Skip to main content

Majority Logic-Based Approximate Multipliers for Error-Tolerant Applications

  • Chapter
  • First Online:
Approximate Computing

Abstract

Many emerging nanotechnologies extensively assemble circuits based on the voter-based majority logic (ML). In this chapter, we aim to provide a comprehensive investigation of approximate unsigned and signed multiplier designs based on ML. Approximate partial product generation, reduction, and compression are discussed, specifically with some complementary strategies guided by an analysis of error effects to compensate for the accuracy loss. The approximate multiplier designs are comparatively evaluated from error and circuit characteristics. Image processing and neural networks as case studies of error-tolerant applications are presented to show the validity and advantages of the proposed designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dennard RH, Cai J, Kumar A. A perspective on today’s scaling challenges and possible future directions. Solid-State Electron. 2007;51(4):518–25.

    Article  Google Scholar 

  2. Parhami B, Abedi D, Jaberipur G. Majority-logic, its applications, and atomic-scale embodiments. Comput Electr Eng. 2020;83:106562.

    Article  Google Scholar 

  3. Vacca M, Graziano M. Zamboni M. Majority voter full characterization for nanomagnet logic circuits. IEEE Trans Nanotechnol 2012;11(5):940–7.

    Google Scholar 

  4. Jamshidi V. A vlsi majority-logic device based on spin transfer torque mechanism for brain-inspired computing architecture. IEEE Trans Very Large Scale Integr Syst. 2020;28(8):1858–66.

    Article  Google Scholar 

  5. Angizi S, Jiang H, DeMara RF, Han J, Fan D. Majority-based spin-CMOS primitives for approximate computing. IEEE Trans Nanotechnol. 2018;17(4):795–806.

    Google Scholar 

  6. Jiang H, Angizi S, Fan D, Han J, Liu L. Non-volatile approximate arithmetic circuits using scalable hybrid spin-CMOS majority gates. IEEE Trans Circ Syst I Reg Pap. 2021;68(3):1217–30.

    Article  Google Scholar 

  7. Liu W, Lombardi F, Shulte M. A retrospective and prospective view of approximate computing [point of view. Proc IEEE. 2020;108(3):394–9.

    Article  Google Scholar 

  8. Jiang H, Santiago FJH, Mo H, Liu L, Han J. Approximate arithmetic circuits: a survey, characterization and recent applications. Proc IEEE. 2020;108:2108.

    Article  Google Scholar 

  9. Behrooz P. Computer arithmetic: algorithms and hardware designs. Oxford University Press; 2010.

    Google Scholar 

  10. Labrado C, Thapliyal H, Lombardi F. Design of majority logic based approximate arithmetic circuits. In: 2017 IEEE international symposium on circuits and systems (ISCAS). 2017. pp. 1–4.

    Google Scholar 

  11. Liu W, Zhang T, McLarnon E, O’Neill M, Montuschi P, Lombardi F. Design and analysis of majority logic based approximate adders and multipliers. IEEE Trans Emerg Top Comput. 2019;9:1609.

    Article  Google Scholar 

  12. Sabetzadeh F, Moaiyeri MH, Ahmadinejad M. A majority-based imprecise multiplier for ultra-efficient approximate image multiplication. IEEE Trans Circ Syst I Reg Pap. 2019;66(11):4200–08.

    Article  Google Scholar 

  13. Zhang T, Liu W, Han J, Lombardi F. Design and analysis of majority logic based approximate radix-4 Booth encoders. In: 2019 IEEE/ACM international symposium on nanoscale architectures (NANOARCH). 2019. pp. 1–6.

    Google Scholar 

  14. Liang J, Han J, Lombardi F. New metrics for the reliability of approximate and probabilistic adders. IEEE Trans Comput. 2013;62(9):1760–71.

    Article  MathSciNet  Google Scholar 

  15. Pudi V, Sridharan K, Lombardi F. Majority logic formulations for parallel adder designs at reduced delay and circuit complexity. IEEE Trans Comput. 2017;66(10):1824–30.

    Article  MathSciNet  Google Scholar 

  16. Wallace CS. A suggestion for a fast multiplier. IEEE Trans Electron Comput 1964;1:14–7.

    Article  Google Scholar 

  17. Dadda L. Some schemes for parallel multipliers. Alta Frequenza 1965;34:349–56

    Google Scholar 

  18. Chang C, Gu J, Zhang M. Ultra low-voltage low-power CMOS 4-2 and 5-2 compressors for fast arithmetic circuits. IEEE Trans Circ Syst I. 2004;51(10):1985–97.

    Article  Google Scholar 

  19. Cho H, Swartzlander EE. Adder and multiplier designs in quantum dot cellular automata. IEEE Trans Comput. 2009;58(6):721–7.

    Article  MathSciNet  Google Scholar 

  20. Kulkarni P, Gupta P, Ercegovac M. Trading accuracy for power with an underdesigned multiplier architecture. In: Proc VLSI Design. 2011. pp. 346–51.

    Google Scholar 

  21. Zhang T, Liu W, McLarnon E, O’Neill M, Lombardi F. Design of majority logic (ML) based approximate full adders. In: 2018 IEEE international symposium on circuits and systems (ISCAS). 2018. pp. 1–5.

    Google Scholar 

  22. Moaiyeri MH, Sabetzadeh F, Angizi S. An efficient majority-based compressor for approximate computing in the nano era. Microsyst Technol. 2018;24(3):1589–1601.

    Article  Google Scholar 

  23. Taheri M, Arasteh A, Mohammadyan S, Panahi A, Navi K. A novel majority based imprecise 4: 2 compressor with respect to the current and future VLSI industry. Microprocess Microsyst. 2020;73:102962.

    Article  Google Scholar 

  24. Zhang T, Jiang H, Mo H, Liu W, Lombardi F, Liu L, Han J. Design of majority logic-based approximate Booth multipliers for error-tolerant applications. IEEE Trans Nanotechnol. 2022;21:81–89.

    Article  Google Scholar 

  25. MacSorley O. High-speed arithmetic in binary computers. Proc. IRE. 1961;49:67–91.

    Article  MathSciNet  Google Scholar 

  26. Yeh W, Jen C. High-speed Booth encoded parallel multiplier design. IEEE Trans Comput. 2000;49(7):692–701

    Article  MathSciNet  Google Scholar 

  27. Cui X, Liu W, Swartzlander E, Lombardi F. A modified partial product generator for redundant binary multipliers. IEEE Trans Comput. 2016;65(4):1165–71.

    Article  MathSciNet  Google Scholar 

  28. Wang J, Kuang S, Liang S. High-accuracy fixed-width modified Booth multipliers for lossy applications. IEEE Trans Very Large Scale Integr. 2011;19(1):52–60.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada (Project Number: RES0048688). T. Zhang is supported by a PhD scholarship from the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, T. et al. (2022). Majority Logic-Based Approximate Multipliers for Error-Tolerant Applications. In: Liu, W., Lombardi, F. (eds) Approximate Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-98347-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98347-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98346-8

  • Online ISBN: 978-3-030-98347-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics