
HAL Id: hal-03248067
https://hal.science/hal-03248067

Submitted on 3 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decidable and undecidable problems for first-order
definability and modal definability

Philippe Balbiani, Tinko Tinchev

To cite this version:
Philippe Balbiani, Tinko Tinchev. Decidable and undecidable problems for first-order definability and
modal definability. Thirteenth International Tbilisi Symposium on Language, Logic and Computation
(TbiLLC 2019), Tbilisi State University; Georgian Academy of Sciences; Institute for Logic, Language
and Computation (ILLC) of the University of Amsterdam; Collaborative Research Center 991 of the
University of Düsseldorf, Sep 2019, Batoumi, Georgia. pp.214-236, �10.1007/978-3-030-98479-3_11�.
�hal-03248067�

https://hal.science/hal-03248067
https://hal.archives-ouvertes.fr


Decidable and undecidable problems for
first-order definability and modal definability

Philippe Balbiani1 and Tinko Tinchev2

1Toulouse Institute of Computer Science Research
CNRS — Toulouse University, Toulouse, France

2Faculty of Mathematics and Informatics
Sofia University St. Kliment Ohridski, Sofia, Bulgaria

Abstract. The core of this paper is Chagrova’s Theorems about first-order de-
finability of given modal formulas and modal definability of given elementary
conditions. We consider classes of frames for which modal definability is deci-
dable and classes of frames for which first-order definability is trivial. We give
a new proof of Chagrova’s Theorem about modal definability and sketches of
proofs of new variants of Chagrova’s Theorem about modal definability.
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1 Introduction

The question of the correspondence between elementary conditions and modal formu-
las is concomitant with the creation of the relational semantics of modal logic, frames
serving as interpretation structures both for first-order formulas in the signature with
one binary predicate and equality and for propositional modal formulas in the lan-
guage with one box. Kripke [22] already observed that some elementary conditions
possess a modal correspondent: transitivity vs �p → ��p, symmetry vs p → �♦p,
etc. Less than 20 years have elapsed between Kripke’s observation and the develop-
ment of Correspondence Theory culminating in the publication of the book “Modal
Logic and Classical Logic” [5]: in 1975, Sahlqvist [26] isolated a large set of modal
formulas which guarantee completeness with respect to first-order definable classes of
frames whereas van Benthem [4] and Goldblatt [17] independently noticed that McK-
insey formula �♦p→ ♦�p has no first-order correspondent.

Since the first-order conditions corresponding to Sahlqvist formulas are effectively
computable [6, Section 3.6], it is natural to ask whether Sahlqvist fragment contains all
modal formulas possessing first-order correspondents. This question has received a ne-
gative answer, the conjunction (�♦p→ ♦�p)∧ (�p→ ��p) possessing a first-order
correspondent while not being equivalent to a Sahlqvist formula. See [6, Example 3.57
and Exercise 3.7.1] for details. See also [18] for an extension of the Sahlqvist set of mo-
dal formulas. Hence, owing to the significance of Correspondence Theory, it is natural
to ask whether the following problems are decidable:



First-order definability: determine whether a given modal formula possesses a first-
order correspondent,

Modal definability: determine whether a given first-order sentence possesses a modal
correspondent.

This question has received a negative answer, the limitative results in this topic having
been firstly obtained by Chagrova in her doctoral thesis [11] and then further developed
in [7–9, 12]. Chagrova’s results (henceforth called Chagrova’s Theorems) have been
obtained by reductions from accessibility problems in Minsky machines and by the use
of the frames presented in [8, Figures 1 and 2].

In Chagrova’s Theorems, when we are talking about first-order sentences corresponding
to modal formulas, we mean that they correspond with respect to the class of all frames.
Thus, immediately, there is the question whether Chagrova’s Theorems still hold if one
consider restricted classes of frames. Giving rise to the modal logic S5, the class of all
partitions is perhaps the most simple class of frames that one may conceive of. The sim-
ple character of the class of all partitions also appears within the context of first-order
definability: every modal formula being equivalent in this class to a modal formula of
degree at most 1, it follows from a remark of van Benthem [5, Lemma 9.7] that the
class of all partitions gives rise to a trivial first-order definability problem. As for the
modal definability problem, Balbiani and Tinchev [2] have proved that it is PSPACE-
complete with respect to the class of all partitions when the modal language is extended
by the universal modality.

Other classes of frames of simple character are the classes giving rise to the modal lo-
gics KD45 (the class of all serial, transitive and Euclidean frames) and K45 (the class
of all transitive and Euclidean frames). As for the class of all partitions and for the same
reason, Georgiev [15, 16] has proved that the first-order definability problem is trivial
with respect to these classes whereas the modal definability problem is PSPACE-
complete. The most important computational property shared by the modal logics S5,
KD45 and K45 is the NP-completeness of the satisfiability problem. The satisfiabil-
ity problem of K5 is NP-complete too and this modal logic shares many computational
properties with the modal logics S5, KD45 and K45 as well, for instance the polysize
model property. Nevertheless, with respect to the class of all K5-frames (the class of
all Euclidean frames), although the first-order definability problem is still trivial, the
modal definability problem becomes undecidable [1].

The core of this paper will be Chagrova’s Theorems about first-order definability and
modal definability. In Section 3, we will consider classes of frames for which modal
definability is decidable. In particular, we will demonstrate a new result — namely,
Theorem 1 — saying that the problem of deciding modal definability of first-order sen-
tences with respect to the class of all partitions is PSPACE-complete. In Section 4,
we will consider classes of frames for which first-order definability is trivial. In par-
ticular, we will demonstrate a new result — namely, Theorem 2 — saying that the
problem of deciding first-order definability of modal formulas with respect to the class
of all reflexive, transitive and connected frames with finitely many clusters is trivial. In



Section 5, using standard methods in model theory such as relativization of first-order
formulas and reduct of frames, we will give a new proof of Chagrova’s Theorem about
modal definability and we will give sketches of proofs of new variants of Chagrova’s
Theorem about modal definability. We assume the reader is at home with the basic tools
and techniques in model theory and modal logics. For more on them, see [14, 19] and [6,
10, 21].

2 Preliminaries

We introduce a handful of definitions that will be useful throughout the paper.

2.1 Frames

For all sets E, ‖E‖ will denote the cardinality of E. A frame is a structure F=(W,R)
where W is a nonempty set of states and R is a binary relation on W . For all frames
F=(W,R), for all s in F and for all subsets S of F , let R(s)={t ∈ W : sRt}
and R(S) =

⋃
{R(s) : s ∈ S}. For all frames F=(W,R) and for all s in F ,

let R?(s)=
⋃
{Rn(s) : n ∈ N} where R0(s)={s} and for all n ≥ 1, Rn(s)=

R(Rn−1(s)). For all frames F=(W,R), we say F is rooted if there exists s in F such
that R?(s)=W . In that case, we say s is a root of F . For all frames F=(W,R) and
for all s in F , the subframe of F generated from s is the frame Fs=(Ws, Rs) where
Ws=R

?(s) andRs is the restriction ofR toWs. Obviously, s is a root of Fs. In a frame
F=(W,R), we will say that

– R is reflexive if for all s in F , sRs,
– R is serial if for all s in F , there exists t in F such that sRt,
– R is symmetric if for all s, t in F , if sRt then tRs,
– R is transitive if for all s, t, u in F , if sRt and tRu then sRu,
– R is Euclidean if for all s, t, u in F , if sRt and sRu then tRu and uRt,
– R is connected if for all s, t, u in F , if sRt and sRu then either tRu, or uRt.

The frame F=(W,R) is reflexive (respectively serial, symmetric, transitive, Euclidean,
connected) if R is reflexive (respectively serial, symmetric, transitive, Euclidean, con-
nected). The frame F=(W,R) is a partition if R is reflexive, symmetric and transi-
tive. The partition F=(W,R) is bounded if there exists a positive integer n such that
for all s in F , ‖R(s)‖≤n. For all bounded partitions F=(W,R), let nF be the least
positive integer n such that for all s in F , ‖R(s)‖≤n. The partition F=(W,R) is
small if there exists a positive integer π such that for all s in F , ‖{R(t) : t∈W and
‖R(s)‖=‖R(t)‖}‖≤π. For all small partitions F=(W,R), let πF be the least positive
integer π such that for all s in F , ‖{R(t) : t∈W and ‖R(s)‖=‖R(t)‖}‖≤π. In this
paper, we will consider the following classes of frames: the class Call of all frames, the
class CE of all Euclidean frames, the class CsE of all serial and Euclidean frames, the
class CtE of all transitive and Euclidean frames, the class CstE of all serial, transitive
and Euclidean frames and the class Cpar of all partitions. We will also consider other
classes of frames: the class Crtc of all reflexive, transitive and connected frames and the
class Cωrtc of all reflexive, transitive and connected frames F such that for all s in F , Fs



contains finitely many clusters. Remind that for all reflexive, transitive and connected
frames F=(W,R), a cluster is an equivalence class modulo the equivalence relation
'F on F such that for all s, t in F , s 'F t iff sRt and tRs.

2.2 Modal language and truth

Modal language Let us consider a countable set PVAR of propositional variables
(denoted p, q, . . .). The setLMF of all modal formulas (denoted ϕ, ψ, . . .) is inductively
defined as follows:

– ϕ,ψ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | 2ϕ,

where p ranges over PVAR. We define the other Boolean constructs as usual. The mo-
dal formula 3φ is obtained as the well-known abbreviation: 3φ ::= ¬2¬φ. We adopt
the standard rules for omission of the parentheses. The degree of the modal formula ϕ
(in symbols deg(ϕ)) is the nonnegative integer inductively defined as usual [6, Defini-
tion 2.28]. The set of all subformulas of the modal formula ϕ (in symbols sf(ϕ)) is the
set of modal formulas inductively defined as follows:

– sf(p)={p},
– sf(⊥)={⊥},
– sf(¬ϕ)={¬ϕ} ∪ sf(ϕ),
– sf(ϕ ∨ ψ)={ϕ ∨ ψ} ∪ sf(ϕ) ∪ sf(ψ),
– sf(2ϕ)={2ϕ} ∪ sf(ϕ).

The set of all boxed subformulas of the modal formula ϕ (in symbols sf2(ϕ)) is the set
of modal formulas inductively defined as follows:

– sf2(p)=∅,
– sf2(⊥)=∅,
– sf2(¬ϕ)=sf2(ϕ),
– sf2(ϕ ∨ ψ)=sf2(ϕ) ∪ sf2(ψ),
– sf2(2ϕ)={2ϕ} ∪ sf2(ϕ).

As is well-known, for all modal formulas ϕ, ‖sf2(ϕ)‖+ 1≤‖sf(ϕ)‖.

Truth A valuation on a frame F=(W,R) is a function V assigning to each proposi-
tional variable p a subset V (p) of W . The satisfiability of a modal formula ϕ at a state
s with respect to a valuation V in a frame F=(W,R) (in symbols F , V, s |= ϕ) is
inductively defined as follows:

– F , V, s |= p iff s ∈ V (p),
– F , V, s 6|= ⊥,
– F , V, s |= ¬ϕ iff F , V, s 6|= ϕ,
– F , V, s |= ϕ ∨ ψ iff either F , V, s |= ϕ, or F , V, s |= ψ,
– F , V, s |= 2ϕ iff for all states t in F , if sRt then F , V, t |= ϕ.



As a result, F , V, s |= 3ϕ iff there exists a state t in F such that sRt and F , V, t |= ϕ.
A modal formula ϕ is true with respect to a valuation V in a frame F (in symbols
F , V |= ϕ) if ϕ is satisfied at all states with respect to V in F . A modal formula ϕ is
valid in a frame F (in symbols F |= ϕ) if ϕ is true with respect to all valuations on F .
A modal formula ϕ is valid in a class C of frames (in symbols C |= ϕ) if ϕ is valid in
all frames in C. A frame F is weaker than a frame F ′ (in symbols F � F ′) if for all
modal formulas ϕ, if F |= ϕ then F ′ |= ϕ. For all positive integers n, let

– ψn ::=
∧
{3pi : 0≤i≤n} →

∨
{3(pi ∧ pj) : 0≤i<j≤n}.

It is a well-known fact that for all positive integers n and for all partitions F , F |= ψn
iff F is bounded and nF≤n.

Generated subframes A frame F ′=(W ′, R′) is a generated subframe of a frame
F=(W,R) (in symbols F � F ′) if W ′ ⊆W and

– for all s′, t′ in F ′, if s′R′t′ then s′Rt′,
– for all s′ in F ′ and for all t in F , if s′Rt then t is in F ′ and s′R′t.

The least generated subframe of a frame F=(W,R) generated by a state s in F is
the frame Fs = (Ws, Rs) where Ws = R?(s) and Rs is the restriction of R to Ws.
Generated subframes give rise to the following results:

Proposition 1 (Generated subframes Theorem). If the frame F ′ is a generated sub-
frame of the frame F then F � F ′.

Proof. See [6, Theorem 3.14 (ii)].

Proposition 2. Let F=(W,R) be a frame, s be a state in F , V be a valuation on F
and Vs be the restriction of V to Ws. For all modal formulas ϕ and for all t in Ws,
F , V, t |= ϕ iff Fs, Vs, t |= ϕ.

Proof. By induction on ϕ.

Disjoint unions The frame F ′=(W ′, R′) is the disjoint union of a family of frames
Fi=(Wi, Ri) where i ranges over a nonempty set I if for all i, j∈I , if i6=j then Wi ∩
Wj=∅, W ′=

⋃
{Wi : i ∈ I} and R′=

⋃
{Ri : i ∈ I}. Disjoint unions give rise to the

following result:

Proposition 3 (Disjoint unions Theorem). If the frame F ′ is the disjoint union of a
family of frames Fi where i ranges over a nonempty set I then for all i ∈ I , F ′ � Fi.

Proof. Suppose the frame F ′ is the disjoint union of a family of frames Fi where i
ranges over a nonempty set I . Let i ∈ I . Obviously, Fi is a generated subframe of F ′.
Hence, by Proposition 1, F ′ � Fi



Bounded morphic images A frame F ′=(W ′, R′) is a bounded morphic image of a
frame F=(W,R) (in symbols F � F ′) if there exists a function f assigning to each
state s in F a state f(s) in F ′ such that

– f is surjective,
– for all s, t in F , if sRt then f(s)R′f(t),
– for all s in F and for all t′ in F ′, if f(s)R′t′ then there exists t in F such that sRt

and f(t)=t′.

In that case, the function f is a surjective bounded morphism. Bounded morphic images
give rise to the following result:

Proposition 4 (Bounded morphic images Theorem). If the frame F ′ is a bounded
morphic image of the frame F then F � F ′.

Proof. See [6, Theorem 3.14 (iii)].

2.3 First-order language and truth

First-order language Let us consider a countable set IVAR of individual variables
(denoted x, y, . . .). The set LFOF of all first-order formulas (denoted A, B, . . .) is
inductively defined as follows:

– A,B ::= R(x, y) | x = y | ¬A | (A ∨B) | ∀xA,

where x and y range over IVAR. We define the other Boolean constructs as usual. The
first-order formula ∃xA is obtained as the well-known abbreviation: ∃xA ::= ¬∀x¬A.
We adopt the standard rules for omission of the parentheses. For all first-order formulas
A, let fiv(A) be the set of all free individual variables occurring inA. A first-order for-
mula A is a sentence if fiv(A)=∅. The quantifier rank of the first-order formula A (in
symbols qr(A)) is the nonnegative integer inductively defined as usual [14, Chapter 1].
The relativization of a first-order formula C with respect to a first-order formula A and
an individual variable x (in symbols (C)Ax ) is inductively defined as follows:

– (R(y, z))Ax is R(y, z),
– (y = z)Ax is y = z,
– (¬C)Ax is ¬(C)Ax ,
– (C ∨D)Ax is (C)Ax ∨ (D)Ax ,
– (∀yC)Ax is ∀y(A[x/y]→ (C)Ax ).

In the above definition, A[x/y] denotes the first-order formula obtained from the first-
order formula A by replacing every free occurrence of the individual variable x in A by
the individual variable y. From now on, when we write (C)Ax , we will always assume
that the sets of individual variables occurring in A and C are disjoint. The reader may
easily verify by induction on the first-order formula C that fiv((C)Ax ) ⊆ (fiv(A) \
{x}) ∪ fiv(C). Hence, if C is a sentence then fiv((C)Ax ) ⊆ fiv(A) \ {x}.



Truth An assignment on a frameF is a function g assigning to each individual variable
x a state g(x) in F . The update of an assignment g on a frame F with respect to a state
s in F and an individual variable x (in symbols gxs ) is the assignment gxs on F such
that gxs (x)=s and for all individual variables y 6=x, gxs (y)=g(y). Given a frame F , for
all nonnegative integers n, for all states s1, . . . , sn in F and for all individual variables
x1, . . . , xn, gx1...xn

s1...sn is the assignment g′ on F inductively defined as follows

– if n = 0 then g′ = g,
– if n ≥ 1 then g′ = (g

x1...xn−1
s1...sn−1 )

xn
sn .

The satisfiability of a first-order formula A with respect to an assignment g in a frame
F=(W,R) (in symbols F , g |= A) is inductively defined as follows:

– F , g |= R(x, y) iff g(x)Rg(y),
– F , g |= x = y iff g(x)=g(y),
– F , g |= ¬A iff F , g 6|= A,
– F , g |= A ∨B iff either F , g |= A, or F , g |= B,
– F , g |= ∀xA iff for all states s in F , F , gxs |= A.

As a result,F , g |= ∃xA iff there exists a state s inF such thatF , gxs |= A. A first-order
formula A is valid in a frame F (in symbols F |= A) if A is satisfied with respect to
all assignments in F . A first-order formula A is valid in a class C of frames (in symbols
C |= A) if A is valid in all frames in C. For all positive integers n, let

– Bn ::= ∀x0 . . . ∀xn(
∧
{R(xi, xj) : 0≤i<j≤n} →

∨
{xi = xj : 0≤i<j≤n}).

It is a well-known fact that for all positive integers n and for all partitions F , F |= Bn
iff F is bounded and nF≤n.

Lemma 1. Let A be a sentence. The following conditions are equivalent:

1. Cpar |= A,
2. for all small and bounded partitions F , if nF , πF≤qr(A) then F |= A,

Proof. (1⇒ 2) Obvious.
(2 ⇒ 1) Suppose Cpar 6|= A. Hence, there exists a partition F such that F 6|= A. Let
F ′ be the bounded partition obtained from F by eliminating in all equivalence classes,
as many states as it is needed so that the size of each equivalence class becomes at most
equal to qr(A). Obviously, nF ′≤qr(A). Moreover, Duplicator wins the Ehrenfeucht-
Fraı̈ssé gameGqr(A)(F ,F ′)1. Thus, for all sentencesB, if qr(B)≤qr(A) then F |= B
iff F ′ |= B. Since F 6|= A, F ′ 6|= A. Let F ′′ be the small and bounded partition
obtained from F ′ by eliminating for all positive integers π, as many equivalence classes
as it is needed so that the number of equivalence classes of size π becomes at most equal
to qr(A). Obviously, nF ′′ , πF ′′≤qr(A). Moreover, Duplicator wins the Ehrenfeucht-
Fraı̈ssé gameGqr(A)(F ′,F ′′). Consequently, for all sentencesB, if qr(B)≤qr(A) then
F ′ |= B iff F ′′ |= B. Since F ′ 6|= A, F ′′ 6|= A.

1 Ehrenfeucht-Fraı̈ssé games constitute a useful tool for characterizing frames modulo elemen-
tary equivalence. See [14, Chapter 2] for a general introduction.



Lemma 2. The problem of deciding the Cpar-validity ofLFOF-formulas is PSPACE-
complete.

Proof. By Lemma 1, a sentence A is not Cpar-valid iff there exists a small and bounded
partitionF such that nF , πF≤qr(A) andF 6|= A. Hence, in order to determine whether
a given sentence A is Cpar-valid, it suffices to execute the following procedure:

procedure val(A)
begin

for all small and bounded partitions F such that nF , πF≤qr(A), call
MC(F , A);
if all these calls are accepting then accept;
otherwise, reject;
end

where the call MC(F , A) is accepting iff F |= A. Obviously, the call val(A) is ac-
cepting iff A is Cpar-valid. Since the procedure MC can be implemented in polynomial
space [27, 30], the procedure val can be implemented in polynomial space. Thus, the
problem of deciding the Cpar-validity of LFOF-formulas is in PSPACE. As for the
PSPACE-hardness of the problem of deciding the Cpar-validity of LFOF-formulas, it
immediately follows from the PSPACE-hardness of the membership problem in the
first-order theory of pure equality [28].

Relativization LetF ,F ′ be frames.F ′ is a relativized reduct ofF if there exists a first-
order formula A, there exists an individual variable x and there exists an assignment
g on F such that F ′ is the restriction of F to the set of all states s in F such that
F , gxs |= A. In that case, we say F ′ is the relativized reduct of F with respect to A, x
and g. Relativized reducts give rise to the following result:

Proposition 5 (Relativization Theorem). Let F , F ′ be frames, A be a first-order for-
mula, x be an individual variable and g be an assignment on F . If F ′ is the relativized
reduct of F with respect to A, x and g then for all first-order formulas C(y1, . . . , yn)
and for all assignments g′ on F ′, F , gy1...yng′(y1)...g′(yn)

|= (C(y1, . . . , yn))
A
x iff F ′, g′ |=

C(y1, . . . , yn).

Proof. See [19, Theorem 5.1.1].

2.4 Modal definability and first-order definability

Let C be a class of frames. A sentence A is modally definable with respect to C if there
exists a modal formula ϕ such that for all frames F in C, F |= A iff F |= ϕ. In that
case, we say ϕ is a modal definition of A with respect to C. A modal formula ϕ is first-
order definable with respect to C if there exists a first-order sentence A such that for
all frames F in C, F |= ϕ iff F |= A. In that case, we say A is a first-order definition
of ϕ with respect to C. Table 1 contain examples of the correspondence between modal
formulas and sentences.



ϕ A

p → 3p “R is reflexive”
33p → 3p “R is transitive”
p → 23p “R is symmetric”
3> “R is serial”
3p → 23p “R is Euclidean”

Table 1. Examples of the correspondence between modal formulas and sentences.

Proposition 6. Let C be a class of frames. For all modal formulas ϕ, if there exists a
modal formula ψ such that C |= ϕ↔ ψ and deg(ψ) ≤ 1 then ϕ is first-order definable
with respect to C.

Proof. See [5, Lemma 9.7].

3 Modal definability: decidable cases

We consider classes of frames for which modal definability is decidable: CtE , CstE and
Cpar. For the purpose of proving the decidability of modal definability with respect to
Cpar, we need to consider the following lemmas.

Lemma 3. Let F=(W,R),F ′=(W ′, R′) be bounded partitions. If nF≥nF ′ then for
all modal formulas ϕ, if F |= ϕ then F ′ |= ϕ.

Proof. Suppose nF≥nF ′ . Let ϕ be a modal formula. Suppose F |= ϕ and F ′ 6|= ϕ.
Hence, there exists a valuation V ′ on F ′ and there exists a state s′ in F ′ such that
F ′, V ′, s′ 6|= ϕ. Thus, by Proposition 2, F ′s′ , V ′s′ , s′ 6|= ϕ where V ′s′ is the restric-
tion of V ′ to Ws′ . Consequently, F ′s′ 6|= ϕ. Obviously, nF ′≥nF ′

s′
. Since nF≥nF ′ ,

nF≥nF ′
s′

. Hence, let s be a state in F such that ‖R(s)‖≥‖R′s′(s′)‖. Since F |= ϕ,
by Proposition 1, Fs |= ϕ. Moreover, Fs � F ′s′ . Thus, by Proposition 4, F ′s′ |= ϕ: a
contradiction.

Lemma 4. Let F ,F ′ be bounded partitions such that nF≥nF ′ . For all sentences A, if
A is modally definable with respect to Cpar and F |= A then F ′ |= A.

Proof. Let A be a sentence. Suppose A is modally definable with respect to Cpar and
F |= A. Hence, there exists a modal formula ϕ such that for all partitions F ′′, F ′′ |= A
iff F ′′ |= ϕ. Since F |= A, F |= ϕ. Since nF≥nF ′ , by Lemma 3, F ′ |= ϕ. Since for
all partitions F ′′, F ′′ |= A iff F ′′ |= ϕ, F ′ |= A.

Lemma 5. Let A be a sentence. If Cpar 6|= A and Cpar 6|= ¬A then A is modally
definable with respect to Cpar iff there exists a positive integer n such that n<qr(A)
and for all bounded partitions F , F |= A iff n≥nF .



Proof. Suppose Cpar 6|= A and Cpar 6|= ¬A.
(⇒) Suppose A is modally definable with respect to Cpar. Let N={nF : F is a
bounded partition such that F |= A}. Since Cpar 6|= A and Cpar 6|= ¬A, by Lemma 1,
there exists bounded partitions G′ and G′′ such that nG′≤qr(A), G′ 6|= A and G′′ 6|= ¬A.
Hence, G′′ |= A. Since A is modally definable with respect to Cpar, by Lemma 4, nG′
is strictly greater than all positive integers in N . Moreover, nG′′∈N . Thus, N 6=∅. Since
nG′ is strictly greater than all positive integers in N , N possesses a maximal element.
Let n=maxN . Since nG′≤qr(A) and nG′ is strictly greater than all positive integers in
N , n<qr(A). For the sake of the contradiction, suppose there exists a bounded partition
H such that either H |= A and n<nH, or H 6|= A and n≥nH. In the former case, nH
is in N . Consequently, n≥nH: a contradiction. In the latter case, by Lemma 4, nH is
strictly greater than all positive integers in N . Hence, n<nH: a contradiction.
(⇐) Suppose there exists a positive integer n such that n<qr(A) and for all bounded
partitions F , F |= A iff n≥nF . For the sake of the contradiction, suppose there exists
a partition G = (W,R) such that either G |= A and G 6|= ψn, or G 6|= A and G |= ψn,
ψn being the modal formula defined in Section 2.2. In the former case, since for all
partitions F , F |= ψn iff F is bounded and nF≤n, if G is bounded then nG>n. Thus,
there exists a state s in G such that ‖R(s)‖≥n+1. Since n<qr(A), n+1≤qr(A). Let
G′ be the bounded partition obtained from G by eliminating in all equivalence classes,
as many states as it is needed so that the size of each equivalence class becomes at most
equal to qr(A). As the reader can check, Duplicator wins the Ehrenfeucht-Fraı̈ssé game
Gqr(A)(G,G′). Consequently, for all sentences B, if qr(B)≤qr(A) then G |= B iff
G′ |= B. Since G |= A, G′ |= A. Since there exists a state s in G such that ‖R(s)‖≥n+1
and n + 1≤qr(A), nG′≥n + 1. Hence, nG′>n. Since for all bounded partitions F ,
F |= A iff n≥nF , G′ 6|= A: a contradiction. In the latter case, since for all partitions F ,
F |= ψn iff F is bounded and nF≤n, G is bounded and nG≤n. Since for all bounded
partitions F , F |= A iff n≥nF , G |= A: a contradiction. As a result, we obtain that for
all partitions G, G |= A iff G |= ψn. Thus, A is modally definable with respect to Cpar.

Lemma 6. Let A be a sentence. The following conditions are equivalent:

– A is modally definable with respect to Cpar,
– one of the following conditions holds:
• Cpar |= A,
• Cpar |= ¬A,
• there exists a positive integer n such that n<qr(A) and for all bounded parti-

tions F , F |= A iff n≥nF .

Proof. By Lemma 5, using the fact that if Cpar |= A then A corresponds to the modal
formula > with respect to Cpar and if Cpar |= ¬A then A corresponds to the modal
formula ⊥ with respect to Cpar.

Lemma 7. Let A be a sentence. If Cpar 6|= A and Cpar 6|= ¬A then A is modally
definable with respect to Cpar iff there exists a positive integer n such that n<qr(A)
and Cpar |= A↔ Bn, Bn being the sentence defined in Section 2.3.

Proof. Suppose Cpar 6|= A and Cpar 6|= ¬A.
(⇒) Suppose A is modally definable with respect to Cpar. Since Cpar 6|= A and Cpar 6|=



¬A, by Lemma 6, there exists a positive integer n such that n<qr(A) and for all
bounded partitions F , F |= A iff n≥nF . Hence, for all bounded partitions F , F |= A
iff F |= Bn. Thus, for all bounded partitions F , F |= A ↔ Bn. Consequently, by
Lemma 1, Cpar |= A↔ Bn.
(⇐) Suppose there exists a positive integer n such that n<qr(A) and Cpar |= A↔ Bn.
Hence, for all bounded partitions F , F |= A ↔ Bn. Thus, for all bounded partitions
F , F |= A iff F |= Bn. Consequently, for all bounded partitions F , F |= A iff n≥nF .
Since n<qr(A), by Lemma 6, A is modally definable with respect to Cpar.

Lemma 8. Let A be a sentence. The following conditions are equivalent:

– A is modally definable with respect to Cpar,
– one of the following conditions holds:
• Cpar |= A,
• Cpar |= ¬A,
• there exists a positive integer n such that n<qr(A) and Cpar |= A↔ Bn.

Proof. By Lemma 7, using the fact that if Cpar |= A then A corresponds to the modal
formula > with respect to Cpar and if Cpar |= ¬A then A corresponds to the modal
formula ⊥ with respect to Cpar.

Lemma 9. Let A be a sentence. The following conditions are equivalent:

– Cpar |= A,
– Bqr(A) → A is modally definable with respect to Cpar.

Proof. (⇒) Suppose Cpar |= A. Hence, Cpar |= Bqr(A) → A. Thus, Bqr(A) → A
corresponds to the modal formula > with respect to Cpar. Consequently, Bqr(A) → A
is modally definable with respect to Cpar.
(⇐) Suppose Bqr(A) → A is modally definable with respect to Cpar. For the sake
of the contradiction, suppose Cpar 6|= A. Hence, by Lemma 1, there exists a bounded
partition F such that nF≤qr(A) and F 6|= A. Thus, F |= Bqr(A). Since F 6|= A,
F 6|= Bqr(A) → A. Consequently, Cpar 6|= Bqr(A) → A. Moreover, obviously, Cpar 6|=
¬(Bqr(A) → A). Since Bqr(A) → A is modally definable with respect to Cpar, by
Lemma 6, there exists a positive integer n such that n<qr(Bqr(A) → A) and for all
bounded partitions G, G |= Bqr(A) → A iff n≥nG . Hence, n≤qr(A). Let F ′ be a
bounded partition such that nF ′>qr(A). Thus, F ′ 6|= Bqr(A). Consequently, F ′ |=
Bqr(A) → A. Since for all bounded partitions G, G |= Bqr(A) → A iff n≥nG , n≥nF ′ .
Since nF ′>qr(A), n>qr(A): a contradiction.

As a result,

Theorem 1. The problem of deciding the modal definability with respect to Cpar of
LFOF-formulas is PSPACE-complete.

Proof. By Lemma 8, a sentence A is modally definable with respect to Cpar iff either
Cpar |= A, or Cpar |= ¬A, or there exists a positive integer n such that n<qr(A) and
Cpar |= A↔ Bn. Hence, in order to determine whether a given sentence A is modally
definable with respect to Cpar, it suffices to execute the following procedure:



procedure MD(A)
begin

call val(A);
if this call is accepting then accept;
otherwise, call val(¬A);
if this call is accepting then accept;
otherwise, for all positive integers n such that n<qr(A), call val(A↔
Bn);
if one of these calls is accepting then accept;
otherwise, reject;
end

Obviously, the call MD(A) is accepting iff A is modally definable with respect to Cpar.
Since the procedure val can be implemented in polynomial space, the procedure MD can
be implemented in polynomial space. Thus, the problem of deciding the modal defina-
bility with respect to Cpar of LFOF-formulas is in PSPACE. As for the PSPACE-
hardness of the problem of deciding the modal definability with respect to Cpar of
LFOF-formulas, it immediately follows from Lemmas 2 and 9.

An interesting question is the following: when the ordinary language of modal lo-
gic is extended either with the universal modality, or with the difference modality, is
the problem of deciding the modal definability with respect to Cpar, CtE and CstE of
LFOF-formulas still decidable ? If the answer is “yes”, is this problem still PSPACE-
complete ? The answers to these questions have been given in [2, 15, 16].

Proposition 7. When the ordinary language of modal logic is extended with the univer-
sal modality, the problem of deciding the modal definability with respect to Cpar, CtE
and CstE of LFOF-formulas is PSPACE-complete.

4 First-order definability: trivial cases

In this section, we consider classes of frames for which first-order definability is trivial:
CtE , CstE and Cpar. We take as well a special interest in CE , CsE and Cωrtc and we prove
that they give rise to a trivial first-order definability problem too. It is a well-known fact
that with respect to CtE , CstE and Cpar, every modal formula is equivalent to a modal
formula of degree less than or equal to 1. As a result,

Proposition 8. The problem of deciding first-order definability with respect to CtE ,
CstE and Cpar is trivial: every modal formula is first-order definable with respect to
CtE , CstE and Cpar.

Proof. By Proposition 6.

The reader may ask whether there exists classes of frames with respect to which the
problem of deciding first-order definability is trivial and there exists modal formulas
equivalent to no modal formula of degree less than or equal to 1. It is a well-known fact



that with respect to CE and CsE , every modal formula is equivalent to a modal formula
of degree less than or equal to 2 but some modal formula is equivalent to no modal
formula of degree less than or equal to 1. Nevertheless,

Proposition 9. The problem of deciding first-order definability with respect to CE and
CsE is trivial: every modal formula is first-order definable with respect to CE and CsE .

Proof. Since CE contains CsE , it suffices to prove that (Π) every modal formula is first-
order definable with respect to CE . The proof of (Π) has been presented by Balbiani et
al. [1]. It is based on the following line of reasoning. For all frames F=(W,R) in CE
and for all states s in F , exactly one of the following conditions holds:

– Rs=∅,
– Rs =Ws ×Ws,
– Rs = ({s} × S) ∪ (T × T ) for some nonempty subsets S and T of Ws \ {s} such

that S ⊆ T .

When F is finite, for all states s in F , Fs can be exactly characterized by a triple
σ=(σ1, σ2, σ3) in {0, 1} × N2: σ1 will be the number of irreflexive states in Fs; σ2
will be the number of states accessible from s in 1 step; σ3 will be the number of states
accessible from s either in 1 step, or in 2 steps. WhenRs=∅, this triple will be such that
σ1 = 1, σ2 = 0 and σ3 = 0. When Rs =Ws×Ws, this triple will be such that σ1 = 0,
σ2 ≥ 1 and σ3 = σ2. When Rs = ({s} × S) ∪ (T × T ) for some nonempty subsets S
and T of Ws \ {s} such that S ⊆ T , this triple will be such that σ1 = 1, σ2 ≥ 1 and
σ3 ≥ σ2. A type is a triple σ=(σ1, σ2, σ3) in {0, 1}×N2 such that one of the following
conditions holds:

– σ1 = 1, σ2 = 0 and σ3 = 0,
– σ1 = 0, σ2 ≥ 1 and σ3 = σ2,
– σ1 = 1, σ2 ≥ 1 and σ3 ≥ σ2.

Obviously, for all types σ=(σ1, σ2, σ3), one can construct a finite rooted frame Fσ=
(Wσ, Rσ) in CE which is characterized by σ. Moreover, for all types σ=(σ1, σ2, σ3),
one can write a first-order formula Aσ(x) such that for all assignments g on Fσ , if
g(x) is equal to the root of Fσ then Fσ, g |= Aσ(x). For all types σ=(σ1, σ2, σ3), x
is the only individual variable freely occurring in the first-order formula Aσ(x) asso-
ciated to it. Given a type σ=(σ1, σ2, σ3), how is constructed the finite rooted frame
Fσ=(Wσ, Rσ) and how is written the first-order formula Aσ(x) ? We will answer
later in this section to a similar question within the context of the first-order defina-
bility problem with respect to Cωrtc. Now, for all modal formulas ϕ, let ∆(ϕ) = {σ :
σ=(σ1, σ2, σ3) is a type such that Fσ 6|= ϕ and σ3≤‖sf(ϕ)‖}. Obviously, for all modal
formulas ϕ, ∆(ϕ) is finite. The finite rooted frame Fσ=(Wσ, Rσ) and the first-order
formulaAσ(x) associated to a given type σ=(σ1, σ2, σ3) possess interesting properties.
For example2,

2 Lemmas 10, 11 and 12 assert the properties that are needed for proving Proposition 9. Their
proofs have been given with full details in [1]. Similar properties needed for proving Theorem 2
below are asserted in Lemmas 14, 15 and 16. Their proofs are given with full details below.



Lemma 10. For all types σ=(σ1, σ2, σ3) and for all assignments g on Fσ , if g(x) is
the root of Fσ then Fσ, g |= Aσ(x).

Lemma 11. Let F be a frame in CE and g be an assignment on F . For all types
σ=(σ1, σ2, σ3), if F , g |= Aσ(x) then there exists a surjective bounded morphism
f : Fg(x) � Fσ such that f(g(x)) is the root of Fσ .

Lemma 12. Let ϕ be a modal formula. For all frames F in CE , if F 6|= ϕ then there
exists a type σ=(σ1, σ2, σ3) such that Fσ 6|= ϕ, σ3≤‖sf(ϕ)‖ and F |= ∃x Aσ(x).

In Lemmas 10, 11 and 12, Fσ denotes the finite rooted frame in CE associated to σ and
Fg(x) denotes the subframe of F generated from g(x). For all modal formulas ϕ, let
Aϕ be the first-order formula ¬∃x

∨
{Aσ(x) : σ ∈ ∆(ϕ)}. Notice that for all modal

formulas ϕ, Aϕ is a sentence. Given a modal formula ϕ, the reason for our interest in
the sentence Aϕ is the following result:

Lemma 13. Let ϕ be a modal formula. For all framesF in CE , the following conditions
are equivalent:

– F |= ϕ,
– F |= Aϕ.

This ends the proof of Proposition 9.

The reader may ask whether there exists classes of frames with respect to which every
modal formula is first-order definable and for all n ∈ N, there exists modal formulas
equivalent to no modal formula of degree less than or equal to n. It is a well-known fact
that with respect to Cωrtc, for all n ∈ N, some modal formula is equivalent to no modal
formula of degree less than or equal to n. Nevertheless,

Theorem 2. The problem of deciding first-order definability with respect to Cωrtc is tri-
vial: every modal formula is first-order definable with respect to Cωrtc.

Proof. We will follow a line of reasoning similar to the line of reasoning sketched
in the proof of Proposition 9. For all frames F in Cωrtc and for all states s in F ,
Fs contains finitely many clusters. When F is finite, for all states s in F , Fs can
be exactly characterized by a finite nonempty sequence σ=(σ1, . . . , σa) of positive
integers. In this proof, a type is a finite nonempty sequence σ=(σ1, . . . , σa) of po-
sitive integers. For all types σ=(σ1, . . . , σa), let ‖σ‖=σ1 + . . . + σa. For all types
σ=(σ1, . . . , σa), let Fσ=(Wσ, Rσ) be the Cωrtc-frame such that Wσ={(i, k) : 1≤i≤a
and 1≤k≤σi} and Rσ is the binary relation on Wσ such that for all (i, k), (j, l) in
Wσ , (i, k)Rσ(j, l) iff i≤j. For all types σ=(σ1, . . . , σa), let Aσ(x) be the first-order
formula ∃x1,1 . . . ∃x1,σ1

. . . ∃xa,1 . . . ∃xa,σa
Bσ whereBσ is the conjunction of the fol-

lowing formulas:

– x = x1,1 ∨ . . . ∨ x = x1,σ1
,

– xi,k 6= xj,l for all (i, k), (j, l) in Wσ such that either i6=j, or k 6=l,
– R(xi,k, xj,l) for all (i, k), (j, l) in Wσ such that i≤j,
– ¬R(xj,l, xi,k) for all (i, k), (j, l) in Wσ such that i < j,



– ∀y(R(x, y)→
∨
{R(y, xi,k) : (i, k) is in Wσ}).

Notice that for all types σ=(σ1, . . . , σa), x is the only individual variable freely occur-
ring in Aσ(x). Now, for all modal formulas ϕ, let ∆(ϕ) = {σ : σ=(σ1, . . . , σa) is
a type such that Fσ 6|= ϕ and ‖σ‖≤3.‖sf(ϕ)‖}. Obviously, for all modal formulas ϕ,
∆(ϕ) is finite. The finite rooted frameFσ=(Wσ, Rσ) and the first-order formulaAσ(x)
associated to a given type σ=(σ1, . . . , σa) possess interesting properties. The following
result will play in this proof the role played by Lemma 10 in the proof of Proposition 9.

Lemma 14. For all types σ=(σ1, . . . , σa) and for all assignments g on Fσ , if g(x) is
in {(1, 1), . . . , (1, σ1)} then Fσ, g |= Aσ(x).

Proof. Let σ=(σ1, . . . , σa) be a type and g be an assignment on Fσ . Suppose g(x) is
in {(1, 1), . . . , (1, σ1)}. Let g′ be the assignment on Fσ such that

– g′(x)=g(x),
– g′(xi,k)=(i, k) for all (i, k) in Wσ ,
– for all individual variables z 6=x, if z 6=xi,k for all (i, k) in Wk then g′(z)=g(z).

Since g(x) is in {(1, 1), . . . , (1, σ1)},

– either g′(x)=g′(x1,1), . . ., or g′(x)=g′(x1,σ1
),

– g′(xi,k)6=g′(xj,l) for all (i, k), (j, l) in Wσ such that either i6=j, or k 6=l,
– Rσ(g

′(xi,k), g
′(xj,l)) for all (i, k), (j, l) in Wσ such that i≤j,

– not Rσ(g′(xj,l), g′(xi,k)) for all (i, k), (j, l) in Wσ such that i < j,
– for all (j, l) in Wσ , if Rσ(g′(x), (j, l)) then there exists (i, k) in Wσ such that
Rσ((j, l), g

′(xi,k)).

Hence, Fσ, g′ |= Bσ . Since g′ is an assignment on Fσ such that g′(x)=g(x) and for
all individual variables z 6=x, if z 6=xi,k for all (i, k) in Wk then g′(z)=g(z), Fσ, g |=
Aσ(x).

The following result will play in this proof the role played by Lemma 11 in the proof
of Proposition 9.

Lemma 15. Let F=(W,R) be a frame in Cωrtc and g be an assignment on F . For all
types σ=(σ1, . . . , σa), if F , g |= Aσ(x) then there exists a surjective bounded mor-
phism f : Fg(x) � Fσ such that f(g(x)) is in {(1, 1), . . . , (1, σ1)}.

Proof. Let σ=(σ1, . . . , σa) be a type. Suppose F , g |= Aσ(x). Let g′ be an assignment
on F such that

– g′(x)=g(x),
– for all individual variables z 6=x, if z 6=xi,k for all (i, k) in Wk then g′(z)=g(z),
– F , g′ |= Bσ .

Hence,

– either g′(x)=g′(x1,1), . . ., or g′(x)=g′(x1,σ1),
– g′(xi,k)6=g′(xj,l) for all (i, k), (j, l) in Wσ such that either i6=j, or k 6=l,
– R(g′(xi,k), g

′(xj,l)) for all (i, k), (j, l) in Wσ such that i≤j,



– not R(g′(xj,l), g′(xi,k)) for all (i, k), (j, l) in Wσ such that i < j,
– for all states t in F , if R(g′(x), t) then there exists (i, k) in Wσ such that R(t,
g′(xi,k)).

Let C1 be the cluster of g′(x1,1), . . . , g′(x1,σ1
) in Fg′(x), . . ., Ca be the cluster of

g′(xa,1), . . . , g
′(xa,σa

) in Fg′(x). By the above 5 itemized conditions,

– g′(x) is in C1,
– ‖Ci‖≥σi for all i in {1, . . . , a},
– Ci�Cj for all i, j in {1, . . . , a} such that i≤j,
– not Cj�Ci for all i, j in {1, . . . , a} such that i<j,
– for all states t in Wg′(x), there exists a least element i in {1, . . . , a} such that
tRg′(x)g

′(xi,1), . . ., tRg′(x)g′(xi,σi
),

where� is the reflexive, antisymmetric, transitive and connected relation between F’s
clusters such that for all F’s clusters C,D, C�D iff there exists states t, u in F such
that t∈C, u∈D and tRu. Let f : Wg′(x) −→Wσ be such that

– either f(g′(x))=(1, 1), . . ., or f(g′(x))=(1, σ1),
– for all i in {1, . . . , a}, f|Ci

is a surjective function from Ci to {(i, k) : 1≤k≤σi},
– for all states t in Wg′(x) \ (C1 ∪ . . .∪Ca), f(t) is in {(i, k) : 1≤k≤σi} where i is

the least element in {1, . . . , a} such that tRg′(x)g′(xi,1), . . ., tRg′(x)g′(xi,σi).

Obviously, f : Fg(x) � Fσ is a surjective bounded morphism. Moreover, since
g′(x)=g(x), f(g(x)) is in {(1, 1), . . . , (1, σ1)}.

The following result will play in this proof the role played by Lemma 12 in the proof
of Proposition 9.

Lemma 16. Let ϕ be a modal formula. For all frames F in Cωrtc, if F 6|= ϕ then there
exists a type σ=(σ1, . . . , σa) such that Fσ 6|= ϕ, ‖σ‖≤3.‖sf(ϕ)‖ and F |= ∃xAσ(x).

Proof. Let F=(W,R) be a frame in Cωrtc. Suppose F 6|= ϕ. Hence, there exists a va-
luation V on F and there exists a state s in F such that F , V, s 6|= ϕ. Since F is a Cωrtc-
frame, Fs contains finitely many clusters. Moreover, s belongs to the first cluster of Fs.
For all states t in Fs, let B(t)={2ψ ∈ sf2(ϕ) : Fs, Vs, t |= 2ψ} where Vs is the
restriction of V to Ws. Notice that for all states t, u in Fs, if tRsu then B(t) ⊆ B(u).
Let n ≥ 1 and t1, . . . , tn be states in Fs such that

– for all states t in Fs, there exists i in {1, . . . , n} such that B(t)=B(ti),
– for all i, j in {1, . . . , n}, if i<j then B(ti) is strictly contained in B(tj).

Notice that n≤‖sf2(ϕ)‖+1. Thus, n≤‖sf(ϕ)‖. Moreover, for all i, j in {1, . . . , n}, if
i<j then tiRstj and not tjRsti. For all i in {1, . . . , n}, letCB(ti)={C(u) : u is a state
in Fs such that B(u)=B(ti)}. Obviously, for all i in {1, . . . , n}, C(ti) ∈ CB(ti). For
all i in {1, . . . , n}, let ui be a state in the last cluster of CB(ti). For all i in {1, . . . , n},
let αi ≥ 0 and 2ψi,1, . . . ,2ψi,αi

be a list of sf2(ϕ) \ B(ti) when i=n and a list
of B(ti+1) \ B(ti) otherwise. Obviously, α1 + . . . + αn≤‖sf2(ϕ)‖. Consequently,
α1 + . . . + αn + 1≤‖sf(ϕ)‖. For all i in {1, . . . , n} and for all j in {1, . . . , αi},



let vi,j in C(ui) be such that Fs, Vs, vi,j 6|= ψi,j . For all i in {1, . . . , n}, let τi be
the cardinality of {s, ui} ∪ {vi,1, . . . , vi,αi

} when s is in C(ui) and the cardinality
of {ui} ∪ {vi,1, . . . , vi,αi} otherwise. Obviously, for all i in {1, . . . , n}, τi≤αi + 2.
Let σ be (τ1, . . . , τn) when s is in C(u1) and (1, τ1, . . . , τn) otherwise. Obviously,
‖σ‖≤τ1+ . . .+ τn+1. Since for all i in {1, . . . , n}, τi≤αi+2, ‖σ‖≤α1+ . . .+αn+
2.n+ 1. Since n≤‖sf(ϕ)‖ and α1 + . . .+ αn + 1≤‖sf(ϕ)‖, ‖σ‖≤3.‖sf(ϕ)‖. More-
over, by construction of σ, F obviously satisfies the sentence ∃xAσ(x). In the end,
let us notice that Fσ is isomorphic to F ′ = (W ′, R′) where W ′={s, u1, . . . , un} ∪
{v1,1, . . . , v1,α1 , . . . , vn,1, . . . , vn,αn} and R′ is the restriction of R to W ′. More im-
portant is that, as the reader can prove it by induction on ψ, for all ψ∈sf(ϕ) and for all
w′∈W ′, F ′, V ′, w′ |= ψ iff F , V, w |= ψ where V ′ is the restriction of V to W ′. Since
F , V, s 6|= ϕ, F ′, V ′, s 6|= ϕ. Hence, F ′ 6|= ϕ. Since Fσ is isomorphic to F ′, Fσ 6|= ϕ.

For all modal formulas ϕ, let Aϕ be the first-order formula ¬∃x
∨
{Aσ(x) : σ ∈

∆(ϕ)}. Notice that for all modal formulas ϕ, Aϕ is a sentence. Given a modal formula
ϕ, the reason for our interest in the sentence Aϕ is the following result:

Lemma 17. Let ϕ be a modal formula. For all frames F in Cωrtc, the following condi-
tions are equivalent:

– F |= ϕ,
– F |= Aϕ.

Proof. Let F = (W,R) be a frame in Cωrtc.
(⇒) Suppose F |= ϕ and F 6|= Aϕ. Hence, there exists an assignment g on F such
that F , g |= ∃x

∨
{Aσ(x) : σ ∈ ∆(ϕ)}. Thus, there exists a state s in F such that

F , gxs |=
∨
{Aσ(x) : σ ∈ ∆(ϕ)}. Consequently, there exists σ ∈ ∆(ϕ) such that

F , gxs |= Aσ(x). Hence, Fσ 6|= ϕ. Moreover, by Lemma 15, Fs � Fσ . Since F |= ϕ,
by Proposition 1, Fs |= ϕ. Since Fs � Fσ , by Proposition 4, Fσ |= ϕ: a contradiction.
(⇐) Suppose F |= Aϕ and F 6|= ϕ. Thus, by Lemma 16, there exists a type τ such that
Fτ 6|= ϕ, ‖τ‖≤‖3.sf(ϕ)‖ and F |= ∃x Aτ (x). Consequently, τ is in ∆(ϕ). Let g be an
assignment on F . Since F |= ∃x Aτ (x), F , g |= ∃x Aτ (x). Hence, there exists s ∈W
such that F , gxs |= Aτ (x). Since τ is in ∆(ϕ), F , gxs |=

∨
{Aσ(x) : σ ∈ ∆(ϕ)}. Thus,

F , g |= ∃x
∨
{Aσ(x) : σ ∈ ∆(ϕ)}. Consequently, F , g 6|= Aϕ. Hence, F 6|= Aϕ: a

contradiction.

This ends the proof of Theorem 2.

5 Chagrova’s Theorem about modal definability

In this section, we give a new proof of Chagrova’s Theorem about modal definability
and we give sketches of proofs of new variants of Chagrova’s Theorem about modal
definability.

5.1 A new proof of Chagrova’s Theorem about modal definability

Firstly, we give a new proof of Chagrova’s Theorem about modal definability. Our stra-
tegy will be as follows:



– remind the reduction of Kalmár [20] of the problem of deciding the validity in Call
of sentences from an arbitrary first-order language to the problem of deciding the
validity in Call of sentences from the first-order language LFOF,

– prove that the problem of deciding the validity in Call of sentences from the first-
order language LFOF is reducible to the problem of deciding the modal definability
with respect to Call.

Proposition 10. The problem of deciding the validity in Call of sentences from an arbi-
trary first-order language is reducible to the problem of deciding the validity in Call of
sentences from the first-order language LFOF.

Proof. See [20].

Proposition 11. The problem of deciding the validity in Call of sentences from the first-
order language LFOF is reducible to the problem of deciding modal definability with
respect to Call.

Proof. Let C be a sentence from the first-order language LFOF. Let D be the sentence
∃y (∃x y 6= x ∧ ¬(C)y 6=xx ). We demonstrate Call |= C iff D is modally definable with
respect to Call.
(⇒) Suppose Call |= C. For the sake of the contradiction, suppose D is not modally
definable with respect to Call. We have to consider 2 cases.
1st case: Call |= ¬D. Hence, D corresponds to the modal formula ⊥ with respect to
Call. Thus, D is modally definable with respect to Call: a contradiction.
2nd case: Call 6|= ¬D. Consequently, there exists a frameF such thatF 6|= ¬D. Hence,
F |= D. Let g be an assignment on F . Since F |= D, F , g |= D. Thus, there exists a
state s in F such that F , gys |= ∃x y 6= x and F , gys 6|= (C)y 6=xx . Consequently, F pos-
sesses a relativized reduct F ′ with respect to y 6= x, x and gys . Hence, by Proposition 5,
F , gys |= (C)y 6=xx iff F ′, g |= C. Since F , gys 6|= (C)y 6=xx , F ′, g 6|= C. Thus, F ′ 6|= C.
Consequently, Call 6|= C: a contradiction.
(⇐) Suppose D is modally definable with respect to Call. Hence, there exists a modal
formula ϕ such that for all frames G, G |= D iff G |= ϕ. For the sake of the contra-
diction, suppose Call 6|= C. Thus, there exists a frame F0 such that F0 6|= C. Let g
be an assignment on F0. Since F0 6|= C, F0, g 6|= C. Let F=(W,R) be the frame
defined by W={s} and R=∅ where s is a new state. Let F ′ be the disjoint union of F0

and F . Obviously, F0 is the relativized reduct of F ′ with respect to y 6= x, x and gys .
Consequently, by Proposition 5, F ′, gys |= (C)y 6=xx iff F0, g |= C. Since F0, g 6|= C,
F ′, gys 6|= (C)y 6=xx . Since F consists of a single state, F 6|= D. Since F ′ is the disjoint
union of F0 and F , F ′, gys |= ∃x y 6= x. Since F ′, gys 6|= (C)y 6=xx , F ′, g |= D. Hence,
F ′ |= D. Since for all frames G, G |= D iff G |= ϕ, F ′ |= ϕ. Since F ′ is the disjoint
union of F0 and F , by Proposition 3, F |= ϕ. Since ϕ is a modal definition of D with
respect to Call, F |= D: a contradiction.

This tight relationship between the problem of deciding the validity in Call of sentences
from the first-order language LFOF and the problem of deciding modal definability
with respect to Call constitutes the key result of our method. Notice that there are 2
modal-related constraints in the proof of Proposition 11. The 1st constraint is that the



modal language contains a formula like ⊥ which is valid in no frame. We have used
this constraint at the beginning of the (⇒) part of the proof. The 2nd constraint is that
the modal language does not contain modalities like the universal modality and the
difference modality which prevent from using the Disjoint unions Theorem. We have
used this constraint at the end of the (⇐) part of the proof. Now, we infer the following
result:

Corollary 1 (Chagrova’s Theorem about modal definability). The problem of de-
ciding modal definability with respect to Call is undecidable.

Proof. By Propositions 10 and 11.

5.2 Proofs of new variants of Chagrova’s Theorem about modal definability

Secondly, we give sketches of proofs of new variants of Chagrova’s Theorem about
modal definability. In the proof of Proposition 11, the unique occurrences of the sub-
formulas ∃x y 6= x and ¬(C)y 6=xx in the sentence D associated to the given sentence C
play specific roles. More precisely, in the (⇒) direction of the proof of Proposition 11,
∃x y 6= x is used to show the existence of some relativized reduct F ′ of F whereas
¬(C)y 6=xx is used to infer that C does not hold in F ′ by means of the Relativization
Theorem between F and F ′. The truth is that in this direction of the proof of Proposi-
tion 11, the Relativization Theorem is used to infer some information about F ′, namely
F ′, g 6|= C, from some other information about F , namely F , gys 6|= (C)y 6=xx . As for the
(⇐) direction of the proof of Proposition 11, the Relativization Theorem is used to infer
some information about F ′, namely F ′, gys 6|= (C)y 6=xx , from some other information
about F0, namely F0, g 6|= C. This use of the Relativization Theorem is possible and
leads to a contradiction with the assumption that D is modally definable with respect to
Call because F ′ has been constructed from F0 in such a way that

– F0 is the relativized reduct of F ′ with respect to appropriate syntactic and seman-
tics elements,

– F ′ is the disjoint union of F0 and some other frame.

In [3], the above line of reasoning has been generalized to restricted classes of frames
such as the class of all reflexive frames, the class of all symmetric frames, etc. The
common property of these classes of frames is their stability where a class C of frames
is stable if there exists a first-order formula A, there exists an individual variable x and
there exists a sentence B such that

(a) for all frames F in C, for all assignments g on F and for all frames F ′, if F ′ is the
relativized reduct of F with respect to A, x and g then F ′ is in C,

(b) for all frames F0 in C, there exists frames F , F ′ in C and there exists an assignment
g on F such that F0 is the relativized reduct of F with respect to A, x and g,
F |= B, F ′ 6|= B and F � F ′.

In this case, (A, x,B) is a witness of the stability of C. The following result proved
in [3] states that if C is stable then the problem of deciding the modal definability of
sentences with respect to C is at least as difficult as the problem of deciding the validity
of sentences in C.



Proposition 12. If C is stable then the problem of deciding the validity of sentences
from the first-order language LFOF in C is reducible to the problem of deciding the
modal definability of sentences with respect to C.

As a result, if one wants to show that the problem of deciding the modal definability of
sentences with respect to a class C of frames is undecidable, a possible strategy is the
following:

– prove that the problem of deciding the validity of sentences from the first-order
language LFOF in C is undecidable,

– find a first-order formula A, an individual variable x and a sentence B such that
(A, x,B) is a witness of the stability of C.

Obviously, if C is the class of all frames satisfying a universal elementary condition then
C satisfies the condition (a) defining stability with respect to any first-order formula A,
any individual variable x and any sentence B. It is quite easy to see why. Suppose C
is the class of all frames satisfying a universal elementary condition. Let F be a frame
in C, g be an assignment on F and F ′ be a frame. Suppose F ′ is the relativized reduct
of F with respect to A, x and g. This means that F ′ is the restriction of F to the set
of all states s in F such that F , gxs |= A. Since C is the class of all frames satisfying a
universal elementary condition and F is in C, F ′ is in C. In other respect, if C is closed
under taking disjoint unions, generated subframes and bounded morphic images then
C satisfies the condition (b) defining stability with respect to the first-order formula
A := x1 6= x, the individual variable x and the sentence B := ∃y∃zy 6= z. It is quite
easy to see why. Suppose C is closed under taking disjoint unions, generated subframes
and bounded morphic images. Let F0 be a frame in C. We have to consider 2 cases.
1st case: F0 is serial. Let F ′ = (W ′, R′) be the frame defined by W ′ = {s′} and
R′ = {(s′, s′)} where s′ is a new state. Since F0 is serial, obviously, F ′ is a bounded
morphic image of F0. Since C is closed under taking bounded morphic images and F0

is in C, F ′ is in C. Let F be the disjoint union of F0 and F ′. Since C is closed under
taking disjoint unions, F0 is in C and F ′ is in C, F is in C. Since F ′ consists of a
single state, F ′ 6|= B. Since F is the disjoint union of F0 and F ′, F |= B. Let g be
an assignment on F such that g(x1) = s′. Obviously, F0 is the relativized reduct of F
with respect to A, x and g. Finally, since F is the disjoint union of F0 and F ′, F � F ′.
2nd case: F0 is not serial. Let F ′ = (W ′, R′) be the frame defined by W ′ = {s′} and
R′ = ∅ where s′ is a new state. Since F0 is not serial, obviously, F ′ is isomorphic to
a generated subframe of F0. Since C is closed under taking generated subframes and
F0 is in C, F ′ is in C. Let F be the disjoint union of F0 and F ′. Since C is closed
under taking disjoint unions, F0 is in C and F ′ is in C, F is in C. Since F ′ consists of
a single state, F ′ 6|= B. Since F is the disjoint union of F0 and F ′, F |= B. Let g be
an assignment on F such that g(x1) = s′. Obviously, F0 is the relativized reduct of F
with respect to A, x and g. Finally, since F is the disjoint union of F0 and F ′, F � F ′.
The above remarks immediately show that Call is stable. The truth is that

Proposition 13. The following classes of frames are stable as well: CE , the class of all
reflexive frames, the class of all transitive frames, the class of all reflexive transitive
frames, the class of all strict partial orders, the class of all partial orders, the class of



all lattices, the class of all symmetric frames and the class of all reflexive symmetric
frames.

Proof. See [1, 3] for details.

Gathering results from [13, 23–25, 29], one can prove that

Proposition 14. The validity of sentences from the first-order language LFOF is unde-
cidable in each of the following classes of frames: CE , the class of all reflexive frames,
the class of all transitive frames, the class of all reflexive transitive frames, the class of
all strict partial orders, the class of all partial orders, the class of all lattices, the class
of all symmetric frames and the class of all reflexive symmetric frames.

Proof. See [1, 3] for details.

As a corollary, one obtain the following variants of Chagrova’s Theorem about modal
definability.

Corollary 2 (Variants of Chagrova’s Theorem about modal definability). The pro-
blem of deciding modal definability with respect to the following classes of frames is
undecidable: CE , the class of all reflexive frames, the class of all transitive frames, the
class of all reflexive transitive frames, the class of all strict partial orders, the class
of all partial orders, the class of all lattices, the class of all symmetric frames and the
class of all reflexive symmetric frames.

Proof. By Propositions 13 and 14.

6 Conclusion

The core of this paper has been Chagrova’s Theorems about first-order definability of
given modal formulas and modal definability of given elementary conditions. We have
analyzed Chagrova’s Theorems and we have tried to understand why their proofs cannot
be easily repeated for proving the undecidability of first-order definability and modal
definability with respect to restricted classes of frames. We have considered classes of
frames for which modal definability is decidable, for instance Cpar, CtE and CstE . We
have considered classes of frames for which first-order definability is trivial, for ins-
tance Cpar, CtE and CstE , but also Cωrtc. Using standard methods in model theory such
as relativization of first-order formulas and reduct of frames, we have given a new proof
of Chagrova’s Theorem about modal definability and we have given sketches of proofs
of new variants of Chagrova’s Theorem about modal definability. Much remains to be
done.

An obvious question is whether there exists other classes of frames for which modal
definability is decidable. Is modal definability with respect to Crtc decidable ? What
about first-order definability with respect to Crtc ? Another question is whether there
exists other classes of frames for which first-order definability is trivial. It is also of
interest to consider restrictions or extensions of the ordinary language of modal logic.



For example, one can consider the implication restriction of LMF based on the connec-
tives → and 2 or the tense extension of LMF based on the Boolean connectives and
the modal connectives 2 and 2−1. For such restrictions or extensions of LMF, what
is the computability of first-order definability and modal definability ? And in the end,
there is the question whether there exists classes of frames for which modal definability
is decidable and first-order definability is undecidable.
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