Skip to main content

Matching and Generalization Modulo Proximity and Tolerance Relations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13206))

Abstract

Proximity relations are fuzzy binary relations satisfying reflexivity and symmetry properties. Tolerance, which is a reflexive and symmetric (and not necessarily transitive) relation, can be also seen as a crisp version of proximity. We discuss two fundamental symbolic computation problems for proximity and tolerance relations: matching and anti-unification, present algorithms for solving them, and study properties of those algorithms.

This work was supported by the Austrian Science Fund (FWF) under project 28789-N32 and by the strategic program “Innovatives OÖ 2020” by the Upper Austrian Government.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that notions of application of a substitution to an X-term and application of an X-substitution to a term are not defined.

References

  1. Aït-Kaci, H., Pasi, G.: Fuzzy unification and generalization of first-order terms over similar signatures. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS, vol. 10855, pp. 218–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94460-9_13

    Chapter  MATH  Google Scholar 

  2. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A modular order-sorted equational generalization algorithm. Inf. Comput. 235, 98–136 (2014)

    Article  MathSciNet  Google Scholar 

  3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  4. Baader, F.: Unification theory. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 151–170. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55124-7_5

    Chapter  Google Scholar 

  5. Bartol, W., Miró, J., Pióro, K., Rosselló, F.: On the coverings by tolerance classes. Inf. Sci. 166(1–4), 193–211 (2004)

    Article  MathSciNet  Google Scholar 

  6. Baumgartner, A., Kutsia, T.: A library of anti-unification algorithms. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 543–557. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_38

    Chapter  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  8. Julián-Iranzo, P., Rubio-Manzano, C.: Proximity-based unification theory. Fuzzy Sets Syst. 262, 21–43 (2015)

    Article  MathSciNet  Google Scholar 

  9. Julián-Iranzo, P., Sáenz-Pérez, F.: An efficient proximity-based unification algorithm. In: 2018 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2018, Rio de Janeiro, Brazil, 8–13 July 2018, pp. 1–8. IEEE (2018)

    Google Scholar 

  10. Klement, E., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic, vol. 8. Springer, Cham (2000). https://doi.org/10.1007/978-94-015-9540-7

    Book  MATH  Google Scholar 

  11. Kutsia, T., Pau, C.: Proximity-based generalization. In: Ayala Rincón, M., Balbiani, P. (eds.), 32nd International Workshop on Unification, UNIF 2018, Proceedings (2018)

    Google Scholar 

  12. Kutsia, T., Pau, C.: Computing all maximal clique partitions in a graph. RISC Report 19–04, RISC, Johannes Kepler University Linz (2019)

    Google Scholar 

  13. Kutsia, T., Pau, C.: Solving proximity constraints. In: Gabbrielli, M. (ed.) LOPSTR 2019. LNCS, vol. 12042, pp. 107–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45260-5_7

    Chapter  Google Scholar 

  14. Plotkin, G.D.: A note on inductive generalization. Mach. Intel. 5(1), 153–163 (1970)

    MathSciNet  MATH  Google Scholar 

  15. Reynolds, J.C.: Transformational systems and the algebraic structure of atomic formulas. Mach. Intel. 5(1), 135–151 (1970)

    MathSciNet  MATH  Google Scholar 

  16. Sessa, M.I.: Approximate reasoning by similarity-based SLD resolution. Theor. Comput. Sci. 275(1–2), 389–426 (2002)

    Article  MathSciNet  Google Scholar 

  17. Zeeman, E.C.: Topology of the brain. In: Waddington, C.H. (ed.) Towards a Theoretical Biology, vol. 1, pp. 140–151. Edinburgh University Press, Edinburgh (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temur Kutsia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kutsia, T., Pau, C. (2022). Matching and Generalization Modulo Proximity and Tolerance Relations. In: Özgün, A., Zinova, Y. (eds) Language, Logic, and Computation. TbiLLC 2019. Lecture Notes in Computer Science, vol 13206. Springer, Cham. https://doi.org/10.1007/978-3-030-98479-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98479-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98478-6

  • Online ISBN: 978-3-030-98479-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics