Skip to main content

Lightweight Wavelet-Based Network for JPEG Artifacts Removal

  • Conference paper
  • First Online:
  • 2104 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13142))

Abstract

In recent years, deep learning-based methods have made remarkable progress in removing blocking artifacts caused by JPEG compression. However, most of these methods directly learn the mapping between compressed images and corresponding clear versions in pixel domain by designing complex network structures and consuming huge computing power, which limits the application on mobile devices. To address this issue, we propose a lightweight wavelet-based network for JPEG compression artifact removal. Specifically, we observe that the signal removal operation in JPEG will introduce diverse distortion for different sub-frequency spectrums. Based on this, we propose a divide-and-conquer strategy to learn the mapping on each sub-frequency spectrum with a lightweight sub-network to reduce network parameters and save computation power. Furthermore, we speed up the inference time by integrating reparameterization technology. The comparison results with the state-of-the-art methods on mobile device demonstrate that our method achieves comparable deblocking performance with \({\times }\)100 less computationally complex and \({\times }\)50 faster inference time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ding, X., Zhang, X., Han, J., Ding, G.: Diverse branch block: building a convolution as an inception-like unit. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10886–10895 (2021)

    Google Scholar 

  2. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-style convnets great again. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13733–13742 (2021)

    Google Scholar 

  3. Dong, C., Deng, Y., Loy, C.C., Tang, X.: Compression artifacts reduction by a deep convolutional network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 576–584 (2015)

    Google Scholar 

  4. Fu, X., Liang, B., Huang, Y., Ding, X., Paisley, J.: Lightweight pyramid networks for image deraining. IEEE Trans. Neural Netw. Learn. Syst. 31(6), 1794–1807 (2019)

    Article  Google Scholar 

  5. Fu, X., Zha, Z.J., Wu, F., Ding, X., Paisley, J.: JPEG artifacts reduction via deep convolutional sparse coding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2501–2510 (2019)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: International Conference on Learning Representations (2018)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Liu, L., et al.: Wavelet-based dual-branch network for image Demoiréing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 86–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_6

    Chapter  Google Scholar 

  10. Liu, P., Zhang, H., Lian, W., Zuo, W.: Multi-level wavelet convolutional neural networks. IEEE Access 7, 74973–74985 (2019)

    Article  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Sheikh, H.: Live image quality assessment database release 2 (2005). http://live.ece.utexas.edu/research/quality

  13. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4539–4547 (2017)

    Google Scholar 

  14. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 114–125 (2017)

    Google Scholar 

  15. Wang, M., Fu, X., Sun, Z., Zha, Z.J.: JPEG artifacts removal via compression quality ranker-guided networks. In: IJCAI, pp. 566–572 (2020)

    Google Scholar 

  16. Wang, Z., Liu, D., Chang, S., Ling, Q., Yang, Y., Huang, T.S.: D3: deep dual-domain based fast restoration of JPEG-compressed images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2764–2772 (2016)

    Google Scholar 

  17. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  18. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  19. Zhang, X., Yang, W., Hu, Y., Liu, J.: DMCNN: dual-domain multi-scale convolutional neural network for compression artifacts removal. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 390–394. IEEE (2018)

    Google Scholar 

  20. Zhang, Y., Li, K., Li, K., Zhong, B., Fu, Y.: Residual non-local attention networks for image restoration. In: International Conference on Learning Representations (2019)

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Key R&D Program of China under Grant 2020AAA0105701, National Natural Science Foundation of China (NSFC) under Grants 61872327 and Major Special Science and Technology Project of Anhui (No. 012223665049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Y., Wang, Y., Cao, Y., Zha, ZJ. (2022). Lightweight Wavelet-Based Network for JPEG Artifacts Removal. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98355-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98354-3

  • Online ISBN: 978-3-030-98355-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics