Skip to main content

Voltage Overscaling Techniques for Security Applications

  • Chapter
  • First Online:
Book cover Approximate Computing
  • 926 Accesses

Abstract

Voltage overscaling (VOS) has emerged as a promising solution for ultra-low-power approximate computation. However, aggressive scaling of the operating voltage can create faults and introduce analog fingerprints of the circuit components. For example, VOS has been utilized as a fault-inducing technique in attacks such as CLKscrew, where voltage regulators in the SoC processors are exploited to create errors in cryptographic computation. On the other hand, errors due to aggressive VOS on sub-45 nm technology nodes can reveal a significant amount of information about the underlying hardware’s physical variations. Hence, in this chapter, we detail the current status of research and development for VOS in security applications, from authenticating devices to securing machine learning models in the main memory. Our goal is to demonstrate the security promises and pitfalls of VOS to the engineers building the next generation of low-power voltage-overscaled systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arafin MT, Gao M, Qu G. VOLtA: Voltage over-scaling based lightweight authentication for IoT applications. In: 2017 22nd Asia and South Pacific design automation conference (ASP-DAC). Piscataway: IEEE; 2017. p. 336–341.

    Chapter  Google Scholar 

  2. Chang KK, Yağlıkçı, AG, Ghose S, Agrawal A, Chatterjee N, Kashyap A, Lee D, O’Connor M, Hassan H, Mutlu O. Understanding reduced-voltage operation in modern DRAM devices: experimental characterization, analysis, and mechanisms. Proc ACM Meas Analy Comput Syst 2017;1(1):1–42.

    Article  Google Scholar 

  3. Fredrikson M, Jha S, Ristenpart T. Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC conference on computer and communications security. 2015. p. 1322–1333.

    Google Scholar 

  4. Gao M, Wang Q, Arafin MT, Lyu Y, Qu G. Approximate computing for low power and security in the internet of things. Computer 2017;50(6):27–34.

    Article  Google Scholar 

  5. Gilmore R, Hanley N, O’Neill M. Neural network based attack on a masked implementation of AES. In: 2015 IEEE international symposium on hardware oriented security and trust (HOST). Piscataway: IEEE; 2015. p. 106–111.

    Chapter  Google Scholar 

  6. Hassan H, Patel M, Kim JS, Yaglikci AG, Vijaykumar N, Ghiasi NM, Ghose S, Mutlu O. CROW: a low-cost substrate for improving DRAM performance, energy efficiency, and reliability. In: 2019 ACM/IEEE 46th annual international symposium on computer architecture (ISCA). 2019. p. 129–142.

    Google Scholar 

  7. Hong I, Kirovski D, Qu G, Potkonjak M, Srivastava MB. Power optimization of variable-voltage core-based systems. IEEE Trans Comput-Aided Des Integr Circuits Syst. 1999;18(12):1702–1714.

    Article  Google Scholar 

  8. Hospodar G, Gierlichs B, De Mulder E, Verbauwhede I, Vandewalle J. Machine learning in side-channel analysis: a first study. J Cryptograp Eng. 2011;1(4):293.

    Article  Google Scholar 

  9. ITRS Reports

    Google Scholar 

  10. Lee JW, Lim D, Gassend B, Suh GE, Van Dijk M, Devadas S. A technique to build a secret key in integrated circuits for identification and authentication applications. In: 2004 symposium on VLSI circuits, 2004. Digest of technical papers. Piscataway: IEEE; 2004. p. 176–179.

    Google Scholar 

  11. Liu W, Gu C, O’Neill M, Qu G, Montuschi P, Lombardi F. Security in approximate computing and approximate computing for security: challenges and opportunities. Proc IEEE 2020;108(12):2214–2231.

    Article  Google Scholar 

  12. Murdock K, Oswald D, Garcia FD, Van Bulck J, Gruss D, Piessens F. Plundervolt: software-based fault injection attacks against Intel SGX. In: 2020 IEEE symposium on security and privacy (SP). 2020.

    Google Scholar 

  13. Patel M, Kim JS, Mutlu O. The reach profiler (REAPER): enabling the mitigation of DRAM retention failures via profiling at aggressive conditions. ACM SIGARCH Comput Archit News 2017;45(2):255–268.

    Article  Google Scholar 

  14. Qiu P, Wang D, Lyu Y, Qu G. VoltJockey: breaching TrustZone by software-controlled voltage manipulation over multi-core frequencies. In: Proceedings of the 2019 ACM SIGSAC conference on computer and communications security. New York, NY, 2019, CCS ’19, Association for Computing Machinery. 2019. p. 195–209.

    Google Scholar 

  15. Qiu P, Wang D, Lyu Y, Qu G. VoltJockey: breaking SGX by software-controlled voltage-induced hardware faults. In: 2019 Asian hardware oriented security and trust symposium (AsianHOST). Piscataway: IEEE; 2019. p. 1–6.

    Google Scholar 

  16. Rahmati A, Hicks M, Holcomb DE, Fu K. Probable cause: the deanonymizing effects of approximate DRAM. In: Proceedings of the 42nd annual international symposium on computer architecture. 2015. p. 604–615.

    Google Scholar 

  17. Son YH, Seongil O, Ro Y, Lee JW, Ahn JH. Reducing memory access latency with asymmetric DRAM bank organizations. In: Proceedings of the 40th annual international symposium on computer architecture. 2013. p. 380–391.

    Google Scholar 

  18. Stine JE, Castellanos I, Wood M, Henson J, Love F, Davis WR, Franzon PD, Bucher M, Basavarajaiah S, Oh J, et al. FreePDK: an open-source variation-aware design kit. In: 2007 IEEE international conference on microelectronic systems education (MSE’07). Piscataway: IEEE; 2007. p. 173–174.

    Chapter  Google Scholar 

  19. Su H, Zhang J. Machine learning attacks on voltage over-scaling-based lightweight authentication. In: 2018 Asian hardware oriented security and trust symposium (AsianHOST). Piscataway: IEEE; 2018. p. 50–55.

    Chapter  Google Scholar 

  20. Tang A, Sethumadhavan S, Stolfo S. {CLKSCREW}: exposing the perils of security-oblivious energy management. In: 26th {USENIX} security symposium ({USENIX} security 17). 2017. p. 1057–1074.

    Google Scholar 

  21. Tehranipoor F, Karimian N, Xiao K, Chandy J. DRAM based intrinsic physical unclonable functions for system level security. In: Proceedings of the 25th edition on great lakes symposium on VlSI. 2015. p. 15–20.

    Google Scholar 

  22. Venkatesan R, Agarwal A, Roy K, Raghunathan A. MACACO: Modeling and analysis of circuits for approximate computing. In: Proceedings of the international conference on computer-aided design. Piscataway: IEEE Press; 2011. p. 667–673.

    Google Scholar 

  23. Xu Q, Arafin MT, Qu G. MIDAS: model inversion defenses using an approximate memory system. In: 2020 Asian hardware oriented security and trust symposium (AsianHOST). Piscataway: IEEE; 2020. p. 1–4.

    Google Scholar 

  24. Zhang J, Shen C, Su H, Arafin MT, Qu G. Voltage over-scaling-based lightweight authentication for IoT security. IEEE Trans Comp. 2021;71:323–336.

    Article  Google Scholar 

  25. Zhao W, Cao Y. Predictive technology model for nano-CMOS design exploration. ACM J Emerg Technolog Comput Syst. 2007;3(1):1–es.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Arafin, M.T., Xu, Q., Qu, G. (2022). Voltage Overscaling Techniques for Security Applications. In: Liu, W., Lombardi, F. (eds) Approximate Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-98347-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98347-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98346-8

  • Online ISBN: 978-3-030-98347-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics