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Abstract. Deep learning approaches have become the standard solution
to many problems in computer vision and robotics, but obtaining suffi-
cient training data in high enough quality is challenging, as human labor
is error prone, time consuming, and expensive. Solutions based on sim-
ulation have become more popular in recent years, but the gap between
simulation and reality is still a major issue. In this paper, we introduce a
novel method for augmenting synthetic image data through unsupervised
image-to-image translation by applying the style of real world images to
simulated images with open source frameworks. The generated dataset is
combined with conventional augmentation methods and is then applied
to a neural network model running in real-time on autonomous soccer
robots. Our evaluation shows a significant improvement compared to
models trained on images generated entirely in simulation.

1 Introduction

In recent years, deep learning approaches became the standard solution to many
problems in computer vision, such as classification [5], object detection [I6], or
semantic segmentation [I8]. Efforts were made to reduce the computational com-
plexity in order to deploy them to mobile devices [9]. These approaches usually
require a vast amount of training data which can either be generated through
human labor or be generated synthetically. Generating training data through
human labor can result in datasets of high quality, but it is a cumbersome and
expensive task. The CamVid dataset [4] contains detailed semantic labels and
uses preprocessing to assist human labelers, but annotating a single frame takes
20 to 25 minutes. Multiple volunteers were tasked to perform the labeling, but
only about 15 % of the volunteers delivered acceptable results. Similar problems
exist in other datasets such as the PASCAL VOC challenge [6] or in the COCO
dataset [14].

Recently, a trend can be seen to approaches that rely on simulated and syn-
thetic data. The SYNTHIA dataset, for instance, consists of 213400 images and
pixel-accurate semantic annotations as well as depth maps generated with the



Unity framework [I9]. Computer games can also be used to generate images that
can then be labeled manually [I7]. Unfortunately, data generated in a simulated
environment often does not directly transfer to reality. This issue is referred to
as the reality gap [12).

Hess et al. [§] introduced an environment to create annotated training data in
a RoboCup Standard Platform League (SPL) setting and demonstrated the fea-
sibility of performing a semantic segmentation on that data. A major challenge
in the RoboCup SPL is the perception of the field in a diverse set of lighting
conditions. Low quality cameras result in images with low contrasts and lim-
ited processing power usually requires using fast conventional computer vision
approaches. Frameworks such as TensorFlow Lite [I] or CompiledNN [25] made
utilizing neural networks in mobile and low-end devices more feasible.

In our work, we synthetically generate images with the tools provided by
[8] and transform them with unsupervised image-to-image translation [10] and
domain randomization [26] so that they can be used as training data for any
kind of deep learning task. We use this dataset to train a semantic segmentation
that is able to run in real-time on a NAO v6 robot. Our approach can generally
be applied to any other domain where computing power is sparse and flexibility
and reliability plays an important role. All required software dependencies are
open source. Our evaluation shows that models trained with our method per-
form noticeably better than models trained with data directly generated from
simulation as well as with generated data that is expanded with conventional
augmentation techniques. In summary, our main contributions are:

— We developed a method using publicly available state of the art image-to-
image transformation frameworks and demonstrate that it can be used to
generate high quality datasets that allow training highly performing models.

— We introduce a multi-class semantic segmentation model architecture that
is capable of running in real-time on a NAO v6 robot.

The remainder of this paper is organized as follows: After summarizing the
related work in Sec. 2] we describe our data generation approach in Sec. 3} In
Sec.[d] we present our semantic segmentation model architecture. Lastly, multiple
models generated with different data augmentations are evaluated and discussed
in Sec. [fland Sec. [frespectively. An overview of the proposed method is depicted

in Fig.

2 Related Work

There are two remarkable works in the area of closing the reality gap with image-
to-image translation: Bousmalis et al. [3] use domain adaptation and domain-
adversarial neural networks to utilize synthetic training data in an end-to-end
learning approach in order to learn robotic grasping. Bewley et al. [2] use image-
to-image translation to transfer a vision-based driving policy from simulation
to reality. Instead of explicit representations such as a semantic segmentation,
their end-to-end approach uses more implicit representations. In contrast to our
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Fig. 1. The general workflow of our proposed method: Images and corresponding masks
are generated in simulation. The background of the generated images is replaced with a
random image from the COCO dataset. MUNIT image-to-image translation is applied
to these enhanced images, which are now the intermediate dataset.

proposed method, both approaches have in common that they utilize the image-
to-image translation in an end-to-end approach. Flexibility in the postprocessing
plays an important role in RoboCup settings, which is not given with the current
state of the art of end-to-end approaches. Using intermediate representations
such as pixel-accurate labels allows a higher flexibility and versatility. A dataset
using such low level representations can be used both for semantic segmentation
and for high level classification and object detection.

Deep learning approaches for robot vision in RoboCup were first applied in
the humanoid league, where Schnekenburger et al. [20] use a segmentation to
detect different field features such as line intersections and objects. All classes
except for the detection of other robots performed satisfactory. Van Dijk et al.
[27] propose a novel model architecture without any residual connections for a
semantic segmentation, which was able to be executed in close to real-time on a
typical smartphone CPU, but lacks the ability to properly detect complex fea-
tures or multiple classes at once. In contrast to the humanoid league, the SPL,
which uses the SoftBank NAO robots, is more constrained in terms of hardware.
Nevertheless, Hess et al. [8] trained a simple classifier model to demonstrate
the feasibility of using synthetic images in such a scenario. Szemenyei et al. [24]
propose a novel, small semantic segmentation model that uses images gener-
ated with UERoboCup for pre-training the model and eventually tune it with
real images. However, this approach does not focus on the more extreme con-
ditions that games in environments with natural lighting require. Furthermore,
Poppinga et al. [I5] proposed a robot detection framework for which data ob-
tained in a simulation was used to learn additional features that are hard to
label manually, such as robot distances.



3 Data Generation

In this section, after briefly describing the background and the tools generating
the simulated data, we give insights into the Multimodal Unsupervised Image-
to-Image Translation (MUNIT) framework [10], which we use for the sim-to-real
image translation, and describe the online data augmentation methods we used.

3.1 RoboCup and UERoboCup

While RoboCup provides a benchmark to quantitatively compare the progress
over time, the community is small and lacks labeled training data for deep learn-
ing approaches. Efforts were made to create a community-driven database for
labeled real images [7], but the data required for specific tasks and pixel-accurate
labels are rarely available.

UERoboCup is an application based on Unreal Engine that allows generating
game situations with multiple robots from the view of a specific robot [§] and
is capable of generating pixel-accurate semantic annotation. To provide a more
accurate representation of the environment, we added additional labels relevant
to the SPL context, such as the penalty mark and the goal bar as well as an
adapted appearance of the robots to that of the latest NAO robot generation.
In addition, we increased the variation in the generated images to reflect reality
more properly. This is achieved by a variable camera pitch instead of a fixed one
and the definition of a skeleton for the previously static robot mesh, which allows
dynamic robot poses. This procedure is referred to as domain randomization [26].
Furthermore, the robot skeleton can be used for a more detailed segmentation of
individual robot limbs, allowing, for instance, a pose detection. We also export
meta data such as the extrinsic camera parameters and the poses of robots in the
standardized JSON format. Such information is difficult to annotate manually,
therefore learning further characteristics, such as the distance to another robot,
as shown in [I5], mainly relies on synthetic data.

We generated a set of 10000 images and labels with UERoboCup. A generated
image with the corresponding converted segmentation mask can be seen in the
overview in Fig.

3.2 Image Post Processing

UERoboCup only creates images of a plain RoboCup scene taking place in a
white room. However, during an actual game, the background is cluttered with
a wide range of different objects, such as people walking around. In order to
make potential deep learning applications understand the concept of unwanted
background clutter, we replace the background with structured images, similar
o [26]. This can be considered another variation of domain randomization. We
use images from the COCO test set [14]. Even though these images do not exactly
represent how a scene would look like at a RoboCup event, we found that they
are well-suited to help deep learning applications differentiate between relevant
foreground and irrelevant background clutter.



3.3 MUNIT

MUNIT assumes images from two different domains z; € X} and x5 € X5 and,
given samples drawn from the two marginal distributions p(x1) and p(z2), with-
out access to the joint distribution p(z1, z3), estimate the conditionals p(z1|z2)
and p(ze|r;) with the image-to-image translation models p(x1_2|z2), where
X192 is a sample resulting from translating x; to Xp [I0]. Due to the unsu-
pervised nature of MUNIT, no explicit labeling has to be performed on any of
the sample images. The learned mapping is multimodal, thus multiple different
images with different styles from domain x; € X can be applied to the same im-
age xo € Xy and each time a different image with the style from domain z; € &}
is computed.

3.4 Style Transfer

MUNIT requires a test set and a training set of images for the two classes X7 and
Xs. For this application, the two classes are real images recorded by a robot’s
camera X, and simulated images created with UERoboCup Xy, . For the real
domain, we select images from previous RoboCup events and from ImageTagger
[7], accumulating to an overall of 885 images in the training set and 155 images in
the test set. We found that a large variance in the training images is essential for
MUNIT to generate useful results. Since the images generated by UERoboCup
are random, any subset with about the same size can be used. Note that in
this subset, we already replaced the background with a random image from the
COCO dataset. In the simulated domain, we used 1000 images for training and
200 for testing. We train on an NVidia Titan V with MUNIT default settings
for 70000 epochs. Due to memory limitations, we slightly decreased the amount
of the generator and discriminator filters. We noticed a convergence after 50000
epochs, with no further significant improvements from that point. To generate
the processed images, we took three random style images from the set of real
images and applied them to each image generated by UERoboCup, resulting in
30000 different images. An example can be seen in Fig.

3.5 Data Augmentation

Data augmentation is a type of data regularization and helps to avoid overfitting.
Additionally, data augmentation can be used to enhance the size and quality of
datasets with warping or oversampling methods [21].

We used the following online data augmentations during training: Vertical
image flipping, Gaussian noise, multiply, add (RGB and HSV), simplex noise,
motion blur, contrast normalization, and simulated sun patches.

It is essential that the model learns to handle extreme environmental situ-
ations with patches of light and shadow. Since this is not captured with suffi-
cient variance in our dataset, we introduce an additional domain randomization
method during online data augmentation by simulating patches on the field that



Fig. 2. After changing the background in the simulated image to a random image
from the COCO dataset (left), we apply the image-to-image translation learned by
MUNIT to it (middle). In addition to the offline augmentation obtained with the sim-
to-real translation, we perform an online augmentation during training (right). Beside
standard augmentations such as blur, we also introduce a simple simulation of sun light
patches on the field.

are illuminated by the sun. We implement this augmentation by generating mul-
tiple random polygons consisting of three to six points in the frame and multiply
these areas with a random factor. A sample augmentation is shown in Fig. [2|

4 Semantic Segmentation

Designing models that are capable of being executed in real-time on platforms
with limited resources is difficult due to computing constraints. In our applica-
tion, the performance baseline for the design of the model is the NAQO’s camera
frame rate of 30 fps. We allocate one CPU core for the processing of the frames
of one camera, which means that the model must process each frame at the same
rate. As inference framework, we use CompiledNN [25].

The model architecture is based on the U-Net architecture [I8] and incorpo-
rates features from MobileNet [9]. The U-Net architecture consists of an encoder
and a decoder with multiple residual connections between the encoder and the
decoder. The reduced model from this work uses only two residual connections
and downscales the image twice. MobileNet was designed to be deployed to mo-
bile devices and is therefore optimized to run with limited computing power.
This is mainly realized by replacing convolutions with separable convolutions
[9]. For an additional acceleration, pooling layers are replaced with convolutions
with a corresponding stride, as proposed in [23]. We use batch normalization for
regularization [I1] and LeakyReLU [28] as activation functions. The resulting
model has 12909 learnable parameters and is shown in Tab.

Our proposed model is capable of performing multi-class predictions (in our
case ball, goal posts, lines, and robots). Due to limitations in CompiledNN, no
softmax activation is applied to the last layer. This means that the model detects
all mentioned classes independently from each other. Note that a binary cross
entropy or something similar must be used as the loss function. Furthermore,
it can be desirable to have multiple independent classifications outputs. For
instance, if the model is not certain if the arm of a robot is a similarly looking goal



Table 1. Our proposed segmentation model architecture. The scale refers to the tensor
size relative to the input size. N is the amount of how often the layer in the row is
repeated and F represents the amount of filters.

Layer Scale|N|F
Input 1 3
3 x 3-SConv2D, BN, LeakyReLLU 1 8
3 x 3-SConv2D, BN, LeakyReLU 1 8
3 x 3-SConv2D, BN, LeakyReL.U 1/2 8

3 x 3-SConv2D, BN, LeakyReLU|1/2

3 x 3-SConv2D, BN, LeakyReLU|1/4 16

Up2D 1/2 24

Concat 1/2 40

3 x 3-SConv2D, BN, LeakyReLU 1/2 16
Up2D 1 16
Concat 24

3 x 3-SConv2D, BN, LeakyReLLU

N
1
1
1
1
2
1
3 x 3-SConv2D, BN, LeakyReLU|1/4 |6 |24
1
1
3
1
1
3
3 x 3-SConv2D, BN, LeakyReLLU 1

— = =

post, the likelihood of both outputs would be small with a softmax activation. By
keeping the output layers independent from each other, the model can classify
the arm of a robot both as part of a robot but also as a goal post. This can be
validated in the postprocessing by applying additional domain knowledge and
thus discarding false positives. Note that ideally, the model is able to capture
this from context, but we found that increasing the model size more leads to an
unacceptably low inference time. The maximum amount of features is limited
by the complexity of the model. We achieved good results with predicting five
and less classes, but it is to be expected that a larger amount of independent
output predictions yields worse predictions, if the base model is not adapted.

We perform different experiments to find a working model architecture and
look for a compromise between detection accuracy and inference time. The run-
time was measured on a single CPU core of the NAO v6 (Intel Atom E3845@1.91
GHz [22]) using CompiledNN [25]. The results for different image resolutions are
shown in Tab. 2] As the maximum feasible input resolution for real-time opera-
tion is 14 ms, the original input image is subsampled accordingly. The resulting
aliasing should not affect the neural model as it should learn to ignore it.

Table 2. Inference time on the NAO v6 with CompiledNN

Size [px X px][40 x 32|80 x 64]108 x 80]120 x 88|160 x 120[320 x 240
Duration [ms]| 1.6 | 6.7 | 11.2 | 140 | 273 | 116.0




5 Results

In order to evaluate the performance of the model and the synthetic dataset,
we manually labeled 348 images, which we also used in the MUNIT augmenta-
tion resembling varying environment conditions with the five classes field, lines,
robots, goal post, and ball. We evaluate the mean Average Precision (mAP) met-
ric. In order to evaluate the effect of the different augmentation techniques, we
use five different configurations of our dataset to train the previously described
model:

1. no augmentation at all (only the raw images generated by UERoboCup are
used, this is the baseline)

2. conventional augmentation without sun (all the augmentations described in
Sec. except for the sun patch augmentation)

3. conventional augmentation (including the sun patch augmentation)

4. only the image-to-image translation augmentation performed with MUNIT

5. the image-to-image translation combined with all previously described con-
ventional augmentations

We train all five models with a subset of 8000 images and 2000 images as
test set with the same augmentations in a batch size of 128 using the Adam
optimizer [I3] with an initial learning rate of 0.1. We decay the learning rate
by 0.5, if the loss on the validation set does not decrease for 10 epochs and
we terminate training after 20 epochs without improvement, which was usually
reached in less than 100 epochs.

The different precision-recall curves are visualized in Fig.[3] The mAPs for all
models and all classes can be seen in Tab.[3] We report the precision-recall curves
for the individual classes as well as micro-averaged for all classes. Note that the
computed mAP represents the classification performance of each individual pixel
over all test images and not the classification performance of the object instances.

None Conventional MUNIT + Conventional

1.0 4 Ball 1.0 1.0

Field
Line
—— Goal 0.6 0.6
—— Robot

0.8 1 0.8 1

All 0.4 1 0.4 1
0.2 0.2 1 0.2 1
0.0 T T T 0.0 T T T 0.0 T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Recall Recall Recall

Fig. 3. Precision-recall curves for a model trained without any augmentation (left),
a model trained with conventional online augmentation as described before (middle),
and a model trained with sim-to-real image translation and conventional augmentation
(right). A significant improvement can be seen due to the augmentation with MUNIT.



Table 3. All mAP values for all tested models and all classes

None Conventional | Conventional MUNIT MUNIT and

without sun conventional
Ball 0.0843 0.3927 0.3440 0.4577 0.4277
Field 0.8037 0.9846 0.9835 0.9877 0.9917
Line 0.3404 0.7866 0.7952 0.8745 0.8779
Goal 0.1024 0.1418 0.2367 0.3554 0.3207
Robot 0.3059 0.5361 0.5983 0.6529 0.7478
All 0.4203 0.9140 0.9165 0.9536 0.9647

6 Discussion

As expected, the model without any augmentation performs worst with an over-
all mAP of 0.4203, which shows that reality gap is an issue for plain images
generated in UERoboCup. The ball and the goals are rarely detected with a
slightly higher mAP for robots and lines. Since a quantitative comparison with
related works [2027124] is not possible due to different metrics that do not cap-
ture the problem well, this model is used as baseline of what is possible with
purely synthetic data generated in UERoboCup.

Just by performing basic augmentation (all augmentations mentioned above
except for the sun patch augmentation), the performance of the model increases
drastically to an overall mAP of 0.914. Most classes receive a significant increase
in mAP, particularly the robot, line, and ball classes. The goal classes’ mAP
only increase slightly. Adding the sun patch augmentation increases the overall
mAP again slightly to 0.9165. The sun patches augmentation helps improving
the line, goal, and robot classification, but results in a drop in the ball class,
while the field prediction stays about the same. This demonstrates that the sun
patch augmentation in fact helps.

When considering the model trained solely with data augmented with MU-
NIT, a clear rise in overall mAP to 0.9536 can be seen, with an improvement
for all classes. Adding conventional augmentation to the MUNIT augmenta-
tion results in a slight overall mAP increase to 0.9647. While the ball and goal
classes’ mAPs drop again slightly, all other classes’ performances increase. This
shows that our proposed method yields the desired result. Particularly highly
unbalanced classes benefit from the image-to-image translation augmentation.

The ball class is consistently the one with the lowest mAP, which is likely due
to highly unbalanced training samples (with the ball being significantly smaller
than any other objects). The same applies to the goal post class. The ball is one
of the most challenging objects to detect in different lighting conditions since it is
small, very close to the ground and throws shadows due to to its spherical shape.
Lastly, the model operates on a small resolution which makes it impossible to
detect the ball at large distances.

Despite its little size with only 12909 trainable parameters (opposed to
300000 parameters in [20]), our proposed model trained with our synthetically
generated training data seems to perform better than the approaches proposed



Fig. 4. Examples demonstrating the final performance of the neural network on an
easy sample with constant lighting (left) and two hard samples with extreme lighting
conditions (middle and right). The best performing model was trained on the full
dataset (30000 images) with a termination patiency of 40 epochs. The classes are
encoded as follows: field (green), line (white), robot (pink), ball (red), goal post (blue),
and background (black). None of these images were used for the MUNIT training.
Despite the extreme lighting conditions, the segmentation performs reasonably well
and even underrepresented classes such as the ball are mostly detected successfully.

by van Dijk et al. [27] and by Szemenyei et al. [24]. A quantitative comparison is
difficult due to the differing capabilities of the models. While our model operates
at a low resolution of only 120 x 88 pixels, van Dijk et al. operates at QVGA
resolution and Szemenyei et al. use QQVGA resolution while Schnekenburger
et al. [20] use an image of 640 x 512 as input. In contrast to van Dijk et al.,
our model is successful in predicting multiple classes at once. In contrast to Sze-
menyei et al., our model seems to predict a subjectively more precise multi-class
classification for each independent prediction, which Szemenyei et al. solve with
an expensive label propagation. Due to the same reasons, a runtime comparison
is difficult, as van Dijk et al. and Schnekenburger et al. utilize GPUs for the
inference. With 14 ms, our model is faster than the fastest model proposed by
Szemenyei et al. (22 ms + 170 ms label propagation).

The segmentation model was applied to images recorded in extreme lighting
conditions. Multiple samples can be seen in Fig. [4]

7 Conclusion

We proposed a method for segmenting an image in real-time at a reduced resolu-
tion into five different classes by utilizing a deep learning approach. We generated
all training data synthetically and evaluated the results on a test set made of
manually labeled real data.



We demonstrated our proposed method of generating a dataset with image-
to-image translation with publicly available simulation tools. With this dataset,
we showed that a small semantic segmentation model is capable of running
in real-time on low-end hardware with while producing results that outperform
related work. In contrast to end-to-end solutions such as [3[2], which integrate the
image augmentation into the model, our approach allows to generate a versatile
and high quality dataset, which we share with the communityﬂ without the need
to have access to high performance GPUs required to generate such datasets or
the knowledge to design image-to-image translation models.
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