Skip to main content

Progressive GAN-Based Transfer Network for Low-Light Image Enhancement

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2022)

Abstract

Images captured in low-light conditions usually suffer from very low contrast and underexpose, which cannot be directly utilized in the subsequent computer vision tasks, such as object recognition, detection, identification and tracking. Existing methods include HE based method, Retinex theory based method and deep learning method which may generate undesirable enhanced results including amplified noise, biased colors and extreme boundary. To address this problem, we utilize prior knowledge of Retinex theory and GAN based on data statistic to propose a progressive GAN-based Transfer network to realize the low-light enhancement. In this paper, the image is decomposed by JieP method based on the Retinex model to obtain the reflection and light components, and learn the relationship between the reflection component of the low-light image and normal light image via a reflection decomposition on network (RefDecN), and then generate the reflection component of the low-light image. Then, another illumination transfering network (IllumTransN) is utilized to transfer the light of normal light image to the reflection component to realize low-light enhancement. Experimental results of low-light image enhancement on RAISE, LOL and MEF datasets demonstrate our ProGAN can outperform state-of-the-art methods in terms of objective and subjective quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Zuiderveld, K.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  2. Zuiderveld, K.: Contrast limited adaptive histogram equalization. Graph. Gems IV, 474–485 (1994). https://doi.org/10.1016/B978-0-12-336156-1.50061-6

    Article  Google Scholar 

  3. Jobson, D., Rahman, Z.U., Woodell, G.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 6, 451–462 (1997). https://doi.org/10.1109/83.557356

    Article  Google Scholar 

  4. Rahman, Z., Jobson, D.J., Woodell, G.A.: Multi-scale retinex for color image enhancement. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 3, pp. 1003–1006 (1996). https://doi.org/10.1109/ICIP.1996.560995

  5. Jobson, D., Rahman, Z.-U., Woodell, G.: A multi - scale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6, 965–976 (1997). https://doi.org/10.1109/83.597272

    Article  Google Scholar 

  6. Yu, X.G., Li, H.L.: LIME: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2017). https://doi.org/10.1109/TIP.2016.2639450

    Article  MathSciNet  MATH  Google Scholar 

  7. Ren, X., Li, M., Cheng, W.-H., Liu, J.: Joint Enhancement and Denoising Method via Sequential Decomposition, pp. 1–5 (2018). https://doi.org/10.1109/ISCAS.2018.8351427

  8. Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)

    Article  Google Scholar 

  9. Gharbi, M., Chen, J., Barron, J., Hasinoff, S., Durand, F.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graph. (2017). https://doi.org/10.1145/3072959.3073592

    Article  Google Scholar 

  10. Lv, F., Lu, F., Wu, J., Lim, C.: MBLLEN: Low-light Image/Video Enhancement Using CNNs. British Machine Vision Conference (BMVC) (2018)

    Google Scholar 

  11. Shen, L., Yue, Z., Feng, F., Chen, Q., Liu, S., Jie, M.: MSR-net:Low-light Image Enhancement Using Deep Convolutional Network. arXiv:1711.02488 [cs.CV] (2017)

    Google Scholar 

  12. Wei, C., Wang, W., Yang, W., Liu, J.: Deep Retinex Decomposition for Low-Light Enhancement. arXiv:1808.04560 (2018)

    Google Scholar 

  13. Zhang, Y., Zhang, J., Guo, X.: Kindling the Darkness: A Practical Low-light Image Enhancer, pp. 1632–1640 (2019). https://doi.org/10.1145/3343031.3350926

  14. Jiang, Y., et al.: EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 2340–2349 (2021). https://doi.org/10.1109/TIP.2021.3051462

    Article  Google Scholar 

  15. Chen, J., Liu, G., Chen, X.: AnimeGAN: a novel lightweight GAN for photo animation. In: Li, K., Li, W., Wang, H., Liu, Y. (eds.) ISICA 2019. CCIS, vol. 1205, pp. 242–256. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-5577-0_18

    Chapter  Google Scholar 

  16. Barrow, H., Tenenbaum, J.: Recovering Intrinsic Scene Characteristics from Images (1978)

    Google Scholar 

  17. Olkkonen, M., Hansen, T., Gegenfurtner, K.: Color appearance of familiar objects: effects of object shape, texture, and illumination changes. J. Vis. 8(5), 13 (2008). https://doi.org/10.1167/8.5.13

    Article  Google Scholar 

  18. Cai, B., Xu, X., Guo, K., Jia, K., Hu, B., Tao, D.: A Joint Intrinsic-Extrinsic Prior Model for Retinex, pp. 4020–4029 (2017). https://doi.org/10.1109/ICCV.2017.431

  19. Xu, J., et al.: STAR: a structure and texture aware retinex model. IEEE Trans. Image Process. 29, 5022–5037 (2020). https://doi.org/10.1109/TIP.2020.2974060

    Article  Google Scholar 

  20. Yang, W., Wang, W., Huang, H., Wang, S., Liu, J.: Sparse gradient regularized deep retinex network for robust low-light image enhancement. IEEE Trans. Image Process. 30, 2072–2086 (2021). https://doi.org/10.1109/TIP.2021.3050850

    Article  Google Scholar 

  21. Ren, X., Yang, W., Cheng, W.-H., Liu, J.: LR3M: robust low-light enhancement via low-rank regularized retinex model. IEEE Trans. Image Process. 29, 5862–5876 (2020). https://doi.org/10.1109/TIP.2020.2984098

    Article  MathSciNet  Google Scholar 

  22. Zhu, M., Pan, P., Chen, W., Yang, Y.: EEMEFN: low-light image enhancement via edge-enhanced multi-exposure fusion network. Proc. AAAI Conf. Artif. Intell. 34, 13106–13113 (2020). https://doi.org/10.1609/aaai.v34i07.7013

    Article  Google Scholar 

  23. Loh, Y.P., Chan, C.S.: Getting to know low-light images with the exclusively dark dataset. Comput. Vis. Image Understand. 178, 30–42 (2019). https://doi.org/10.1016/j.cviu.2018.10.010

    Article  Google Scholar 

  24. Sasagawa, Y., Nagahara, H.: YOLO in the dark - domain adaptation method for merging multiple models. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 345–359. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_21

    Chapter  Google Scholar 

  25. Pizer, S.M., Johnston, R.E., Ericksen, J.P., Yankaskas, B.C., Muller, K.E.: Contrast-limited adaptive histogram equalization: speed and effectiveness. In: Proceedings of Conference on Visualization in Biomedical Computing, pp. 337–345 (1990)

    Google Scholar 

  26. Abdullah-Al-Wadud, M., Hasanul Kabir, M., Ali Akber Dewan, M., Chae, O.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)

    Google Scholar 

  27. Wu, X., Liu, X., Hiramatsu, K., Kashino, K.: Contrast accumulated histogram equalization for image enhancement. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3190–3194 (2017)

    Google Scholar 

  28. Mao, X., Li, Q., Xie, H., Lau, R., Zhen, W., Smolley, S.: Least Squares Generative Adversarial Networks, pp. 2813–2821 (2017). https://doi.org/10.1109/ICCV.2017.304

  29. Chen, Y., Lai, Y., Liu, Y.: CartoonGAN: generative adversarial networks for photo cartoonization. IEEE/CVF Conf. Comput. Vis. Pattern Recogn. 2018, 9465–9474 (2018)

    Google Scholar 

  30. Nguyen, D., Tien, D., Pasquini, C., Conotter, V., Boato, G.: RAISE - a raw images dataset for digital image forensics (2015). https://doi.org/10.1145/2713168.2713194

  31. Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi- exposure image fusion. IEEE Trans. Image Process. 24(11), 3345 (2015)

    Article  MathSciNet  Google Scholar 

  32. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new image contrast enhancement algorithm using exposure fusion framework. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10425, pp. 36–46. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64698-5_4

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 61906009, the Scientific Research Common Program of Beijing Municipal Commission of Education KM202010005018, and the International Research Cooperation Seed Fund of Beijing University of Technology (Project No. 2021B06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, S., Qi, N., Zhu, Q., Ouyang, H. (2022). Progressive GAN-Based Transfer Network for Low-Light Image Enhancement. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98355-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98354-3

  • Online ISBN: 978-3-030-98355-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics