Skip to main content

Creating a Post-sedentary Work Context for Software Engineering

  • Conference paper
  • First Online:
Book cover Sense, Feel, Design (INTERACT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13198))

Included in the following conference series:

Abstract

Software engineers are sedentary and need technological help for a more healthy life. Current software engineering tasks are mostly confined to the standard sedentary desktop user interface. We believe that software engineering should be restructured so that it offers a non-sedentary alternative. In this paper, we describe a new research approach, called Post-sedentary Software Engineering. Our ambition with this approach is to provide an alternative, healthier work context without decreasing productivity. We take a spatial approach to post-sedentary tool design, starting from the assumption an interactive 3D environment with appropriate metaphors is necessary for full body movement. We discuss available technologies for achieving this goal and outline four studies that incorporate the software engineering phases of code comprehension, code creation and debugging in a non-sedentary context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Averbukh, V., et al.: Metaphors for software visualization systems based on virtual reality. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2019, Part I. LNCS, vol. 11613, pp. 60–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25965-5_6

    Chapter  Google Scholar 

  2. Baćíková, M., Marićák, M., Vanćík, M.: Usability of a domain-specific language for a gesture-driven IDE. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 909–914, September 2015. https://doi.org/10.15439/2015F274

  3. Bennie, J.A., Teychenne, M.J., De Cocker, K., Biddle, S.J.H.: Associations between aerobic and muscle-strengthening exercise with depressive symptom severity among 17,839 U.S. adults. Prev. Med. 121, 121–127 (2019). https://doi.org/10.1016/j.ypmed.2019.02.022. https://www.sciencedirect.com/science/article/pii/S0091743519300611

    Article  Google Scholar 

  4. Bourque, P., Fairley, R.E. (eds.): SWEBOK: Guide to the Software Engineering Body of Knowledge, version 3.0. IEEE Computer Society, Los Alamitos (2014). http://www.swebok.org/

  5. Brown, N.C.C., Kolling, M., Altadmri, A.: Position paper: lack of keyboard support cripples block-based programming. In: 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond), pp. 59–61. IEEE, Atlanta, October 2015. https://doi.org/10.1109/BLOCKS.2015.7369003, http://ieeexplore.ieee.org/document/7369003/

  6. Burnett, M.M., Baker, M.J.: A classification system for visual programming languages. J. Vis. Lang. Comput. 5(3), 287–300 (1994). https://doi.org/10.1006/jvlc.1994.1015. https://www.sciencedirect.com/science/article/pii/S1045926X84710159

    Article  Google Scholar 

  7. Castelo-Branco, R., Leitão, A., Brás, C.: Program comprehension for live algorithmic design in virtual reality. In: Conference Companion of the 4th International Conference on Art, Science, and Engineering of Programming, \(<\)Programming\(>\) 2020, pp. 69–76. Association for Computing Machinery, New York, March 2020. https://doi.org/10.1145/3397537.3398475

  8. Cherni, H., Métayer, N., Souliman, N.: Literature review of locomotion techniques in virtual reality. Int. J. Virtual Real. 20(1), 1–20 (2020). https://doi.org/10.20870/IJVR.2020.20.1.3183. https://ijvr.eu/article/view/3183

    Article  Google Scholar 

  9. Virtual Reality Locomotion - Cyberith Virtualizer VR Treadmills. https://www.cyberith.com/

  10. Dominic, J., Tubre, B., Houser, J., Ritter, C., Kunkel, D., Rodeghero, P.: Program comprehension in virtual reality. In: Proceedings of the 28th International Conference on Program Comprehension, ICPC 2020, pp. 391–395. Association for Computing Machinery, New York, July 2020. https://doi.org/10.1145/3387904.3389287

  11. Drogemuller, A., Cunningham, A., Walsh, J., Thomas, B.H., Cordeil, M., Ross, W.: Examining virtual reality navigation techniques for 3D network visualisations. J. Comput. Lang. 56, 100937 (2020). https://doi.org/10.1016/j.cola.2019.100937. https://research.monash.edu/en/publications/examining-virtual-reality-navigation-techniques-for-3d-network-vi

    Article  Google Scholar 

  12. Elliott, A., Peiris, B., Parnin, C.: Virtual reality in software engineering: affordances, applications, and challenges. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, pp. 547–550. IEEE, Florence, Italy, May 2015. https://doi.org/10.1109/ICSE.2015.191. http://ieeexplore.ieee.org/document/7203009/

  13. Gu, X., Zhang, Y., Sun, W., Bian, Y., Zhou, D., Kristensson, P.O.: Dexmo: an inexpensive and lightweight mechanical exoskeleton for motion capture and force feedback in VR. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI 2016, pp. 1991–1995. Association for Computing Machinery, New York, May 2016. https://doi.org/10.1145/2858036.2858487

  14. Hasselbring, W., Krause, A., Zirkelbach, C.: ExplorViz: research on software visualization, comprehension and collaboration. Softw. Impacts 6, 100034 (2020). https://doi.org/10.1016/j.simpa.2020.100034. https://www.sciencedirect.com/science/article/pii/S2665963820300257

  15. Heidrich, D., Schreiber, A.: Visualization of a software system in virtual reality. In: 2019 Proceedings of Mensch und Computer, MuC 2019, pp. 905–907. Association for Computing Machinery, New York, September 2019. https://doi.org/10.1145/3340764.3345378

  16. Irani, F.: Visual-spatial ability. In: Kreutzer, J.S., DeLuca, J., Caplan, N. (eds.) Encyclopedia of Clinical Neuropsychology, pp. 2652–2654. Springer, New York (2011). https://doi.org/10.1007/978-0-387-79948-3_1418

    Chapter  Google Scholar 

  17. Jantz, J., Molnar, A., Alcaide, R.: A brain-computer interface for extended reality interfaces. In: ACM SIGGRAPH 2017 VR Village, SIGGRAPH 2017, pp. 1–2. Association for Computing Machinery, New York, July 2017. https://doi.org/10.1145/3089269.3089290

  18. Jin, Q., Wang, D., Deng, X., Zheng, N., Chiu, S.: AR-maze: a tangible programming tool for children based on AR technology. In: Proceedings of the 17th ACM Conference on Interaction Design and Children, IDC 2018, pp. 611–616. Association for Computing Machinery, New York, June 2018. https://doi.org/10.1145/3202185.3210784

  19. Jörg, S., Ye, Y., Mueller, F., Neff, M., Zordan, V.: Virtual hands in VR: motion capture, synthesis, and perception. In: SIGGRAPH Asia 2020 Courses, SA 2020 pp. 1–32. Association for Computing Machinery, New York, November 2020. https://doi.org/10.1145/3415263.3419155

  20. Kao, D., et al.: Hack.VR: A Programming Game in Virtual Reality. arXiv:2007.04495 [cs], November 2020

  21. Ke, F., Lee, S., Xu, X.: Teaching training in a mixed-reality integrated learning environment. Comput. Hum. Behav. 62, 212–220 (2016). https://doi.org/10.1016/j.chb.2016.03.094. https://www.sciencedirect.com/science/article/pii/S0747563216302655

    Article  Google Scholar 

  22. Kim, W., Xiong, S.: User-defined walking-in-place gestures for VR locomotion. Int. J. Hum. Comput. Stud. 152, 102648 (2021). https://doi.org/10.1016/j.ijhcs.2021.102648. https://www.sciencedirect.com/science/article/pii/S1071581921000665

    Article  Google Scholar 

  23. Kuhail, M.A., Farooq, S., Hammad, R., Bahja, M.: Characterizing visual programming approaches for end-user developers: a systematic review. IEEE Access 9, 14181–14202 (2021). https://doi.org/10.1109/ACCESS.2021.3051043

    Article  Google Scholar 

  24. Lamping, J., Rao, R., Pirolli, P.: A focus+context technique based on hyperbolic geometry for visualizing large hierarchies. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1995, pp. 401–408. ACM Press/Addison-Wesley Publishing Co., USA, May 1995. https://doi.org/10.1145/223904.223956

  25. Lee, J., Sinclair, M., Gonzalez-Franco, M., Ofek, E., Holz, C.: TORC: a virtual reality controller for in-hand high-dexterity finger interaction. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI 2019, pp. 1–13. Association for Computing Machinery, New York, May 2019. https://doi.org/10.1145/3290605.3300301

  26. Leisman, G., Moustafa, A.A., Shafir, T.: Thinking, walking, talking: integratory motor and cognitive brain function. Front. Pub. Health 4, 94 (2016). https://doi.org/10.3389/fpubh.2016.00094. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879139/

    Article  Google Scholar 

  27. Li, S., He, W., Zhang, L., Hu, Y.: Physicalizing virtual objects with affordances to support tangible interactions in AR. In: 26th ACM Symposium on Virtual Reality Software and Technology, VRST 2020, pp. 1–2. Association for Computing Machinery, New York, November 2020. https://doi.org/10.1145/3385956.3422117

  28. Lillard, A.S.: Montessori: The Science Behind the Genius. Oxford University Press, Oxford (2016)

    Google Scholar 

  29. Mason, D., Dave, K.: Block-based versus flow-based programming for naive programmers. In: 2017 IEEE Blocks and Beyond Workshop (B&B), pp. 25–28. IEEE, Raleigh, October 2017. https://doi.org/10.1109/BLOCKS.2017.8120405. http://ieeexplore.ieee.org/document/8120405/

  30. Massaro, D.W.: Multimodal learning. In: Seel, N.M. (ed.) Encyclopedia of the Sciences of Learning, pp. 2375–2378. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-1428-6_273

    Chapter  Google Scholar 

  31. McGuffin, M.J., Fuhrman, C.P.: Categories and completeness of visual programming and direct manipulation. In: Proceedings of the International Conference on Advanced Visual Interfaces, AVI 2020, pp. 1–8. Association for Computing Machinery, New York, September 2020. https://doi.org/10.1145/3399715.3399821

  32. Merino, L., Ghafari, M., Anslow, C., Nierstrasz, O.: A systematic literature review of software visualization evaluation. J. Syst. Softw. 144, 165–180 (2018). https://doi.org/10.1016/j.jss.2018.06.027. https://www.sciencedirect.com/science/article/pii/S0164121218301237

    Article  Google Scholar 

  33. HoloLens 2-Overview, Features, and Specs|Microsoft HoloLens. https://www.microsoft.com/en-us/hololens/hardware

  34. Myers, B.A.: Taxonomies of visual programming and program visualization. J. Vis. Lang. Comput. 1(1), 97–123 (1990). https://doi.org/10.1016/S1045-926X(05)80036-9. https://www.sciencedirect.com/science/article/pii/S1045926X05800369

  35. Nersesian, E., Vinnikov, M., Lee, M.J.: Travel kinematics in virtual reality increases learning efficiency. In: 2021 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 1–5, October 2021. https://doi.org/10.1109/VL/HCC51201.2021.9576317. iSSN: 1943-6106

  36. Nilsson, N.C., Serafin, S., Steinicke, F., Nordahl, R.: Natural walking in virtual reality: a review. Comput. Entertain. 16(2), 8:1-8:22 (2018). https://doi.org/10.1145/3180658

    Article  Google Scholar 

  37. Oberhauser, R., Lecon, C.: Virtual reality flythrough of program code structures. In: Proceedings of the Virtual Reality International Conference - Laval Virtual 2017, VRIC 2017, pp. 1–4. Association for Computing Machinery, New York, March 2017. https://doi.org/10.1145/3110292.3110303

  38. Omni by Virtuix - The leading and most popular VR motion platform. https://www.virtuix.com/

  39. Onishi, A., Nishiguchi, S., Mizutani, Y., Hashimoto, W.: A study of usability improvement in immersive VR programming environment. In: 2019 International Conference on Cyberworlds (CW), pp. 384–386, October 2019. https://doi.org/10.1109/CW.2019.00073. ISSN: 2642-3596

  40. Paluch, A.E., et al.: Steps per day and all-cause mortality in middle-aged adults in the coronary artery risk development in young adults study. JAMA Netw. Open 4(9), e2124516 (2021). https://doi.org/10.1001/jamanetworkopen.2021.24516

    Article  Google Scholar 

  41. Panas, T., Berrigan, R., Grundy, J.: A 3D metaphor for software production visualization. In: 2003 Proceedings on Seventh International Conference on Information Visualization, IV 2003, pp. 314–319, July 2003. https://doi.org/10.1109/IV.2003.1217996

  42. Park, H.B., Ahn, S., Zhang, W.: Visual search under physical effort is faster but more vulnerable to distractor interference. Cogn. Res. Princ. Implic. 6(1), 17 (2021). https://doi.org/10.1186/s41235-021-00283-4

    Article  Google Scholar 

  43. Pritchard, A., Richardson, M., Sheffield, D., McEwan, K.: The relationship between nature connectedness and eudaimonic well-being: a meta-analysis. J. Happiness Stud. 21(3), 1145–1167 (2020). https://doi.org/10.1007/s10902-019-00118-6

    Article  Google Scholar 

  44. Riva, G., Mancuso, V., Cavedoni, S., Stramba-Badiale, C.: Virtual reality in neurorehabilitation: a review of its effects on multiple cognitive domains. Expert Rev. Med. Devices 17(10), 1035–1061 (2020). https://doi.org/10.1080/17434440.2020.1825939

    Article  Google Scholar 

  45. Robertson, G.G., Mackinlay, J.D., Card, S.K.: Cone trees: animated 3D visualizations of hierarchical information. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1991, pp. 189–194. Association for Computing Machinery, New York, March 1991. https://doi.org/10.1145/108844.108883

  46. Romano, S., Capece, N., Erra, U., Scanniello, G., Lanza, M.: On the use of virtual reality in software visualization: the case of the city metaphor. Inf. Softw. Technol. 114, 92–106 (2019). https://doi.org/10.1016/j.infsof.2019.06.007. https://www.sciencedirect.com/science/article/pii/S0950584919301405

    Article  Google Scholar 

  47. Ryan, R.M., Weinstein, N., Bernstein, J., Brown, K.W., Mistretta, L., Gagné, M.: Vitalizing effects of being outdoors and in nature. J. Environ. Psychol. 30(2), 159–168 (2010). https://doi.org/10.1016/j.jenvp.2009.10.009. https://www.sciencedirect.com/science/article/pii/S0272494409000838

    Article  Google Scholar 

  48. SenseGlove|Make the Digital Feel Real. https://www.senseglove.com/

  49. Shannon, C.R., Thomas-Duckwitz, C.: Executive functioning. In: Kreutzer, J.S., DeLuca, J., Caplan, B. (eds.) Encyclopedia of Clinical Neuropsychology, pp. 991–992. Springer, New York (2011). https://doi.org/10.1007/978-0-387-79948-3_1435

    Chapter  Google Scholar 

  50. Shrestha, N., Kukkonen-Harjula, K.T., Verbeek, J.H., Ijaz, S., Hermans, V., Pedisic, Z.: Workplace interventions for reducing sitting at work. Cochrane Database Syst. Rev. (6) (2018). https://doi.org/10.1002/14651858.CD010912.pub4. Wiley

  51. Sin, J., Munteanu, C.: Let’s go there: voice and pointing together in VR. In: 22nd International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI 2020, pp. 1–3. Association for Computing Machinery, New York, October 2020. https://doi.org/10.1145/3406324.3410537

  52. Straker, L., Levine, J., Campbell, A.: The effects of walking and cycling computer workstations on keyboard and mouse performance. Hum. Factors 51(6), 831–844 (2009). https://doi.org/10.1177/0018720810362079. SAGE Publications Inc

    Article  Google Scholar 

  53. Straker, L., Mathiassen, S.E.: Increased physical work loads in modern work - a necessity for better health and performance? Ergonomics 52(10), 1215–1225 (2009). https://doi.org/10.1080/00140130903039101

    Article  Google Scholar 

  54. Surale, H.B., Gupta, A., Hancock, M., Vogel, D.: TabletInVR: exploring the design space for using a multi-touch tablet in virtual reality. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI 2019, pp. 1–13. Association for Computing Machinery, New York, May 2019

    Google Scholar 

  55. Suznjevic, M., Mandurov, M., Matijasevic, M.: Performance and QoE assessment of HTC Vive and Oculus Rift for pick-and-place tasks in VR. In: 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–3, May 2017. https://doi.org/10.1109/QoMEX.2017.7965679. ISSN: 2472-7814

  56. Tada, K., Tanaka, J.: Tangible programming environment using paper cards as command objects. Procedia Manuf. 3, 5482–5489 (2015). https://doi.org/10.1016/j.promfg.2015.07.693. https://www.sciencedirect.com/science/article/pii/S2351978915006940

    Article  Google Scholar 

  57. Discover the Tap Strap 2. https://www.tapwithus.com/

  58. Taylor, W.C., Williams, J.R., Harris, L.E., Shegog, R.: Computer prompt software to reduce sedentary behavior and promote physical activity among desk-based workers: a systematic review. Hum. Factors, 00187208211034271 (2021). https://doi.org/10.1177/00187208211034271. SAGE Publications Inc

  59. Teychenne, M., White, R.L., Richards, J., Schuch, F.B., Rosenbaum, S., Bennie, J.A.: Do we need physical activity guidelines for mental health: what does the evidence tell us? Ment. Health Phys. Act. 18, 100315 (2020). https://doi.org/10.1016/j.mhpa.2019.100315. https://www.sciencedirect.com/science/article/pii/S1755296619301632

    Article  Google Scholar 

  60. Tremblay, M.S., et al.: Sedentary Behavior Research Network (SBRN) - terminology consensus project process and outcome. Int. J. Behav. Nutr. Phys. Act. 14(1), 75 (2017). https://doi.org/10.1186/s12966-017-0525-8

    Article  Google Scholar 

  61. Tudor-Locke, C., Schuna, J.M., Frensham, L.J., Proenca, M.: Changing the way we work: elevating energy expenditure with workstation alternatives. Int. J. Obes. 38(6), 755–765 (2014). https://doi.org/10.1038/ijo.2013.223. https://www.nature.com/articles/ijo2013223, bandiera_abtest: a Cg\(\_\)type: Nature Research Journals Number: 6 Primary\(\_\)atype: Reviews Publisher: Nature Publishing Group

  62. Turchi, T., Malizia, A.: Fostering computational thinking skills with a tangible blocks programming environment. In: 2016 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 232–233, September 2016. https://doi.org/10.1109/VLHCC.2016.7739692. ISSN: 1943-6106

  63. Vincur, J., Konopka, M., Tvarozek, J., Hoang, M., Navrat, P.: Cubely: virtual reality block-based programming environment. In: Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, VRST 2017, pp. 1–2. Association for Computing Machinery, New York, November 2017. https://doi.org/10.1145/3139131.3141785

  64. Warburton, D.E., Bredin, S.S.: Health benefits of physical activity: a systematic review of current systematic reviews. Curr. Opin. Cardiol. 32(5), 541–556 (2017). https://doi.org/10.1097/HCO.0000000000000437

    Article  Google Scholar 

  65. Ware, C.: Chapter seven - space perception. In: Ware, C. (ed.) Information Visualization, 4th edn. Interactive Technologies, pp. 245–296. Morgan Kaufmann, January 2021. https://doi.org/10.1016/B978-0-12-812875-6.00007-4. https://www.sciencedirect.com/science/article/pii/B9780128128756000074

  66. Ware, C., Franck, G.: Evaluating stereo and motion cues for visualizing information nets in three dimensions. ACM Trans. Graph. 15(2), 121–140 (1996). https://doi.org/10.1145/234972.234975

    Article  Google Scholar 

  67. Wettel, R.: Visual exploration of large-scale evolving software. In: 2009 31st International Conference on Software Engineering - Companion Volume, pp. 391–394, May 2009. https://doi.org/10.1109/ICSE-COMPANION.2009.5071029

  68. White, R.L., Olson, R., Parker, P.D., Astell-Burt, T., Lonsdale, C.: A qualitative investigation of the perceived influence of adolescents’ motivation on relationships between domain-specific physical activity and positive and negative affect. Ment. Health Phys. Act. 14, 113–120 (2018). https://doi.org/10.1016/j.mhpa.2018.03.002. https://www.sciencedirect.com/science/article/pii/S1755296617301801

    Article  Google Scholar 

  69. Zhang, L., Oney, S.: FlowMatic: an immersive authoring tool for creating interactive scenes in virtual reality. In: Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, pp. 342–353. ACM, Virtual Event USA, October 2020. https://doi.org/10.1145/3379337.3415824

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hedlund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hedlund, M., Bogdan, C., Meixner, G. (2022). Creating a Post-sedentary Work Context for Software Engineering. In: Ardito, C., et al. Sense, Feel, Design. INTERACT 2021. Lecture Notes in Computer Science, vol 13198. Springer, Cham. https://doi.org/10.1007/978-3-030-98388-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98388-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98387-1

  • Online ISBN: 978-3-030-98388-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics