient and low power design at nanoscales. It introduces error as a new dimension in the circuit design view. Approximate arithmetic circuits are the fundamental units in approximate computing and have been widely investigated. This chapter introduces and evaluates various basic arithmetic units like adder, multiplier, and divider. Besides, the error compensation scheme for approximate design is discussed. Furthermore, the latest applications based on approximate arithmetic circuits such as neural networks, digital signal processing (DSP), digital image processing, and N-modular redundancy are presented to reveal energy-efficient improvement using approximate arithmetic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiang H, Santiago FJH, Mo H, et al. Approximate arithmetic circuits: a survey, characterization, and recent applications. Proc IEEE. 2020;108:2108–35. https://doi.org/10.1109/JPROC.2020.3006451.

    Article  Google Scholar 

  2. Amanollahi S, Kamal M, Afzali-Kusha A, Pedram M. Circuit-level techniques for logic and memory blocks in approximate computing systemsx. Proc IEEE. 2020;108:2150–77. https://doi.org/10.1109/JPROC.2020.3020792.

    Article  Google Scholar 

  3. Scarabottolo I, Ansaloni G, Constantinides GA, et al. Approximate logic synthesis: a survey. Proc IEEE. 2020;108:2195–213. https://doi.org/10.1109/JPROC.2020.3014430.

    Article  Google Scholar 

  4. Kang M, Gonugondla SK, Shanbhag NR. Deep in-memory architectures in SRAM: an analog approach to approximate computing. Proc IEEE. 2020;108:2251–75. https://doi.org/10.1109/JPROC.2020.3034117.

    Article  Google Scholar 

  5. Liu W, Gu C, O’Neill M, et al. Security in approximate computing and approximate computing for security: challenges and opportunities. Proc IEEE. 2020;108:2214–31. https://doi.org/10.1109/JPROC.2020.3030121.

    Article  Google Scholar 

  6. Lu S-L. Speeding up processing with approximation circuits. Computer. 2004;37:67–73.

    Google Scholar 

  7. Gupta V, Mohapatra D, Park SP, et al. IMPACT: IMPrecise adders for low-power approximate computing. In: IEEE/ACM international symposium on low power electronics and design. IEEE; 2011. p. 409–14.

    Chapter  Google Scholar 

  8. Mahdiani HR, Ahmadi A, Fakhraie SM, Lucas C. Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications. IEEE Trans Circuits Syst I: Regular Papers. 2009;57:850–62.

    Article  MathSciNet  Google Scholar 

  9. Zhu N, Goh WL, Zhang W, et al. Design of low-power high-speed truncation-error-tolerant adder and its application in digital signal processing. IEEE Trans Very Large Scale Integr Syst. 2009;18:1225–9.

    Google Scholar 

  10. Kahng AB, Kang S. Accuracy-configurable adder for approximate arithmetic designs. In: Proceedings of the 49th annual design automation conference; 2012. p. 820–5.

    Chapter  Google Scholar 

  11. Kim Y, Zhang Y, Li P. An energy efficient approximate adder with carry skip for error resilient neuromorphic VLSI systems. In: 2013 IEEE/ACM international conference on computer-aided design (ICCAD). IEEE; 2013. p. 130–7.

    Chapter  Google Scholar 

  12. Du K, Varman P, Mohanram K. High performance reliable variable latency carry select addition. In: 2012 design, automation & test in Europe conference & exhibition (DATE). IEEE; 2012. p. 1257–62.

    Google Scholar 

  13. Ansari MS, Cockburn BF, Han J. An improved logarithmic multiplier for energy-efficient neural computing. IEEE Trans Comput. 2020;70:614–25.

    Article  MathSciNet  MATH  Google Scholar 

  14. Yin P, Wang C, Waris H, et al. Design and analysis of energy-efficient dynamic range approximate logarithmic multipliers for machine learning. IEEE Trans Sustain Comput. 2020;6:612.

    Article  Google Scholar 

  15. Kulkarni P, Gupta P, Ercegovac M. Trading accuracy for power with an underdesigned multiplier architecture. In: 2011 24th international conference on VLSI design. IEEE; 2011. p. 346–51.

    Chapter  Google Scholar 

  16. Gillani GA, Hanif MA, Verstoep B, et al. MACISH: designing approximate MAC accelerators with internal-self-healing. IEEE Access. 2019;7:77142–60.

    Article  Google Scholar 

  17. Jiang H, Han J, Qiao F, Lombardi F. Approximate radix-8 booth multipliers for low-power and high-performance operation. IEEE Trans Comput. 2015;65:2638–44.

    Article  MathSciNet  MATH  Google Scholar 

  18. Qian L, Wang C, Liu W, et al. Design and evaluation of an approximate Wallace-Booth multiplier. In: 2016 IEEE international symposium on circuits and systems (ISCAS). IEEE; 2016. p. 1974–7.

    Chapter  Google Scholar 

  19. Liu W, Qian L, Wang C, et al. Design of approximate radix-4 booth multipliers for error-tolerant computing. IEEE Trans Comput. 2017;66:1435–41.

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu W, Cao T, Yin P, et al. Design and analysis of approximate redundant binary multipliers. IEEE Trans Comput. 2018;68:804–19.

    Article  MathSciNet  MATH  Google Scholar 

  21. Momeni A, Han J, Montuschi P, Lombardi F. Design and analysis of approximate compressors for multiplication. IEEE Trans Comput. 2014;64:984–94.

    Article  MathSciNet  MATH  Google Scholar 

  22. Marimuthu R, Rezinold YE, Mallick PS. Design and analysis of multiplier using approximate 15-4 compressor. IEEE Access. 2016;5:1027–36.

    Article  Google Scholar 

  23. Parhami B. Computer arithmetic. Oxford University Press; 2010.

    Google Scholar 

  24. Chen L, Han J, Liu W, Lombardi F. Design of approximate unsigned integer non-restoring divider for inexact computing. In: Proceedings of the 25th edition on Great Lakes symposium on VLSI; 2015a. p. 51–6.

    Chapter  Google Scholar 

  25. Chen L, Han J, Liu W, Lombardi F. On the design of approximate restoring dividers for error-tolerant applications. IEEE Trans Comput. 2015b;65:2522–33.

    Article  MathSciNet  MATH  Google Scholar 

  26. Zendegani R, Kamal M, Fayyazi A, et al. SEERAD: a high speed yet energy-efficient rounding-based approximate divider. In: 2016 design, automation & test in Europe conference & exhibition (DATE). IEEE; 2016. p. 1481–4.

    Google Scholar 

  27. Qureshi F, Ali M, Takala J. Multiplierless reconfigurable processing element for mixed radix-2/3/4/5 FFTs. In: 2017 IEEE international workshop on signal processing systems (SiPS). IEEE; 2017. p. 1–6.

    Google Scholar 

  28. Liao Q, Liu W, Qiao F, et al. Design of approximate FFT with bit-width selection algorithms. In: 2018 IEEE international symposium on circuits and systems (ISCAS). IEEE; 2018. p. 1–5.

    Google Scholar 

  29. Xiao H, Yin X, Wu N, et al. VLSI design of low-cost and high-precision fixed-point reconfigurable FFT processors. IET Comput Digital Tech. 2018;12:105–10.

    Article  Google Scholar 

  30. Huang S-J, Chen S-G. A green FFT processor with 2.5-GS/s for IEEE 802.15. 3c (WPANs). In: The 2010 international conference on green circuits and systems. IEEE; 2010. p. 9–13.

    Chapter  Google Scholar 

  31. Chen Y, Lin Y-W, Tsao Y-C, Lee C-Y. A 2.4-Gsample/s DVFS FFT processor for MIMO OFDM communication systems. IEEE J Solid State Circuits. 2008;43:1260–73.

    Article  Google Scholar 

  32. Du J, Chen K, Yin P, et al. Design of an approximate FFT processor based on approximate complex multipliers. In: 2021 IEEE computer society annual symposium on VLSI (ISVLSI). IEEE; 2021. p. 308–13.

    Chapter  Google Scholar 

  33. Cai L, Qian Y, He Y, Feng W. Design of approximate multiplierless DCT with CSD encoding for image processing. In: 2021 IEEE international symposium on circuits and systems (ISCAS). IEEE; 2021. p. 1–4.

    Google Scholar 

  34. Emer J, Sze V, Chen Y-H, Yang T-J. Hardware architectures for deep neural networks. CICS/MTL Tutorial, Mar. 2017;27:258.

    Google Scholar 

  35. Esposito D, Strollo AGM, Alioto M. Low-power approximate MAC unit. In: 2017 13th conference on Ph. D. research in microelectronics and electronics (PRIME). IEEE; 2017. p. 81–4.

    Chapter  Google Scholar 

  36. Yang T, Sato T, Ukezono T. An approximate multiply-accumulate unit with low power and reduced area. In: 2019 IEEE computer society annual symposium on VLSI (ISVLSI). IEEE; 2019. p. 385–90.

    Chapter  Google Scholar 

  37. Baumann R. Soft errors in advanced computer systems. IEEE Des Test Comput. 2005;22:258–66.

    Article  Google Scholar 

  38. Vaidya NF, Pradhan DK. Fault-tolerant design strategies for high reliability and safety. IEEE Trans Comput. 1993;42:1195–206.

    Article  Google Scholar 

  39. von Neumann J. Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Automata studies.(AM-34), vol. 34. Princeton University Press; 2016. p. 43–98.

    Google Scholar 

  40. Pierce WH. Failure-tolerant computer design. Academic Press; 2014.

    Google Scholar 

  41. Shim B, Shanbhag NR. Energy-efficient soft error-tolerant digital signal processing. IEEE Trans Very Large Scale Integr Syst. 2006;14:336–48.

    Article  Google Scholar 

  42. Shim B, Sridhara SR, Shanbhag NR. Reliable low-power digital signal processing via reduced precision redundancy. IEEE Trans Very Large Scale Integr Syst. 2004;12:497–510.

    Article  Google Scholar 

  43. Chen K, Chen L, Reviriego P, Lombardi F. Efficient implementations of reduced precision redundancy (RPR) multiply and accumulate (mac). IEEE Trans Comput. 2018a;68:784–90.

    Article  MathSciNet  MATH  Google Scholar 

  44. Bosi B, Bois G, Savaria Y. Reconfigurable pipelined 2-D convolvers for fast digital signal processing. IEEE Trans Very Large Scale Integr Syst. 1999;7:299–308.

    Article  Google Scholar 

  45. Chen K, Lombardi F, Han J. Design and analysis of an approximate 2D convolver. In: 2016 IEEE international symposium on defect and fault tolerance in VLSI and nanotechnology systems (DFT). IEEE; 2016. p. 31–4.

    Chapter  Google Scholar 

  46. Chen K, Han J, Montuschi P, et al. Design and application of an approximate 2-D Convolver with error compensation. In: 2018 IEEE international symposium on circuits and systems (ISCAS). IEEE; 2018b. p. 1–5.

    Google Scholar 

  47. Chen Y-H, Chang T-Y, Jou R-Y. A statistical error-compensated Booth multipliers and its DCT applications. In: TENCON 2010–2010 IEEE region 10 conference. IEEE; 2010. p. 1146–9.

    Chapter  Google Scholar 

  48. Schulte MJ, Swartzlander EE. Truncated multiplication with correction constant [for DSP]. In: Proceedings of IEEE workshop on VLSI signal processing. IEEE; 1993. p. 388–96.

    Chapter  Google Scholar 

  49. King EJ, Swartzlander EE. Data-dependent truncation scheme for parallel multipliers. In: Conference record of the thirty-first Asilomar conference on signals, systems and computers (Cat. No. 97CB36136). IEEE; 1997. p. 1178–82.

    Chapter  Google Scholar 

  50. Stine JE, Duverne OM. Variations on truncated multiplication. In: Euromicro symposium on digital system design, 2003. Proceedings. IEEE; 2003. p. 112–9.

    Chapter  Google Scholar 

  51. Van L-D, Yang C-C. Generalized low-error area-efficient fixed-width multipliers. IEEE Trans Circuits Syst I: Regular Papers. 2005;52:1608–19.

    Article  Google Scholar 

  52. Petra N, de Caro D, Garofalo V, et al. Truncated binary multipliers with variable correction and minimum mean square error. IEEE Trans Circuits Syst I Regular Papers. 2009;57:1312–25.

    Article  MathSciNet  MATH  Google Scholar 

  53. Wey I-C, Wang C-C. Low-error and hardware-efficient fixed-width multiplier by using the dual-group minor input correction vector to lower input correction vector compensation error. IEEE Trans Very Large Scale Integr Syst. 2011;20:1923–8.

    Article  Google Scholar 

  54. Kumar GG, Sahoo SK. Power-efficient compensation circuit for fixed-width multipliers. IET Circuits Dev Syst. 2020;14:505–9.

    Article  Google Scholar 

  55. Cho K-J, Lee K-C, Chung J-G, Parhi KK. Design of low-error fixed-width modified booth multiplier. IEEE Tran Very Large Scale Integr Syst. 2004;12:522–31.

    Article  Google Scholar 

  56. Wang J-P, Kuang S-R, Liang S-C. High-accuracy fixed-width modified Booth multipliers for lossy applications. IEEE Trans Very Large Scale Integr Syst. 2009;19:52–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, K., Liu, W., Lombardi, F. (2022). Approximate Arithmetic Circuits: Design and Applications. In: Liu, W., Lombardi, F. (eds) Approximate Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-98347-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98347-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98346-8

  • Online ISBN: 978-3-030-98347-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics